Responsive image
博碩士論文 etd-0103116-211016 詳細資訊
Title page for etd-0103116-211016
論文名稱
Title
銀銅合金薄膜應用在電阻式記憶體之材料與電性研究
The study of material and electrical properties of Ag-Cu thin films applied in resistive random access memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-19
繳交日期
Date of Submission
2016-02-03
關鍵字
Keywords
傳導機制、離子移動、非揮發式記憶體、電阻式隨機存取記憶體、銀銅合金
Nonvolatile memory (NVM), Resistive Random Access Memory (RRAM), Ag-Cu alloy, conducting mechanism, ion migration
統計
Statistics
本論文已被瀏覽 5711 次,被下載 60
The thesis/dissertation has been browsed 5711 times, has been downloaded 60 times.
中文摘要
隨著科技日新月異,半導體元件微縮,快閃記憶體將面臨其物理限制,因此,發展次世代非揮發式記憶體將是一個不可避免且具有潛力的研究,其中電阻式隨機存取記憶體在次世代非揮發式記憶體中是一備受矚目且被廣泛研究的,其擁有快速的讀取速度、操作電壓低、三明治簡單結構、製造成本低等……優點,因此,本論文將以電阻式記憶體為研究主軸。
本研究將量測與分析銀銅合金薄膜應用於電阻式記憶體之材料性質與電性性質。為了比較上電極使用銀銅合金和純銀與純銅之間的差異,我們分別將銀銅合金Ag60Cu40與純銀和純銅薄膜當作上電極,中間層皆為SiO2,利用多靶共濺鍍的方式將薄膜沉積在已經過黃光製程的TiN基板上,並且分析其材料與電性上的差異。比較後發現此三種上電極,藉由離子移動皆會出現記憶體的電性操作特性,並對其傳導機制做更進一步的研究。研究結果顯示,以銀銅合金當上電極的元件,其電性操作比以純銀或純銅當上電極的元件來的穩定且阻態轉換速度較快,及傳導路徑形成電壓也較小。在電流傳導機制上,發現當純銅為上電極時,載子會藉由銀或銅原子移動所產生的缺陷進行傳導。
Abstract
With the improvement of nano technology, semiconductor devices would be scaled down and face the physic limitation. Therefore, it is unavoidably to study on the next generation non-volatile memory. Resistive Random Access Memory (RRAM) is considered to be potential and receives lot of attention. RRAM got many advantages such as high operating speed, simple structure, and low cost, etc.
In this study, devices with different top electrodes, Ag, Ag60Cu40 and Cu were fabricated by sputtering on patterned TiN for material and electrical analysis. The insulating layer is SiO2. Results show that device with Ag60Cu40 alloy top electrode performs better than pure Ag or pure Cu top electrode. The Ag60Cu40/SiO2/TiN device is more stable and the forming voltage is smaller than those of pure Ag and pure Cu devices. According to the results of fast I-V, the switching speed of Ag60Cu40/SiO2/TiN during the set process is faster than pure Ag and Cu devices. The curve-fitting reveals the conducting mechanism of Cu/SiO2/TiN is related to the defect caused by ion migration.
目次 Table of Contents
Content
Content i
List of Tables iv
List of Figures v
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Motivation 2
Chapter 2 Background and literature review 4
2-1 Introduction of memory 4
2-2 Classification of memory 5
2-2-1 Volatile memory 6
2-2-2 Nonvolatile memory 7
2-3 Next-generation nonvolatile memories 7
2-3-1 MRAM 7
2-3-2 PCRAM 8
2-3-3 FeRAM 9
2-3-4 RRAM 10
2-4 Properties of RRAM 10
2-4-1 Resistance switching phenomenon of RRAM 10
2-4-2 The switching mechanism of RRAM 12
2-5 Characteristics and applications of Ag and Cu 14
2-6 Mechanism of carrier conduction in insulating layer 16
2-6-1 Ohmic conduction 17
2-6-2 Schottky emission 17
2-6-3 Poole-Frenkel emission 18
2-6-4 Hopping conduction 19
2-6-5 Tunneling 20
2-6-6 Space charge limited current 20
Chapter 3 Experimental procedures 22
3-1 Device preparation 22
3-1-1 Multi-target sputter 23
3-2 Property measurements and analyses 24
3-2-1 n&K analyzer 24
3-2-2 3-D alpha-step profilometer 25
3-2-3 Fourier-transform infrared spectroscopy (FTIR) 25
3-2-4 X-ray photoelectron spectroscopy (XPS) 26
3-2-5 X-ray diffraction (XRD) 27
3-2-6 Scanning electron microscopy (SEM) 28
3-2-7 Multi-function semiconductor parameter analyzer 28
Chapter 4 Results and discussion 29
4-1 Device preparation 29
4-1-1 The Deposition of SiO2 thin film 30
4-1-2 The Deposition of Ag60Cu40 thin films 30
4-2 Material analyses 31
4-2-1 XRD results 31
4-2-2 XPS results 32
4-2-3 FTIR results 33
4-3 Electrical analysis 33
4-3-1 Basic electrical characterization 33
4-3-2 The switching time of devices 37
4-3-3 Reliability of Ag-Cu alloy device 38
4-3-4 Size effect of Ag-Cu alloy device 39
4-3-5 Conducting mechanism fitting of Ag-Cu alloy device 40
Chapter 5 Conclusion 42
References 44
Tables 50
Figures 54
參考文獻 References
References

[1] G.E. Moore, Proceedings of the IEEE, 86 (1998) 82-85.
[2] X. Chen, S. Samavedam, V. Narayanan, K. Stein, C. Hobbs, C. Baiocco, W. Li, D. Jaeger, M. Zaleski, H.S. Yang, N. Kim, Y. Lee, D. Zhang, L. Kang, J. Chen, H. Zhuang, A. Sheikh, J. Wallner, M. Aquilino, J. Han, Z. Jin, J. Li, G. Massey, S. Kalpat, R. Jha, N. Moumen, R. Mo, S. Kirshnan, X. Wang, M. Chudzik, M. Chowdhury, D. Nair, C. Reddy, Y.W. Teh, C. Kothandaraman, D. Coolbaugh, S. Pandey, D. Tekleab, A. Thean, M. Sherony, C. Lage, J. Sudijono, R. Lindsay, J.H. Ku, M. Khare, A. Steegen, VLSI Technology, (2008) 88-89.
[3] V. Narayanan, V.K. Paruchuri, N.A. Bojarczuk, B.P. Linder, B. Doris, Y.H. Kim, S. Zafar, J. Stathis, S. Brown, J. Arnold, M. Copel, M. Steen, E. Cartier, A. Callegari, P. Jamison, J.P. Locquet, D.L. Lacey, Y. Wang, P.E. Batson, P. Ronsheim, R. Jammy, M.P. Chudzik, M. Ieong, S. Guha, G. Shahidi, T.C. Chen, VLSI Technology, (2006) 178-179.
[4] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S.H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes, J. Sebastian, J. Seiple, B. Sell, A. Sharma, S. Sivakumar, B. Song, A. St.Amour, K. Tone, T. Troeger, C. Weber, K. Zhang, Y. Luo, S. Natarajan, IEEE International, (2009) 1-4.
[5] Y. Bin, L. Chang, S. Ahmed, W. Haihong, S. Bell, Y. Chih-Yuh, C. Tabery, H. Chau, X. Qi, K. Tsu-Jae, J. Bokor, H. Chenming, L. Ming-Ren, D. Kyser, IEDM '02 International, (2002) 251-254.
[6] D. Hisamoto, L. Wen-Chin, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, K. Tsu-Jae, J. Bokor, H. Chenming, IEEE Transactions on, 47 (2000) 2320-2325.
[7] H. Xuejue, L. Wen-Chin, K. Charles, D. Hisamoto, C. Leland, J. Kedzierski, E. Anderson, H. Takeuchi, C. Yang-Kyu, K. Asano, V. Subramanian, K. Tsu-Jae, J. Bokor, H. Chenming, IEDM '99, (1999) 67-70.
[8] G. Meijer, Science, 319 (2008) 1625-1626.
[9] C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, IEEE Transactions, 54 (2007) 2762-2768.
[10] Y. Bernard, V. Renard, P. Gonon, V. Jousseaume, Microelectronic Engineering, 88 (2011) 814-816.
[11] R. Waser, R. Dittmann, G. Staikov, K. Szot, Advanced Materials, 21 (2009) 2632-2663.
[12] T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology, 21 (2010) 425205.
[13] M. Haemori, T. Nagata, T. Chikyow, Applied Physics Express, 2 (2009) 061401.
[14] C. Schindler, M. Weides, M. Kozicki, R. Waser, Applied Physics Letters, 92 (2008) 2910.
[15] W. Devulder, K. Opsomer, A. Franquet, J. Meersschaut, A. Belmonte, R. Muller, B. De Schutter, S. Van Elshocht, M. Jurczak, L. Goux, Journal of Applied Physics, 115 (2014) 054501.
[16] Y. Yang, J. Ouyang, L. Ma, R.H. Tseng, C.W. Chu, Advanced Functional Materials, 16 (2006) 1001-1014.
[17] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, IBM Journal of Research and Development, 52 (2008) 449-464.
[18] J. Åkerman, Science, 308 (2005) 508-510.
[19] M.A. Caldwell, R.G.D. Jeyasingh, H.-S.P. Wong, D.J. Milliron, Nanoscale, 4 (2012) 4382-4392.
[20] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. Kastner, N. Nagel, M. Moert, C. Mazure, Microelectronics Reliability, 41 (2001) 947-950.
[21] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, IEEE, 100 (2012) 1951-1970.
[22] S. Yu, X. Guan, H.-S.P. Wong, Applied Physics Letters, 99 (2011) 063507.
[23] S.-S. Sheu, K.-H. Cheng, M.-F. Chang, P.-C. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, F.T. Chen, M.-J. Tsai, IEEE Design & Test of Computers, (2010) 64-71.
[24] L. Zhang, R. Huang, R. Wang, D. Wu, R. Wang, Y. Kuang, IEEE, (2008) 932-935.
[25] K.M. Kim, B.J. Choi, C.S. Hwang, Applied physics letters, 90 (2007) 2906.
[26] G. Muller, T. Happ, M. Kund, G.Y. Lee, N. Nagel, R. Sezi, IEEE, (2004) 567-570.
[27] H. Akinaga, H. Shima, IEEE, 98 (2010) 2237-2251.
[28] B. Jinshun, H. Zhengsheng, Journal of Semiconductors, 36 (2015) 064010.
[29] A. Sawa, Materials today, 11 (2008) 28-36.
[30] X. Guo, C. Schindler, S. Menzel, R. Waser, Applied Physics Letters, 91 (2007) 133513.
[31] H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, M. Liu, Advanced Functional Materials, 24 (2014) 5679-5686.
[32] U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Electron Devices, IEEE, 56 (2009) 193-200.
[33] S. Chang, S. Chae, S. Lee, C. Liu, T. Noh, J. Lee, B. Kahng, J. Jang, M. Kim, D.-W. Kim, arXiv:0802.3739, (2008).
[34] R. Birringer, H. Gleiter, H.-P. Klein, P. Marquardt, Physics Letters A, 102 (1984) 365-369.
[35] L. Robbiola, J.-M. Blengino, C. Fiaud, Corrosion Science, 40 (1998) 2083-2111.
[36] K. Lee, C. Hu, K. Tu, Journal of Applied Physics, 78 (1995) 4428-4437.
[37] T. Okutani, M. Shikata, R. Shimizu, Surface Science Letters, 99 (1980) L410-L418.
[38] I. Baskaran, T.S. Narayanan, A. Stephen, Materials letters, 60 (2006) 1990-1995.
[39] R. North, M. Pryor, Corrosion Science, 10 (1970) 297-311.
[40] S. Kajiwara, T. Kikuchi, Acta Metallurgica, 30 (1982) 589-598.
[41] Z. Liu, G. Liang, E. Wang, Z. Wang, Materials Science and Engineering: A, 242 (1998) 137-140.
[42] Q. Wang, H. Yang, J. Shi, G. Zou, Materials Science and Engineering: A, 307 (2001) 190-194.
[43] Y. Sakai, K. Inoue, T. Asano, H. Wada, H. Maeda, Applied physics letters, 59 (1991) 2965-2967.
[44] Y. Sakai, H.-J. Schneider-Muntau, Acta Materialia, 45 (1997) 1017-1023.
[45] Y. Tian, S. Wu, Z. Zhang, R. Figueiredo, N. Gao, T. Langdon, Acta Materialia, 59 (2011) 2783-2796.
[46] M. Valodkar, S. Modi, A. Pal, S. Thakore, Materials Research Bulletin, 46 (2011) 384-389.
[47] F.-C. Chiu, Advances in Materials Science and Engineering, 2014 (2014).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code