Responsive image
博碩士論文 etd-0103109-232155 詳細資訊
Title page for etd-0103109-232155
論文名稱
Title
不同流道板開孔率對微型燃料電池性能及暫態溫度分佈的影響
Effects of Open Ratio of Flow Field Plates on a Micro PEM Fuel Cell Performance and Its Transient Thermal Behavior
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-12-10
繳交日期
Date of Submission
2009-01-03
關鍵字
Keywords
微機電製程、開孔率、微型燃料電池
MEMS, Micro PEM fuel cell, Open ratio
統計
Statistics
本論文已被瀏覽 5661 次,被下載 2516
The thesis/dissertation has been browsed 5661 times, has been downloaded 2516 times.
中文摘要
本實驗係使用微機電製程技術(黃光微影製程及微電鑄製程),製作出五組不同開孔率(Open ratio)之銅金屬流道板,以固定流道寬度(300μm)改變肋條(Rib)寬度(150~600μm),使開孔率大小變化為60.0%至37.9%,將探討陽/陰極壓力降變化、不同電池操作溫度與不同氣體進氣背壓對燃料電池性能的影響,經由實驗找出最佳化之流道板設計及電池操作參數。此外針對電池穩定性作長時間開路電壓量測,以及利用非接觸式紅外線感測器來進行燃料電池表面溫度量測,並進ㄧ步利用簡單的數學模型進行溫度趨勢預測。研究發現在不考慮系統的輸入功時,在開孔率為49.2%時有較好性能,反之,則開孔率為38.7%時有最大淨功輸出,且銅金屬流道板能穩定的在長時間操作下至少5小時並持續兩個月,在流道板材料的選擇上,銅將是ㄧ種重要的材料。
Abstract
In this study, copper metals were used to fabricate five different flow field plates with various open ratios using MEMS technology. Five samples were prepared for experiments with rib width varying as 150, 200, 300, 450, and 600 μm at a fixed channel width (300 μm). The open ratio of flow field plates was varied from 60.0% to 37.9%. Experiments with different operating parameters of anode/cathode pressure drop, cell operating temperature, and gas backpressure were conducted. Furthermore, a simple lumped capacitance model was used to predict the temperature evolution of the fuel cell system. Then, the optimum flow field design and cell operating parameters were finally found. Based on the aforementioned experiments an optimal open ratio ofunity was found like 49.2%. Further, an optimal open ratio in terms of the net power gain factor (= power gain/power consumption) of 38.7% can be obtained for the cases under study. Durability and reliability for copper bipolar plate were examined for long range tests (each run with at least 5 hours duration for consecutive two months). This strongly suggests that copper sheets can be considered as one of possible candidates for flow field material.
目次 Table of Contents
目錄
頁次
目錄.....................................................……........................................................i
表目錄…………………………………………………………………...……iv
圖目錄………………………………………………………………………....v
符號說明…………………………………………………………….…..…. viii
中文摘要………………………………………………………………...…….x
英文摘要………………………………………………………………..…….xi

第一章 序論………………………………………………………….…..…...1
1-1 前言………………………………………………………….……..…..1
1-2 燃料電池發展之歷史與簡介…………………………………...……..3
1-3 燃料電池發電原理………………………………………….……..…..4
1-4 燃料電池種類…………………………………………………..….…..5
1-5 研究目的…………………………………………………………...…..8
1-6 文獻回顧……………………………………………………….….….10

第二章 實驗相關設備與元件材料…………………………………………16
2-1 實驗設備……………………………………………………….….….16
2-2 實驗元件材料………………………………………………….….….20
第三章 微型質子交換膜燃料電池元件設計與製作………………………30
3-1 質子交換膜燃料電池組成元件……………………………………...30
3-2 燃料電池組設計要點………………………………………………..35
3-3 微型質子交換膜燃料電池元件設計與製作………………………...36
3-3-1 使用製程原理簡介……………………………………………..37
3-3-2 燃料電池金屬流道板製程參數………………………………39
3-4 微型燃料電池組裝…………………………………………………...43

第四章 燃料電池之性能……………………………………………………55
4-1 前言…………………………………………………………………..55
4-2 電極熱力學…………………………………………………………..55
4-2-1 自由能與理想電位……………………………………………...56
4-2-2 理想電位與溫度之關係………………………………………...57
4-2-3 理想電位與壓力之關係………………………………………...59
4-3 極化現象……………………………………………………………..61
4-4 極化曲線……………………………………………………………..62

第五章 誤差分析……………………………………………………….…...66

第六章 結果與討論………………………………………………………….70
6-1五組單電池性能及耐久性比較………………………………………70
6-2 氣體進氣背壓對燃料電池性能的影響……………………………..71
6-2-1 相同且遞增的陽/陰極進氣背壓………………………………..71
6-2-2 不同的陽/陰極進氣背壓………………………………………..72
6-3 電池操作溫度對燃料電池性能的影響……………………………..72
6-4 電池操作參數及流道幾何尺寸對壓力降的影響…………………..73
6-4-1 氣體進氣背壓對壓力降的影響………………………………...73
6-4-2 電池操作溫度對壓力降的影響………………………………...74
6-4-3 流道幾何尺寸對壓力降的影響………………………………...74
6-5 流道板開孔率對壓力降及摩擦因子的影響………………………..75
6-6 五組單電池表面溫度的變化………………………………………..76
6-7 五組單電池功率比較………………………………………………..78

第七章 結論與未來展望……………………………………………………93
7-1 結論…………………………………………………………………..93
7-2 建議事項及未來展望………………………………………………..94

參考文獻……………………………………………………………………96

附錄A………………………………………………………………………102
參考文獻 References
參考文獻
1. B. Y. Park and M. J. Madou, “Design, Fabrication, and Initial Testing of a Miniature PEM Fuel Cell with Micro-scale Pyrolyzed Carbon Fluidic Plates.” Journal of Power Sources, Vol.162, 2006, pp.369-379.
2. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, “NEW Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors,” Journal of Power Sources, Vol.80, 1999, pp.235-241.
3. M. H. Oh, Y. S. Yoon, and S.G. Park, “The Electrical and Physical Properties of Alternative Material Bipolar Plate for PEM Fuel Cell system,” Electrochimica Acta, Vol.50, 2004, pp.777-780.
4. A. Schmitz, S. Wagner, R. Hahn, H. Uzun, and C. Hebling, “Stability of Planar PEMFC in Printed Circuit Board Technology,” Journal of Power Sources, Vol.127, 2004, pp.197-205.
5. X. Li and I. Sabir, “Review of Bipolar Plates in PEM Fuel Cell: Flow-field Designs,” International Journal of Hydrogen Energy Vol.30, 2005, pp.359-371.
6. K. Tüber, A. Oedegaard, M. Hermann, and C. Hebling, “Investigation of Fractal Flow-fields in Portable Proton Exchange Membrane and Direct Methanol Fuel Cells,” Journal of Power Sources, Vol.131, 2004, pp.175-181.
7. V. V. Nikam and R. G. Reddy, “Corrugated Bipolar Sheets as Fuel Distributors in PEMFC,” International Journal of Hydrogen Energy Vol.31, 2006, pp.1863-1873.
8. A. Hermann, T. Chaudhuri, and P. Spagnol, “Bipolar Plates for PEM Fuel Cells: A Review,” International Journal of Hydrogen Energy Vol.30, 2005, pp.1297-1302.
9. S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walsh, “Ionic Conductivity of an Extruded Nafion 117 EW Series of Membranes,” Journal of The Electrochemical Society, Vol.149, 2002, pp.1556-1564.
10. S. -S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, “Study of Operational Parameters on the Performance of Micro PEMFCs with Different Flow Fields,” Energy Conversion and Management Vol.47, 2006, pp.1868-1878.
11. H. Tawfik, Y. Hung, and D. Mahajan, “Metal Bipolar Plates for PEM Fuel Cell – A Review,” Journal of Power Sources, Vol.163, 2007, pp.755-767.
12. R. Jiang and D. Chu, “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cell,” Journal of Power Sources, Vol.93, 2001, pp.25-31.
13. Q. Yan, H. Toghiani, and J. Wu, “Investigation of Water Transport Through Membrane in a PEM Fuel Cell by Water Balance Experiments,” Journal of Power Sources, Vol.158, 2006, pp.316-325.
14. V. V. Nikam and R. G. Reddy, “Copper Alloy Bipolar for Polymer Electrolyte Membrane Fuel Cell,” Electrochimica Acta, Vol.51, 2006, pp.6338-6345.
15. L. Wang, A. Husar, T. Zhou, and H. Liu, “A Parametric study of PEM Fuel Cell Performances,” International Journal of Hydrogen Energy Vol.28, 2003, pp.1263-1272.
16. M. Amirinejad, S. Rowshanzamir, M. H. Eikani, “Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol.161, 2006, pp.872-875.
17. S. -S. Hsieh, J. K. Kuo, C. F. Hwang, and H. H. Tsai, “A Novel Design and Microfabrication for a Micro PEMFC,” Microsystem Technologies, Vol.10, 2004, pp.121-126.
18. S. -S. Hsieh, C. F. Huang, J. K. Kuo, H. H. Tsai, and S. H. Yang, “SU-8 Flow Field Plates for a Micro PEMFC,” Journal of Solid State Electrochem, Vol.9, 2005, pp.121-131.
19. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Scum-free Patterning of SU-8 Resist for Electroforming Applications,” Journal of Micromechanics and Microengineering, Vol.15, 2005, pp.130-135.
20. S. H. Chan, N. T. Nguyen, Z. Xia, and Z. Wu, “Development of a Polymeric Micro Fuel Cell Containing Laser-Micromachined Flow Channels,” Journal of Micromechanics and Microengineering, Vol.15, 2005, pp.231-236.
21. S. -S. Hsieh, C. F. Huang, and C. L. Feng, “A Novel Design and Micro-Fabrication for Copper (Cu) Electroforming Bipolar Plates,” Micron, Vol.39, 2008, pp.263-268.
22. A. Kumar and R. G. Reddy, “Effect of Channel Dimensions and Shape in the Flow-field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol.113, 2003, pp.11-18.
23. S. J. Lee, C. H. Huang, J. J. Lai, and Y. P. Chen, “Corrosion-resistant Component for PEM Fuel Cells,” Journal of Power Sources, Vol.131, 2004, pp.162-168.
24. Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang, and C. S. Kim, “Effects of Channel and Rib Widths of Flow Field Plates on the Performance of a PEMFC,” International Journal of Hydrogen Energy Vol.30, 2005, pp.1363-1366.
25. S. -S. Hsieh, .C. L. Feng, and C. F. Huang, “Development and Performance Analysis of a H2/Air Micro PEM Fuel Cell Stack,” Journal of Power Sources, Vol.163, 2006, pp.440-449.
26. S. Shimpalee, S. Greenway, and J. W. Van Zee, “The Impact of Channel Path Length on PEMFC Flow-field Design,” Journal of Power Sources, Vol.160, 2006, pp.398-406.
27. S. -S. Hsieh and K. M. Chu, “Channel and Rib Geometric Scale Effects of Flowfield Plates on the Performance and Transient Thermal Behavior of a Micro-PEM Fuel Cell,” Journal of Power Sources, Vol.173, 2007, pp.222-232.
28. S. Litster and McLean, “PEM Fuel Cell Electrodes,” Journal of Power Sources, Vol.130, 2004, pp.61-76.
29. H. Yang and T. S. Zhao, “Effect of Anode Flow Design on the Performance of Liquid Feed Methanol Fuel Cells,” Electrochimica Acta, Vol.50, 2005, pp.3243-3252.
30. F. Barbir, H. Gorgun, and X. Wang, “Relationship Between Pressure Drop and Cell Resistance as a Diagnostic Tool for PEM Fuel Cells,” Journal of Power Sources, Vol.141, 2005, pp.96-101.
31. J. Scholta, G. Escher, W. Zhang, L. Küppers, L. Jörissen, and W. Lehnert, “Investigation on the Influence of Channel Geometries on PEMFC Performance,” Journal of Power Sources, Vol.155, 2006, pp.66-71.
32. F. B. Weng, A. Su, C. Y. Hsu, and C. Y. Lee, “Study of Water-flooding Behaviour in Cathode Channel of a Transparent Proton-exchange Membrane Fuel Cell,” Journal of Power Sources, Vol.157, 2006, pp.674-680.
33. N. Rajalakshmi, T. T. Jayanth, R. Thangamuthu, G. Sasikumar, P.Sridhar, and K. S. Dhathathreyan, “Water Transport Characteristics of Polymer Electrolyte Membrane Fuel Cell,” International Journal of Hydrogen Energy Vol.29, 2004, pp.1009-1014.
34. J. R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, 1997.
35. A. Schmitz, M. Tranitz, S. Eccarius, A. Weil and C. Hebling, “Influence of Cathode Opening Size and Wetting Properties of Diffusion Layers on the Performance of Air-breathing PEMFCs,” Journal of Power Sources, Vol.154, 2006, pp.437-447.
36. J. J. Hwang and H. S. Hwang, “Parametric Studies of a Double-cell Stack of PEMFC Using Grafoil™ Flow-field Plates,” Journal of Power Sources, Vol.104, 2002, pp.24-32.
37. W. He, G. Lin, and T. V. Nguyen,“Diagnostic Tool to Detect Electrode Flooding in Proton-Exchange-Membrane Fuel Cells,” AIChE Journal, Vol.49, 2003, pp.3221-3228.
38. X. Li, I. Sabir, and J. Park, “A Flow Channel Design Procedure for PEM Fuel Cells with Effective Water Removal,” Journal of Power Sources, Vol.163, 2007, pp.933-942.
39. S. Kandlikar and W. Grande, “Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology,” Heat Transfer Engineering, Vol.24, 2003, pp.3-17.
40. N. T. Nguyen and S. H. Chan, “Micromachined Polymer Electrolyte Membrane and Direct Methanol Fuel Cells-A Review,” Journal of Micromechanics and Microengineering, Vol.16, 2006, pp.R1-R12.
41. S. W. Cha, R. O’Hayre, Y. I. Park, and F. B. Prinz, “Electrochemical Impedance Investigation of Flooding in Micro-flow Channels for Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol.161, 2006, pp.138-142.
42. S. W. Cha, R. O’Hayre, S. J. Lee, Y. Saito, and F. B. Prinz, “ Geometric Scale Effect of Flow Channels on Performance of Fuel Cell,” Journal of The Electrochemical Society, Vol.151, 2004, pp.A1856-A1864.
43. S. W. Cha, R. O’Hayre, and F. B. Prinz, “The Influence of Size Scale on the Performance of Fuel Cells,” Solid State Ionics Vol.175, 2004, pp.789-795.
44. J. Scholta, F. Häussler, W. Zhang, L. Küppers, L. Jörissen, and W. Lehnert, “Development of a Stack Having an Optimized Flow Field Structure with Low Cross Transport Effects,” Journal of Power Sources, Vol.155, 2006, pp.60-65.
45. J. J. Hwang and H. S. Hwang, “Parametric Studies of a Double-cell Stack of PEMFC Using Grafoil Flow-field Plates,” Journal of Power Sources, Vol.104, 2002, pp.24-32.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code