Responsive image
博碩士論文 etd-0103116-005316 詳細資訊
Title page for etd-0103116-005316
論文名稱
Title
多晶矽次波長光柵反射鏡於標準晶圓廠製程的實現
Implementation of Polysilicon Subwavelength Grating Reflectors in Standard Bulk CMOS Foundry Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-25
繳交日期
Date of Submission
2016-02-03
關鍵字
Keywords
高折射率對比光柵、多晶矽、互補式金氧半導體
complementary metal oxide semiconductor, polysilicon, High-index-contrast grating
統計
Statistics
本論文已被瀏覽 5681 次,被下載 249
The thesis/dissertation has been browsed 5681 times, has been downloaded 249 times.
中文摘要
我們已經成功證實了可以透過標準CMOS製程製作出HCG反射鏡,是將製程裡原本作為多晶矽閘極層設計成高折射率光柵並能反射正向入射下的1310nm以及1550nm等通訊波長,光柵的設計以及製作都遵守著製程規範並無要求任何規則修改。HCG反射鏡的反射頻寬、偏極以及中心波長都可以藉由改變週期、填充比,還有厚度,不過由於存在於多晶矽光柵與矽基板之間的場氧化矽層太薄了,以至於產生了漏光現象導致降低了反射率(>90%)以及極化選擇比(1.64 : 1)。藉由基板的移除可以提升反射率(接近100%)以及極化選擇比(10 : 1),量測穿透率的波谷位置證實了HCG反射鏡的寬帶是來自於guided-mode resonances理論的洩漏模態。所有量測的反射頻譜都可藉由嚴格耦合波分析(RCWA)模擬來預測,藉由CMOS製程技術的協助,整合在CMOS裡的HCG可以藉由高反射率的特性促進了晶片上的垂直共振腔面射型雷射(VCSEL)和光學相位陣列器(OPA)等各種光電元件的發展。目前我們正在嘗試製作一種由CMOS光柵以及III-V族多層量子井結構異質整合成的的光放大器。
Abstract
We have successfully demonstrated HCG reflectors in standard bulk CMOS by simply employing polysilicon gate as the high-index grating layer to reflect the 1310-nm and 1550-nm telecommunication wavelengths under normal incidence. Its design and fabrication strictly follow the foundry regulations without requiring any front-end process modification. The reflection bandwidth, polarization, and center wavelength of the HCG reflector can be adjusted by tuning the grating period, duty cycle, and thickness, but the existence of thin field oxide between polysilicon HCG and silicon substrate leads to a poor peak reflectivity (>90%) and a lower polarization ratio (1.64:1) mainly due to the optical leakage to the substrate. Substrate-removed HCGs show remarkable improvements in peak reflectivity (close to 100%) and polarization ratio (10:1). Measured transmission dips verify that the high-reflection bands of HCG reflectors come from the guided-mode resonances supported by the leaky modes. All measured reflection spectra can be predicted by the RCWA simulations. Leveraging from the CMOS technologies, HCG implementations in bulk CMOS can facilitate the development of not only on-chip VCSELs and OPAs but also the optoelectronic devices that benefits from the high reflection characteristics of HCGs. We are currently working on the hybrid integration of CMOS HCGs with III-V multi-quantum well structure to achieve an on-chip optical amplifier.
目次 Table of Contents
論文審定書…………………………………………………………… i
誌謝…………………………………………………………………… ii
中文摘要………………………………………………………….…... iii
Abstract…………………………………………..…………………… iv
第 一 章 緒論………………………………………………........... 1
1.1 背景………………………………………………………….. 1
1.2 研究動機……………………………………………….……. 3
1.3 論文簡介……………………………………………….……. 3
第 二 章 次波長光柵……………………………………………... 4
2.1 次波長光柵結構簡介……………………………………….. 4
2.2 原理與公式………………………………………………….. 4
2.3 次波長光柵的應用………………………………………….. 7
第 三 章 IC設計的模擬分析與………………………………...... 9
3.1 IC製程結構簡介…………………………………………….. 9
3.2 模擬架構與設定…………………………………………….. 10
3.3 模擬結果分析……………………………………………….. 11
第 四 章 後製程與特性量測分析………………………………... 17
4.1 量測系統說明……………………………………………….. 17
4.2 後製程過程………………………………………………….. 17
4.3 量測結果與模擬差異分析………………………………….. 19
4.4 週期與反射波段關係分析………………………………….. 23
4.5 其他量測結果分析………………………………………….. 31
第 五 章 III-V族光放大器的實驗設計………………………….. 33
5.1 研究動機與目的…………………………………………….. 33
5.2 光致螢光系統簡介……………………………..…………… 34
5.3 光學元件的製程設計實驗………………………………….. 35
5.4 初步的模擬結果分析……………………………………….. 36
第 六 章 總結……………………………………………………... 40
附錄一 UMC18製程的光柵反射鏡結合MEMS結構的研究……. 42
附錄1.1研究動機與TSMC-18的差異………………………... 42
附錄1.2模擬與初始量測結果分析與比較…………………….. 44
附錄1.3結合微機電系統的光柵效果分析…………………….. 46
附錄1.4結論…………………………………………………….. 49
附錄二 二維光柵結構的模擬研究………………………………... 50
附錄2.1模擬結構與反射結果分布…………………………….. 50
附錄2.2模擬反射趨勢分析…………………………………….. 54
附錄2.3實際的量測例子……………………………………….. 55
附錄2.4結論…………………………………………………….. 58
參考文獻………………………………………………………….….... 59
參考文獻 References
[1]C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 978-987, 2000.
[2]Y. Matsui, D. Vakhshoori, W. Peidong, C. Peili, L. Chih-Cheng, J. Min, K. Knopp, S. Burroughs, and P. Tayebati, “Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power,” IEEE J. Quantum Electron., vol. 39, pp. 1037-1048, 2003.
[3]G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Wide and continuously tunable (30 nm) detector with uniform characteristics over tuning range,” Electron. Lett., vol. 33, pp. 1122-1124, 1997.
[4]C. F. R. Mateus, C. Chih-Hao, L. Chrostowski, S. Yang, S. Decai, R. Pathak, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett., vol. 14, pp. 819-821, 2002.
[5]S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable fabry-perot filter,” IEEE Photon. Technol. Lett., vol. 15, pp. 434-436, 2003.
[6]R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, 1992.
[7]B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sensors Actuators B, vol. 81, pp. 316-328, 2002.
[8]Y. Kanamori and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Opt. Rev., vol. 9, pp. 183-185, 2002.
[9]C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroad-band mirror using low-index cladded sub-wavelength grating,” IEEE Photon. Technol. Lett., vol. 2, pp. 518-520, 2004.
[10]C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett., vol. 16, pp. 1676-1678, 2004.
[11]L. Chen, M. C. Y. Huang, C. F. R. Mateus, and C. J. Chang-Hasnain, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett., vol. 88, pp. 031102, 2006.
[12]Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett., vol. 20, pp. 434-436, 2008.
[13]Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express, vol. 16, pp. 14221-14226, 2008.
[14]C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express, vol. 18, pp. 15461-15466, 2010.
[15]Tian Sang, Li Wang, Shiyin Ji, Yiqin Ji, Hong Chen, and Zhanshan Wang1,“Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,” 2009 OSA vol. 26, no. 3, pp. 599-63, 2009.
[16]Corrado Sciancalepore, Badhise Ben Bakir, Xavier Letartre, Christian Seassal, and Pierre Viktorovitch, “Ultra-Compact Vertical-Cavity Surface-Emitting Lasers Using a Double Set of Photonic Crystal Mirrors,” Proc. of SPIE, vol. 8639 863908-10, 2013.
[17]S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Applied Optics, vol. 32, no. 14, pp. 2606-2613, 1993.
[18]Hong-Shik Lee, Yeo-Taek Yoon, Sang-Shin Lee, Sang-Hoon Kim and Ki-Dong Lee, “Color filter based on a subwavelength patterned metal grating,” 2007 OSA Optics Express, vol. 15, no. 23, pp. 15457-15463, 2007.
[19]Yeo-Taek Yoon, Hong-Shik Lee, Sang-Shin Lee, Sang Hoon Kim, Joo-Do Park, and Ki-Dong Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” 2008 OSA Optics Express, Vol. 16, No. 4, pp. 2374-2380, 2008.
[20]Chao Li, Huijuan Zhang, Mingbin Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” 2013 OSA Optics Express, vol. 21, no. 7, pp. 7868-7874, 2013.
[21]Yoshihiro Tsunemi,*Nobuhide Yokota, Shota Majima, Kazuhiro Ikeda,Takeo Katayama, and Hitoshi Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” 2013 OSA Optics Express, vol. 21, no. 23, pp.28685-28692, 2013.
[22]Byung-Wook Yoo, Mischa Megens, Tianbo Sun, Weijian Yang, Connie J. Chang-Hasnain, David A. Horsley, and Ming C. Wu, “32×32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors,” 2014 OSA Optics Express, vol. 22, no. 16, pp. 19029-19039, 2014.
[23]Yannick De Koninck, Gunther Roelkens, and Roel Baets, “Electrically pumped 1550 nm single mode III-V-on-silicon laser with resonant grating cavity mirrors,” Wiley Online Library Laser Photonics, rev. 9, no. 2, L6-L10, 2015.
[24]Il-Sug Chung, Vladmir Iakovlev, Alexei Sirbu, Senior Member, IEEE, Alexandru Mereuta, Andrei Caliman, Eli Kapon, and Jesper Mørk, “Broadband MEMS-Tunable High-Index-Contrast Subwavelength Grating Long-Wavelength VCSEL,” 2010 IEEE Journal of Quantum Electronics, vol. 46, no. 9, pp. 1245-1252, 2010.
[25]Stefanie Kroker, Thomas Käsebier, Stefan Steiner, Ernst-Bernhard Kley, and Andreas Tünnermann, “High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency,” APPLIED PHYSICS LETTERS 102, 161111, 2013.
[26]Yoshiaki Kanamori, Masaya Shimono, and Kazuhiro Hane, “Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates, ” IEEE Photon. Technol. Lett., vol. 18, No2, pp. 2126-28, 2006.
[27]M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Amer. A, vol. 12, no. 5, pp. 1068–1076, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code