Responsive image
博碩士論文 etd-0103115-140132 詳細資訊
Title page for etd-0103115-140132
論文名稱
Title
以淨水污泥結合高爐石燒結材料對磷酸鹽吸脫附之研究
A Study on Phosphate Adsorption and Desorption Using Sintered Water Treatment Sludge Mix with BFS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-26
繳交日期
Date of Submission
2015-02-05
關鍵字
Keywords
燒結、高爐石、淨水污泥、磷酸鹽、吸附、脫附
water treatment sludge, Blast Furnace Slag, desorption, adsorption, phosphate, sinter
統計
Statistics
本論文已被瀏覽 5677 次,被下載 298
The thesis/dissertation has been browsed 5677 times, has been downloaded 298 times.
中文摘要
因糧食需求增加,人類開始從富含磷的礦石中萃取磷酸鹽,經加工後用於農地施肥以增加農作物收成,在過程中已破壞了磷在地球上的自然循環。當來自土壤侵蝕的磷、人類及動物排泄物中的磷,再加上各種點源、非點源污染物,藉由空氣或土壤進入到河川、湖泊及海洋等自然水體,提供藻類豐富的營養源,造成水體優養化,使藻類大量繁殖,當藻類大量死亡時則會消耗水中溶氧,更嚴重可能形成死亡水域(Hypoxia),並使漁業資源耗竭。
近年來,將淨水污泥或高爐石於實驗室中或實際應用於溼地中吸附磷酸鹽之案例日漸增多,雖可減緩水體優養化的問題,亦為此兩種製程副產物另闢一條再利用途徑。但由於淨水污泥結構鬆散,而高爐石在水中或土壤中會釋出大量鹼性。且此兩種材料吸附磷酸鹽後,並無法回歸至自然界中使用,對於資源永續並無實質幫助。
本研究利用直潭淨水廠淨水程序所產出的淨水污泥(Sludge),以及中鋼煉鋼製程副產物之一的高爐石(BFS),將兩者以不同比例混合後加入去離子水,分別摻入木炭或發泡煉石增加試體孔隙率,再透過高溫燒結程序強化試體結構,於水樣中吸附磷酸鹽。根據本研究燒結試驗結果,將燒結的升溫速率定為每分鐘15°C、燒結最終溫度為1100°C,可提供試體較高的孔隙率及較結實的試體強度,並增加其吸、脫附效率。孔隙率試驗結果顯示A、B、C、D各試體孔隙率依序為28.44%、38.40%、31.49%、34.62%;每公克試體可吸附磷酸鹽量分別為1.88 mg、3.83 mg、2.10 mg、2.33 mg等;10分鐘滴濾試驗(重複7次之平均值)的脫附量若換算為每公克A、B、C、D試體每24小時可脫附磷酸鹽最佳效率,依序為0.037 mg (pH=4.5)、0.405 mg (自來水,pH=7.46)、0.054 mg (pH=6.0)、0.086 mg (pH=4.5)。各項試驗中吸、脫附效率最好的B試體配比為20 g淨水污泥、10 g高爐石及10 g木炭。結果亦顯示若試體孔隙率愈高,則吸附效率愈好,滴濾時的脫附效率也愈好。而滴濾水樣的pH值對磷酸鹽脫附效率並無顯著的影響。
Abstract
Due to increasing demand of food, extracting phosphate from rocks containing rich phosphorus as fertilizer to increase crop yields become necessary. However, the phosphorus cycle in nature has been destroyed by the high demand of extraction. Phosphorus from soil erosion, domestic, agriculture and industrial source transmitted through air or soil into nature water body, such as river, lake, ocean, provide nutrients to algae causing eutrophication and even algae blooms. These not only can deplete oxygen, even hypoxia, and can exhaust fishery resources.
In recent years, researches on using water treatment sludge or BFS to adsorb phosphate in laboratory or application in wetlands have been reported. Which open another way to reusing these two by-products. Although they can reduce the problem of eutrophication, the structure of water treatment sludge is loose and the BFS releases high alkalinity in water or soil. For sustainability these two materials can’t be reused when they reach saturation of adsorption.
In the study, we use the water treatment sludge from water supply treatment process by Zhitan Purification Plant and the BFS is a by-product from steel-making process by China Steel Corporation. Mixing these materials with different ratio and add DI-water for making the test composites. Increasing porosity of the composites by adding charcoal or hydroclay. The test sample’s strength will be stronger through the high temperature sinter process. After that put the sample into water sample for tests phosphate adsorptions. According to the sinter test results, we set the rate of raise temperature at 15°C/min, the final sinter temperature is 1100°C. The process can provide higher porosity, stronger strength and increase the adsorption and desorption efficiency of the test samples. The results of porosity test show that A、B、C、D sample is 28.44%、38.40%、31.49%、34.62%, respectively. The phosphate adsorption capacity is 1.88 mg/g、3.83 mg/g、2.10 mg/g、2.33 mg/g, respectively. The desorption capacity of phosphate in trickling test for 10 minutes each test(an average of repeat 7 times) in 24 hours (pH of the highest desorption capacity) is 0.037 mg/g (pH=4.5)、0.405 mg/g (tap water,pH=7.46)、0.054 mg/g (pH=6.0)、0.086 mg/g (pH=4.5), respectively. Results of this study show that the porosity dominates the absorption capacity and desorption capacity. B sample have the best efficiency in adsorption and desorption test, the mixing ratio is 20 g sludge, 10 g BFS and 10 g charcoal. The pH value of trickle water has no significant impact to the efficiency of phosphate desorption.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract v
圖目錄 ix
表目錄 x
第一章 前言 1
1.1研究動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 5
2.1自然界中的磷(Phosphorus) 5
2.1.1 磷循環(Phosphorus-Cycle) 7
2.1.2 磷污染 9
2.1.3 磷的去除機制 9
2.2淨水污泥(Sludge) 12
2.2.1 淨水污泥來源及特性 12
2.2.2淨水污泥相關吸附案例 14
2.3 高爐石(Blast Furnace Slag) 16
2.3.1 高爐石來源及特性 16
2.3.2高爐石相關吸附案例 18
2.4 燒結(Sinter) 20
2.4.1 燒結溫度及升溫速率之控制 20
2.4.2 孔隙率(Porosity) 22
2.5 脫附(Desorption) 22
第三章 材料與方法 25
3.1 材料介紹 25
3.1.1 淨水污泥(Sludge) 25
3.1.2 高爐石(Blast Furnace Slag) 27
3.1.3 木炭及發泡煉石 29
3.2 材料特性 30
3.3 試體製程 33
3.3.1 捏製成型(Shape) 33
3.3.2 燒結(Sinter) 34
3.4 使用設備與檢測方法 37
3.4.1 實驗藥品 37
3.4.2 實驗器材 38
3.4.3 採樣與保存 38
3.4.4 水質分析流程 39
3.5吸附試驗設計 40
3.6脫附試驗設計 41
第四章 結果與討論 43
4.1 燒結之變化 43
4.1.1 燒失量(Loss-on-ignition) 43
4.1.2 孔隙率(Porosity) 45
4.2 吸附試驗 47
4.2.1 原材料之吸附試驗 47
4.2.2 淨水污泥混合木炭之吸附試驗 49
4.2.3 不同混合配比之吸附試驗 51
4.3 脫附試驗 53
4.3.1 原材料之脫附試驗 53
4.3.2 不同混合配比之脫附試驗 55
4.3.3 試體綜合討論 65
第五章 結論與建議 68
5.1 結論 68
5.2 建議 69
參考文獻 70
參考文獻 References
Anderson, D. M., Glibert, P. M., Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25(4), 704-726.

Anderson, M., Skerratt, R. G., Thomas, J. P., Clay, S. D. (1996). Case study involving using fluidised bed incinerator sludge ash as a partial clay substitute in brick manufacture. Water science and technology, 34(3), 507-515.

Avnimelech, Y. (1980). Calcium-carbonate–phosphate surface complex in calcareous systems. Nature 288, 255 - 257.

Babatunde, A. O., & Zhao, Y. Q. (2007). Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Critical Reviews in Environmental Science and Technology, 37(2), 129-164.

Ball, D. (1964). Loss‐on‐ignition as an estimate of organic matter and organic carbon in non‐calcareous soils. Journal of Soil Science, 15(1), 84-92.

Bethanis, S., Cheeseman, C., Sollars, C. (2002). Properties and microstructure of sintered incinerator bottom ash. Ceramics International, 28(8), 881-886.

Bird, S. C., Drizo, A. (2009). Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters. Journal of Environmental Science and Health, Part A, 44(13), 1476-1483.

Brdjanovic, D., Logemann, S., M van Loosdrecht, M. C., Hooijmans, C. M., J Alaerts, G., Heijnen, J. J. (1998). Influence of temperature on biological phosphorus removal: process and molecular ecological studies. Water research, 32(4), 1035-1048.

Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002-10005.

Clarke, F. W., Washington, H. S. (1924). The composition of the earth's crust (Vol. 127): US Government Printing Office.

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014-1015.

Cordell, D., Rosemarin, A., Schröder, J., Smit, A. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758.

Das, B., Prakash, S., Reddy, P., Misra, V. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40-57.

de-Bashan, L. E., Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water research, 38(19), 4222-4246.

Dentel, S. K. (1991). Coagulant control in water treatment. Critical Reviews in Environmental Science and Technology, 21(1), 41-135.

Drizo, A., Forget, C., Chapuis, R. P., Comeau, Y. (2006). Phosphorus removal by electric arc furnace steel slag and serpentinite. Water research, 40(8), 1547-1554.

Drolc, A., Zagorc Koncan, J. (2002). Estimation of sources of total phosphorus in a river basin and assessment of alternatives for river pollution reduction. Environment international, 28(5), 393-400.

Dubinsky, Z., Stambler, N. (1996). Marine pollution and coral reefs. Global change biology, 2(6), 511-526.

Eivazi, F., Tabatabai, M. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9(3), 167-172.

Ekama, G. A., Wentzel, M. C. (1999). Difficulties and developments in biological nutrient removal technology and modelling. Water science and technology, 39(6), 1-11.

Fenner, C. N. (1913). The stability relations of the silica minerals. American Journal of Science(214), 331-384.

Föllmi, K. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40(1), 55-124.

Galarneau, E., Gehr, R., 1997. Phosphorus removal from wastewaters: experimental and theoretical support for alternative mechanisms. Water Res. 31, 328–338.

Guisasola, A., Pijuan, M., Baeza, J. A., Carrera, J., Casas, C., Lafuente, J. (2004). Aerobic phosphorus release linked to acetate uptake in bio‐P sludge: process modeling using oxygen uptake rate. Biotechnology and bioengineering, 85(7), 722-733.

Heller-Kallai, L., Miloslavski, I., Aizenshtat, Z., Halicz, L. (1988). Chemical and mass spectrometric analysis of volatiles derived from clays. American Mineralogist, 73(3-4), 376-382.

Hesselmann, R., Von Rummell, R., Resnick, S. M., Hany, R., Zehnder, A. (2000). Anaerobic metabolism of bacteria performing enhanced biological phosphate removal. Water research, 34(14), 3487-3494.

Hirschhorn, J. S. (1969). Introduction to powder metallurgy: American Powder Metallurgy Institute Princeton, NJ.

Hsu, P. H. (1975). Precipitation of phosphate from solution using aluminum salt. Water research, 9(12), 1155-1161.

Jin, B., Wilén, B.-M., Lant, P. (2004). Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chemical Engineering Journal, 98(1), 115-126.

Johansson, L., Gustafsson, J. P. (2000). Phosphate removal using blast furnace slags and opoka-mechanisms. Water research, 34(1), 259-265.

Körner, S., Vermaat, J. (1998). The relative importance of< i> Lemna gibba</i> L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Water research, 32(12), 3651-3661.

Kadlec, R. H. (1997). An autobiotic wetland phosphorus model. Ecological Engineering, 8(2), 145-172.

Kang, S. K., Choo, K. H., Lim, K. H. (2003). Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent. Separation science and technology, 38(15), 3853-3874.

Kim, J. H., Moon, H.-S., Chon, C.-M., Ahn, J. S. (2002). Removal capacity of water plant alum sludge for phosphorus in aqueous solutions. Chemical Speciation and Bioavailability, 14(1-2), 67-73.

Kim, E.-H., Yim, S.-B., Jung, H.-C., Lee, E.-J. (2006). Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material. J Hazard Mater, 136(3), 690-697.

Kingery, W. D. (1960). Introduction to ceramics.

Kumar, P., Mehrotra, I., Viraraghavan, T. (1996). Biological phosphorus removal: Effect of low temperature. Journal of cold regions engineering, 10(2), 63-76.

Lürling, M., Oosterhout, F. v. (2013). Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water research, 47(17), 6527-6537.

Lu, S.-g., Bai, S.-q., Shan, H.-d. (2008). Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. Journal of Zhejiang University Science A, 9(1), 125-132.

Mitsch, W. J., Dorage, C. L., Wiemhoff, J. R. (1979). Ecosystem dynamics and a phosphorus budget of an alluvial cypress swamp in southern Illinois. Ecology, 1116-1124.

Murphy, T., Hall, K., Yesaki, I. (1983). Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnology and oceanography, 28(1), 58-69.

Novotny, V. (1999). Diffuse pollution from agriculture—a worldwide outlook. Water science and technology, 39(3), 1-13.

Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L. L., Reis, M. A. (2007). Advances in enhanced biological phosphorus removal: from micro to macro scale. Water research, 41(11), 2271-2300.

Oguz, E. (2004). Removal of phosphate from aqueous solution with blast furnace slag. J Hazard Mater, 114(1), 131-137.

Olsen, S. R., Khasawneh, F. E. (1980). Use and Limitations of Physical-Chemical Criteria for Assessing the Status of Phosphorus in Soils. In F. E. Khasawneh, E. C. Sample & E. J. Kamprath (Eds.), The Role of Phosphorus in Agriculture (pp. 361-410): American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

Ortiz, N., Pires, M. A. F., Bressiani, J. C. (2000). Use of steel converter slag as nickel adsorber to wastewater treatment. Original Research Article Waste Management, 21(7), 631-635.

Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environmental science & technology, 37(2), 201-208.

Razali, M., Zhao, Y., Bruen, M. (2007). Effectiveness of a drinking-water treatment sludge in removing different phosphorus species from aqueous solution. Separation and Purification Technology, 55(3), 300-306.

Reich, J. (2003). Slag from hazardous waste incineration: Reduction of heavy metal leaching. Waste management & research, 21(2), 110-118.

Ruthven, D. M. (1984). Principles of adsorption and adsorption processes: John Wiley & Sons, 180-183.

Sakadevan, K., Bavor, H. (1998). Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water research, 32(2), 393-399.

Sedlak, R. I. (1991). Phosphorus and nitrogen removal from municipal wastewater: principles and practice, CRC Press, 94-105.

Sharpley, A. N., Chapra, S., Wedepohl, R., Sims, J., Daniel, T. C., Reddy, K. (1994). Managing agricultural phosphorus for protection of surface waters: Issues and options. Journal of Environmental Quality, 23(3), 437-451.

Smolders, G., Van der Meij, J., Van Loosdrecht, M., Heijnen, J. (1994). Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnology and bioengineering, 43(6), 461-470.

Stumm, W., Leckie, J. O. (1970). Phosphate exchange with sediments: its role in the productivity of surface waters.

Takahashi, M., Kato, S., Shima, H., Sarai, E., Ichioka, T., Hatyakawa, S., Miyajiri, H. (2001). Technology for recovering phosphorus from incinerated wastewater treatment sludge. Chemosphere, 44(1), 23-29.

Tanner, C. C. (1996). Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering, 7(1), 59-83.

Tonderski, K. S. (2000). Temporal variations in N and P removal in a SF wastewater treatment wetland in temperate climate. Wetland systems for water pollution control, Florida. , 1153–1161

Vollenweider, R. A. (1982). Eutrophication of waters: Monitoring, assessment and control: Organisation for Economic Co-operation and Development.

Walker, D., Ormond, R. (1982). Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Marine Pollution Bulletin, 13(1), 21-25.

Westholm, L. (2010). The use of blast furnace slag for removal of phosphorus from wastewater in Sweden—A review. Water, 2(4), 826-837.

Wu, C. C., Huang, C. (1997). Effects of polymer dosage on alum sludge dewatering characteristics and physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 122(1), 89-96.

Wu, C.-H., Lin, C.-F., Horng, P.-Y. (2004). Adsorption of copper and lead ions onto regenerated sludge from a water treatment plant. Journal of Environmental Science and Health, Part A, 39(1), 237-252.

Xue, Y., Hou, H., Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J Hazard Mater, 162(2), 973-980.

Yamada, H., Kayama, M., Saito, K., Hara, M. (1986). A fundamental research on phosphate removal by using slag. Water research, 20(5), 547-557.

Yang, Y., Tomlinson, D., Kennedy, S., Zhao, Y. (2006). Dewatered alum sludge: a potential adsorbent for phosphorus removal.

Yi, W. G., Lo, K. V. (2003). Phosphate recovery from greenhouse wastewater. Journal of Environmental Science and Health, Part B, 38(4), 501-509.

Zeng, L., Li, X., Liu, J. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318-1326.

Zhang, Y. Q., Wen, M. X., Li, X. P., Shi, X. J. (2014). Long‐term fertilisation causes excess supply and loss of phosphorus in purple paddy soil. Journal of the science of food and agriculture, 94(6), 1175-1183.

Zhao, X., Zhao, Y. (2009). Investigation of phosphorus desorption from P-saturated alum sludge used as a substrate in constructed wetland. Separation and Purification Technology, 66(1), 71-75.

Zou, J.Z., Dong, L.P., Qin, B.P. (1985). Preliminary studies on eutrophication and red tide problems in Bohai Bay. Hydrobiologia, 127(1), 27-30.

中國鋼鐵股份有限公司. (2012), 企業社會責任報告書.

化全縣, 湯建偉, 劉詠, 張保林, 魏惠, 黄鶯. (2010). 鋼渣對廢水中磷的吸附性能. 過程工程學報, 10(1), 75-79.

王帥, 谢麗, 盛杰, 周琪, 翟桂明. (2009). 鋼渣在環境治理中的應用及其研究進展 工業水處理 (Vol. 28, pp. 14-18).

台灣自來水公司. (2008). 自來水公司淨水污泥自資資源化之研究報告.

石濤. (2009). 環境化學: 鼎茂圖書, 8.7~8.23

佘健. (2007). 改性鋼渣去除廢水中磷酸鹽的試驗研究, 武漢理工大學碩士論文.

汪建民. (1991). 粉末冶金技術手冊. 中華民國粉末冶金協會, 101-103.

林平全. (2007). 轉爐石製程、物化特性與品質管制. 轉爐石應用於瀝青混凝土鋪面研討會, 高雄, 1-10.

林志鴻. (2010). 淨水污泥再利用於水泥生料, 國立中央大學環境工程研究所碩士論文.

林東燦. (2006). 污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究, 國立中央大學環境工程研究所碩士論文.

洪啟昌. (2005). 次磷酸溶液處理方法之研究-化學混凝法、吸附法與氧化法, 國立成功大學化學工程學系碩士論文

高偉傑. (2011). 淨水污泥再利用於CLSM回填材料之研究, 淡江大學水資源及環境工程學系碩士論文.

張家旗. (2010). 自充填高爐石混凝土(SCSC)應用於高層建築柱內灌漿之研究, 國立高雄應用科技大學土木工程與防災科技研究所碩士論文.

張維欽, 陳堯森, 郭人豪, 蘇玫心, 曾淳錚, 江世民. (2005). 廢棄鋁鹽污泥再利用吸附廢水中磷酸鹽之研究, 台灣環境資源永續發展研討會論文集 (pp. 26-37).

張穎, 鄧良偉. (2005). 廢水中磷的去除研究進展, 中國沼氣 (Vol. 23, pp. 11-14).

郭育宗. (2009). 轉爐石去除河水中磷之探討, 國立屏東科技大學環境工程與科學系碩士論文.

陳宜晶. (2004). 利用添加劑提昇淨水污泥燒結之材料品質研究, 逢甲大學環境工程與科學學系碩士論文.

曾祥霖. (2011). 水生植物與大漢溪人工濕地污水處理能力關係之探討, 國立中興大學生命科學系所碩士論文.

黃家裕. (1991). 含高爐石材料混凝土之應用研究, 國立交通大學土木工程研究所碩士論文.

趙麗君, 張大群, 陳寶柱. (2001). 污泥處理與處置技術的進展, 中國给水排水, 17(6), 23-25.

劉鳴達, 張玉龍, 王耀晶, 楊丹. (2002). 施用鋼渣對水稻土 pH, 水溶態矽動態及水稻產量的影響, 土壤通報 (Vol. 33, pp. 47-50).

蕭丞祺. (2009). 綠藻製程廢水以生物濾床處理及回收利用, 國立中山大學海洋環境及工程學系碩士論文.

蕭蘊華、傅崇德譯. (1997).「環境工程化學」.第四版, 蒼海書局. (94-99).

楊志政. (2001). 下水污泥灰細度變化與矽氧晶相對燒成骨材輕質化之影響, 國立中央大學環境工程研究所碩士論文.

蔡尚晏. (2008). 水庫淤泥添加玻璃粉燒製輕質骨材之研究, 國立成功大學資源工程學系碩士論文.

顏慧茹. (2010). 淨水污泥燒結製備輕質化材料之可行性研究, 逢甲大學環境工程與科學學系碩士論文.

吳珮佳. (2004). 沉水植物對於水中磷的去除之研究-以水蘊草為例, 國立臺灣大學環境工程學研究所碩士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code