Responsive image
博碩士論文 etd-0104112-104318 詳細資訊
Title page for etd-0104112-104318
論文名稱
Title
台灣西南海域湧浪觀測研究
Analysis of observations and model simulation of swells in the water southwest Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-18
繳交日期
Date of Submission
2012-01-04
關鍵字
Keywords
第三代波浪模式、尖銳度譜函數、波譜、湧浪、風浪
WaveWatch Ⅲ, Steepness function, Wave spectrum, Swell, Wind wave
統計
Statistics
本論文已被瀏覽 5718 次,被下載 1660
The thesis/dissertation has been browsed 5718 times, has been downloaded 1660 times.
中文摘要
台灣西南方海域會出現突然的大浪,危害近岸港口、觀光設施及增加海上航行的危險,目前尚無法有效掌握湧浪預報相關資訊,為增加對湧浪的了解,本研究使用海上浮標、近岸海氣象觀測資料與AVISO衛星觀測波高,配合第三代波浪模式(WaveWatch III)推算結果,來分析台灣西南海域的波浪場中之湧浪特性。
研究結果發現:(1)台灣西南海域受東北季風時期,波譜能量極值區間由短週期緩慢轉變成長週期,西南季風時期,波譜能量轉變較為快速且較大。西太平洋所形成的颱風會將湧浪傳入,從台灣南端通過的颱風,波譜能量變化趨勢會先增大之後趨緩。從台灣北端通過的颱風,波譜能量變化由小轉大。(2)藉由異常波判別法來推測大浪中存在湧浪的成分,並以量測到水位變化與波譜不同型態,來判別該波浪場以何種能量主導,波譜呈單峰型態時,波浪場通常為受當地風場吹拂所造成的風浪,當地風場風速趨緩時,波譜將易呈雙峰型態,表示波浪場之波高並非完全受當地風場吹拂影響,而是有遠域海面所傳入的低頻(湧浪)能量。(3)為有效從波譜中切割風、湧浪能量分佈使用兩種分離頻率方法:「修正型P-M譜」之分離頻率法,在非颱風期間,將可使波譜中風浪、湧浪能量準確分離,「尖銳度譜」之分離頻率方法,需修正係數以符合當地波浪特性。颱風期間,修正型P-M譜之分離,受風、湧浪能量轉變極劇烈,故分離效果不佳,但可續用尖銳度譜分離風浪、湧浪。(4)由分離頻率來分析,可初估台灣西南海域每日湧浪與風浪比例,一般期間波浪場之風浪比例約為65%,湧浪比例約為35%,而受颱風影響期間之風浪與湧浪比例變化較多。(5)NWW3模式以QSCAT/NCEP Blended風場輸入模式,推算之波高及週期,與AVISO衛星觀測波高資料比對結果較佳。
Abstract
Freak waves suddenly strike the southwest of Taiwan, may cause damages of coastal structures, tourist facilities and endanger maritime navigation. The prediction of swells and large waves is under development. In order to improve out understanding of the characteristics of swells, this study analysis data collected from a nearshore weather bouy and a coastal wave station. The Wave Watch 3 model is applied with several wind fields, and compared results with that of AVISO.
The results show that (1) Waters in southwest of Taiwan, in the northeast monsoon season, the peak wave spectral energy tends to sift from short period to longer period, whereas in the southwest monsoon season, the spectrum of energy varies rapidly and is stronger. During the passage of typhoons, swells from the southern tip of Taiwan show stronger energy in the early stage and weaken gradually, on the other hand, swells from the northern tip of Taiwan show increasing energy spectrum to a peak value. The wave energy diminished after typhoon passed Taiwan Strait. (2) The patterns of wave spectrum are related to the winds. A single peak pattern is usually caused by the local winds. A double peaks wave spectrum suggests both local wind and remote forcing. The lower frequency energy is due to swells. (3) In order to separate the swells from the wind waves in the case of double peaks wave spectrum, two methods are applied. For the no typhoon period, a modified ‘P-M spectrum’ is useful as well as is the ‘derivative energy spectrum’. For the typhoon period, only the later method provides reasonable results. (4) Based on the analysis of separated wave spectrum, the ratio of occurrence is 65% wind wave and 35% swell in the normal days. The ratio varies during typhoon period. (5) The comparisons of Wave Watch 3 model output with AVISO data suggest that the forcing of QSCAT/NCEP Blended wind provides a better result.
目次 Table of Contents
謝誌 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii

第一章、緒論 1
1.1 背景介紹 1
1.2 前人研究 3
1.2.1 波浪理論 3
1.2.2 波譜分析與分離頻率的發展 5
1.2.3 波浪模式發展介紹 11
1.3 研究目的 13
第二章、觀測資料來源與波浪模式彙集 14
2.1 波浪觀測資料 14
2.1.1 中央氣象局海上浮標資料 16
2.1.2 興達港近岸觀測資料 16
2.1.3 AVISO衛星測高 21
2.2 WAVEWATCH Ⅲ波浪模式 22
2.2.1 基本理論 22
2.2.1 波浪作用力平衡方程式 23
第三章、分析方法 25
3.1 資料分析方法 25
3.1.1 傅立葉轉換 (FFT) 25
3.1.2 濾波分析(Lowpass) 26
3.1.3 相關(Correlation)及回歸(Regression Analysis)分析 26
3.1.4 零下切法(zero-down crossing) 27
3.2 波浪資料分析處理 28
3.2.1 異常波與示性波高分析處理 28
3.2.2 一維頻譜雙峰篩選與分類 29
3.2.3 波浪尖銳度譜函數(Steepness function) 30
3.2.4 修正型Pierson-Moskowitz(P-M)譜 33
3.3 數值模式設定 35
3.3.1 National Centers for Environmental Prediction (NCEP)風場 36
3.3.2 QSCAT/NCEP Blended Reanalysis Ocean Winds (QCNC)風場 37
第四章、結果與討論 38
4.1 台灣西南海域湧浪波譜特性分析 38
4.2 異常波統計與分析 42
4.3 一維波譜-雙峰波譜篩選 52
4.4 一維頻譜-以波浪尖銳度譜分離風、湧浪及相關修正 55
4.5 一維頻譜-以修正型Pierson-Moskowitz譜分離風、湧浪 57
4.6 風浪與湧浪分析統計 61
4.7 NWW3模式、衛星測高與觀測資料之結果 63
第五章、結論與建議 66
5.1 結論 66
5.2 建議 68
參考文獻 69
附錄一、蒲福風級對照表 74
附錄二、浪高對照表 75
附錄三、颱風警報發布概況與路徑圖表 76
參考文獻 References
1. 簡仲璟、郭一羽 (1994) 近岸波浪頻譜形狀之研究。中華民國第十六屆海洋工程研討會論文集,第A193-A210頁。
2. 郭一羽、簡仲璟、溫博文 (1996) 淺海波浪頻譜模式之建立。中華民國第十八屆海洋工程研討會論文集,第155-166頁。
3. 歐善惠、許泰文、臧效義、方介群、廖建明 (1999) 應用 SWAN 波浪模式推算台灣附近海域颱風波浪之研究。第二十一屆海洋工程研討會論文集,第87-95頁。
4. 廖建明、許泰文、溫志中、鄧秋霞 (2001) 近岸風浪模擬之研究。第十二屆水利工程研討會,第I52-I59頁。
5. 許泰文、歐善惠、廖建明、林意淳 (2003) 結合WAM與SWAN模式推算台灣附近海域風浪之研究。天氣分析與預報研討會論文彙編,第75-80頁。
6. 黃煌煇、江文山、廖顯仁 (2003) 雲林海域之穩定風浪頻譜。海洋工程學刊,第三卷第一期,第1-13頁。
7. 李怡婷 (2005) 風浪模式計算最佳化之研究。國立成功大學水利及海洋工程研究所碩士論文。
8. 劉俊志 (2006) 近岸突浪的分析探討。國立中山大學海洋物理研究所碩士論文。
9. 王玉懷 (2009) 興達電廠卸煤系統改善計畫氣海象調查總報告。宇泰工程顧問有限公司委託。
10. 中央氣象局,http://www.cwb.gov.tw/。
11. Aranuvachapun, S., 1987. Parameters of JONSWAP spectral model for surface gravity waves-II. Predictability from real data. J.Ocean Eng., 14, 101–115.
12. Baschek,B., and J. lmai, 2011: Rogue wave observations off the US West Coast. Oceangraphy, Vol. 24,No.2, 158-165.
13. Bidlot, J. R., 2001. ECMWF wave-model products. ECMWF Newsletter, No. 91, ECMWF, Reading, United Kingdom, 9–15.
14. Booij, N., L.H. Holthuijsen and IJ.G. Haagama, 1998. Comparison the Second-Generation HISWA Wave Model with the Third-Generation SWAN Wave Model. Proceedings of 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27-30, Melbourne, Florida, 215-212.
15. Bouws, E., H. Günther., W. Rosenthal., and C. L.Vincent, 1985. Similarity of the Wind Wave Spectrum in Finite Depth Water: 1. Spectral Form, Journal of Geophysical Research, Vol. 90, No. C1, 975-986.
16. Bretschneider, C. L., 1952. The generation and decay of wind waves in deep water. Transaction American Geophysical Union, 33(3), 381-389.
17. Didenkulova I. and C. Anderson, 2010. Freak waves of different types in the coastal zone of the Baltic Sea. Natural Hazards and Earth System Sciences.,10, 2021-2029.
18. Earle, M. D., 1984. Development of algorithms for separation of sea and swell. National Data Buoy Center Tech. Rep. MEC-87-1, 53.
19. Guedes Soares, C., 1991. On the occurrence of double-peaked wave spectra. J.Ocean Eng. 18, 167–171.
20. Hasselmann, K., 1973. Measurement of Wind Wave Growth and Swell Decay during the Joint North Sea. Wave Project. Dt. Hydrogr. Z., Vol. A8,No.12, 95.
21. Hanson, J. L., and O. M. Phillips, 2001 Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18, 277–293.
22. Chien,H., C. C. Kao and Z. H. Chuang, 2002 On the characteristics of observed coastal freak waves. Coastal Engineering Journal, Vol. 44, No.4, 301-319.
23. Kitaigorodskii, S. A., 1983. On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves. Journal of Physical Oceanography, Vol. 13, 816-827.
24. Komen, G. J., S. Hasselmann and K. Hasselmann, 1984. On the Existence of Fully Developed Wind-sea Spectrum. Journal of Physical Oceanography,Vol. 14, 1271-1285.
25. Miles, J. W., 1960. On the Generatoin of Surface Waves by Turbulent Shear Flow. Journal of Fluid Mechancis, Vol. 7, 469-478.
26. Neumann G., 1953. On Ocean Wave Spectra and a New Method of orecasting Wind-Generated Sea. Beach Erosion Boad. U. S. Army Crops. of Engineers Tech. Memo, No. 43.
27. Ou, S.H., J.M. Liau, T.W. Hsu and S.Y. Tzang., 2002. Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan. Ocean Eng., 29, 947-971.
28. Phillips, O. M., 1958. The Equilibrium Range in the Spectrum of Wind-Generated Waves. Journal of Fluid Mechanical, Vol. 4, 426-434.
29. Pierson, W. J., G. Neumann and R.W. James, 1955 Practical Method for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics. US Navy Hydrographic Office, Pub. 603, 284.
30. Pierson, W. J. and L. Moskowitz, 1964 A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. Journal of Geophysical Research, Vol. 69, 5181-5190.
31. Portilla, J., F. J. Ocampo-Torres. and J. Monbaliu, 2009 Spectral Partitioning and Identification of Wind Sea and Swell. Journal of atmospheric and oceanic technology, Vol. 26.107-122.
32. Quentin, C., 2002. Etude de la surface oce´anique, de sa signature radar et de ses interactions avec le flux turbulent de quantite´ de mouvement dans le cadre de l’expe´rience FETCH (in French). Ph.D. thesis, Universite´ de Paris, 263.
33. Sverdrup, H. U. and W. H. Munk, 1947. Wind, Sea, and Swell: Theory of Relations for Forecasting. U.S. Navy Dept., Hydrographic Office, H.O. Pub. No. 601, 44.
34. SWAMP Group., 1985. Ocean Wave Modeling, Plenum Press, New York, 255.
35. Tolman, H. L. and D. Chalikov, 1996. Source Terms in a Third-Generation Wind Wave Model. Journal of Physical Oceanography, Vol. 26, 2497-2518.
36. WAMDI Group., 1988 The WAM model-A Third Generation Ocean Wave Prediction Model. Journal of Physical Oceanography, Vol. 18, 1775-1810.
37. Wang, D. W. and P. A. Hwang, 2001. An operational method for separating wind sea and swell from ocean wave spectra. J. Atmos. Oceanic Technol., 18, 2052–2062.
38. Garrison, T., Oceanography-An invitation to marine science, 5th Edition,Wadworth,Inc.
39. Holthuijsen, L. H. 2007 Waves in oceanic and coastal waters.
40. Thurman, H. V. 1993. Essentials of Oceanography, 4th ed.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code