Responsive image
博碩士論文 etd-0104112-144756 詳細資訊
Title page for etd-0104112-144756
論文名稱
Title
以能源作物進行植物修復遭受柴油污染土壤之研究
The Study of Phytoremediation of Diesel Contaminated Soils by Energy Crops
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-12-29
繳交日期
Date of Submission
2012-01-04
關鍵字
Keywords
總石油碳氫化合物、植物復育、柴油、生質能源作物
Total Petroleum Hydrocarbons, Diesel Fuel, Biofuel Crops, Phytoremediation
統計
Statistics
本論文已被瀏覽 5720 次,被下載 1959
The thesis/dissertation has been browsed 5720 times, has been downloaded 1959 times.
中文摘要
本研究利用植物復育(Phytoremediation)來處理長期受總石油碳氫化合物(TPH)污染之場址,探討可能影響有效降解TPH之環境因子。研究中分成三階段,第一階段是以生質能源作物進行種子受柴油污染耐受度,篩選大豆、向日葵、油菜、玉米,四種台灣常見生質能源作物,並以人工配置柴油污染(1000、5000、10000 mg kg-1)土壤,進行種子對柴油污染耐受度實驗。選定第一階段最佳能源作物物種與非食用性能源作物-痲瘋樹進行第二階段柴油污染土進行降解試驗,探討可能影響之環境因子,如土壤含水率、pH值、總生菌…等,並探討施加肥料以增加土壤營養鹽,對柴油污染降解是否有影響。最後,將能源作物應用於第三階段受油污染場址,進行評估去污效益。
本模場於2011年6月底至2011年11月底,第一階段種子耐受度實驗;為期30天,結果顯示,大豆於柴油污染土壤的耐受度最佳,其發芽率雖隨濃度增加而從80%降至27%,但其生長狀況最佳,因而選定大豆進行第二階段與痲瘋樹之污染土降解試驗,三組污染土初始濃度各別為1745、6271、10072 mg/kg dry soil。在整治結束後(90天),大豆組(S)殘餘濃度分別為524、809與1913 mg/kg dry soil,去除率分別達69.97%、87.09%、81.01%;除了濃度階層為10000 mg/kg dry soil這組未達到目前法規(土壤與地下水污染管制標準)所規定之TPH管制標準1000 ppm外,其他的實驗結果在經過統計回歸分析之後;在此植物修復系統中,大豆最多可處理柴油的濃度為5300 mg/kg,而痲瘋樹可處理柴油濃度最高可達2170 mg/kg。痲瘋樹植物修復系統土壤內殘餘濃度分別為303.69、1864與4837 mg/kg dry soil,去除率分別可達82.61%、70.27%及51.98%;此系統中,除了殘餘污染濃度小於1000 mg/kg dry soil這組試驗達到我國TPH的管制標準外,其餘兩組皆未能達法規管制標準。

Abstract
The objectives of this study are to use phytoremediation ecotechnology to improve the long-term soil pollution contaminated by petroleum and its refined products, and to explore the influence of environmental factors to the effective degradation of TPH.This study is divided into three stages.First, we selected the biofuel crops seeds to test their diesel fuel pollution tolerance.The crops include soybean、sunflower、canola and corn.This four Taiwanese common energy crops were selected to manually configure three levels of diesel fuel pollution(1000、5000、10000 mg kg-1)in soil test the seed tolerance experiments.The experimental results in the first stage exhibited that the best energy crop species and non-edible crop(Jatropha),are selected in second phase for contaiminated soil degradation experiment to explore the possible influence of enviromented factors,such as soil moisture、pH、total plate…etc,and to explore the applied fertilizer to increase soil nutrients,whether it will affect the degradation of diesel pollution.Finally, in the third phase, the energy crops were used in the oil-contaminated site to assess their decontamination efficiency. From June 2011 to November 2011, the experimental results shown in the first phase of seed tolerance test, for a period of 30 days showed that the soybean diesel-contaminated soil presented the best tolerance.Although the germination rate was increased with the concentration from 80% to 27%, it showed the best growth conditions.Therefore, in the second phase of test run, the speices of soybean and jatropha were selected prepared with concentrations of 1745、6271 and 10072 mg kg-1 dry soil. After 90 day for phytoremediation, soybean group(S) were found that the residual concentrations in soil were measured equal to 524、809 and 1913 mg kg-1 dry soil,with the removal rates of 69.97%、87.09% and 81.01% respectively.The concentration level of 10000 ppm was found not reach our control standard of 1000 ppm. The soil planted by jatropha(J) showed that residual concentration in soils equial to 303、1864 and 4837 mg kg-1 dry soil, with removal rates equal to 82.61%、70.27% and 51.98% respectively.Through statistical regression analytical results, the soybean can handle up to a concentration of 5300 mg/kg for diesel, while jatropha can handle up to 2170 mg/kg in this system. Except for the concentration level of 1000 ppm can reach our control standards, the other two groups were found below the control standard. To improve the removal efficieneies, it was suggested that phyto remediation time can be extended.
目次 Table of Contents
誌謝 III
摘要 IV
ABSTRACT V
表目錄 VII
圖目錄 IX
第一章 前言 1
1.1研究緣起 1
1.2研究目標 2
第二章 文獻回顧 3
2.1石油污染對環境的迫害 3
2.1.1石油介紹 3
2.1.2油品污染的危害 5
2.1.3大氣中揮發性有機物(VOCs)特性 11
2.1.4總石油碳氫化合物(TPHs)特性 14
2.2土壤污染整治復育技術 14
2.2.1物理/化學整治技術 16
2.2.2生物復育技術 18
2.3生質能源 26
2.3.1生質能源作物 31
第三章 實驗材料與方法 35
3.1實驗架構 35
3.2試驗方法 35
3.2.1燃料油污染場址 36
3.2.2生質能源作物種類 37
3.2.3試驗程序 37
3.3土樣採樣與樣品保存 37
3.3.1目標污染物 38
3.3.2採樣時間規畫 40
3.4土樣分析方法 41
3.4.1土壤粒徑 41
3.4.2土壤含水率(NIEA S280.61C) 41
3.4.3土壤中酸鹼值 41
3.4.4土壤有機碳 41
3.4.5土壤氨氮 42
3.4.6土壤凱氏氮 42
3.4.7總石油碳氫化合物 42
3.4.8植體生長 44
3.4.9土壤中微生物(總生菌) 44
3.5儀器設備 44
3.5.1土壤儀器設備 44
3.5.2空氣分析部分 45
3.6實驗藥品 45
3.6.1土壤分析部分 45
3.6.2空氣分析部分 46
第四章 結果與討論 47
4.1土壤基本性質 47
4.2耐油植物初步篩選 50
4.3植物生長受柴油污染的影響 54
4.4柴油降解試驗 56
4.5土壤因子 60
4.5.1土壤含水率 60
4.5.2土壤酸鹼度 63
4.5.3總生菌 66
4.6評估痲瘋樹生產柴油產量 71
4.7施肥與污染降解關係 71
4.8實場試驗種植結果 74
4.8.1總石油碳氫化合物 74
4.8.2 BTEX 76
4.8.3土壤因子 77
第五章 結論與建議 79
5.1結論 79
5.2建議 80
第六章 參考文獻 83
附錄 87
參考文獻 References
Adam, G., & Duncan, H. (2002). Influence of diesel fuel on seed germination. Environmental Pollution, 120(2), 363-370.
Agamuthu, P., Abioye, O. P., & Aziz, A. A. (2010). Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. Journal of Hazardous Materials, 179(1-3), 891-894.
Beskoski, V. P., Gojgic-Cvijovic, G., Milic, J., Ilic, M., Miletic, S., Solevic, T., et al. (2011). Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) – A field experiment. Chemosphere, 83(1), 34-40.
Cang, L., Wang, Q. Y., Zhou, D. M., & Xu, H. (2011). Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Separation and Purification Technology, 79(2), 246-253.
Corseuil, H. X., & Moreno, F. N. (2001). Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Water Research, 35(12), 3013-3017.
Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, S., et al. (2008). Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere, 72(10), 1481-1490.
Escalante-Espinosa, E., Gallegos-Martinez, M. E., Favela-Torres, E., & Gutierrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59(3), 405-413.
Euliss, K., Ho, C.-h., Schwab, A. P., Rock, S., & Banks, M. K. (2008). Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresource Technology, 99(6), 1961-1971.
Ezezika, O. C., & Singer, P. A. (2010). Genetically engineered oil-eating microbes for bioremediation: Prospects and regulatory challenges. Technology in Society, 32(4), 331-335.
Gerhardt, K. E., Huang, X.-D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176(1), 20-30.
Goi, A., Kulik, N., & Trapido, M. (2006). Combined chemical and biological treatment of oil contaminated soil. Chemosphere, 63(10), 1754-1763.
Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1), 139-147.
Huesemann, M. H., Hausmann, T. S., Fortman, T. J., Thom, R. M., & Cullinan, V. (2009). In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecological Engineering, 35(10), 1395-1404.
Iwamoto, T., & Nasu, M. (2001). Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering, 92(1), 1-8.
Joner, E. J., Leyval, C., & Colpaert, J. V. (2006). Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution, 142(1), 34-38.
Jorgensen, K. S., Puustinen, J., & Suortti, A. M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution, 107(2), 245-254.
Kumar, G. P., Yadav, S. K., Thawale, P. R., Singh, S. K., & Juwarkar, A. A. (2008). Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter - A greenhouse study. Bioresource Technology, 99(6), 2078-2082.
Lai, C.-C., Huang, Y.-C., Wei, Y.-H., & Chang, J.-S. (2009). Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of Hazardous Materials, 167(1-3), 609-614.
Lin, T.-C., Pan, P.-T., & Cheng, S.-S. (2010). Ex situ bioremediation of oil-contaminated soil. Journal of Hazardous Materials, 176(1-3), 27-34.
Lu, M., Zhang, Z., Qiao, W., Guan, Y., Xiao, M., & Peng, C. (2010). Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation. Journal of Hazardous Materials, 179(1-3), 604-611.
Menendez-Vega, D., Gallego, J. L. R., Pelaez, A. I., Fernandez de Cordoba, G., Moreno, J., Munoz, D., et al. (2007). Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 43(5-6), 310-321.
Palmroth, M. R. T., Pichtel, J., & Puhakka, J. A. (2002). Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresource Technology, 84(3), 221-228.
Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168(2-3), 1490-1496.
Rhykerd, R. L., Crews, B., McInnes, K. J., & Weaver, R. W. (1999). Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresource Technology, 67(3), 279-285.
Wang, H.-q., Lu, S.-j., Li, h., & Yao, Z.-h. (2007). EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. Journal of Environmental Sciences, 19(12), 1496-1499.
Wang, Y., & Oyaizu, H. (2009). Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Journal of Hazardous Materials, 168(2-3), 760-764.
Wu, G., Li, X., Coulon, F., Li, H., Lian, J., & Sui, H. (2011). Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil. Journal of Hazardous Materials, 186(1), 533-539.
Wu, L. H., Luo, Y. M., Xing, X. R., & Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems & Environment, 102(3), 307-318.
Xiao, H., Cheng, S., & Wu, Z. (2010). Microbial community variation in phytoremediation of triazophos by Canna indica Linn. in a hydroponic system. Journal of Environmental Sciences, 22(8), 1225-1231.

吳凡、劉訓理. (2007). 石油污染土壤的生物修復研究進展. 土壤.
李春榮、王文科、曹玉清、王麗娟. (2006). 石油污染土壤對向日葵生長的影響. 地球科學與環境學報.
周國華. (2003). 被污染土壤的植物修復研究. 物探與化探.
林忠亮、方炳勳、黃冬梨、吳奇生. (2005). 大豆油生產生質柴油之生物轉酯化技術探討. 石油季刊.
林建三. (2009). 環境工程概論(第九版).
林建勝. (2007). 以生質能源程序探討廚餘厭氧氫醱酵之研究. 國立成功大學, 台南市.
侯彬、朱琨、盧静、趙艷鋒. (2006). 石油污染土壤的生物修復技術研究及其前景. 四川環境.
范國蘭、崔兆杰. (2009). 植物中多氯聯苯的来源、分布及代謝研究進展. 植物科學學報.
高俊璿. (2008). 高濃度石化油污染土壤之不同微生物降解三類石油碳氫化合物研究. 國立成功大學, 台南市.
張桂香、趙力、劉希濤. (2008). 土壤污染的健康危害與修復技術. 四川環境.
張淑華、何政坤. (2009). 生質能源植物麻瘋樹之組織培養. 林業研究專訊.
張雅筑. (2008). 以生質燃料及能源作物對遭受重油污染土壤進行植物修復之研究. 國立中山大學, 高雄市.
張巍、竇森. (2010). 石油污染土壤的生物修復技術. 北方環境.
陳建孟、蒲鳳蓮、陳效、孫永強. (2004). MTBE的生物降解技術. 環境工程學報.
彭勝巍、周啟星. (2008). 持久性有機污染土壤的植物修復及其機理研究進展. 生態學雜誌.
曾啟清. (2009). 光合菌及菌根菌對植物修復技術處理土壤中重金屬(鎘、銅、鉛及鋅) 影響性之研究. 國立中山大學, 高雄市.
溫源淼. (2005). 以植物修復技術處理遭受重金屬鎘污染土壤之研究. 國立中山大學, 高雄市.
經濟部工業局. (2003). 工廠土壤及地下水污染整治技術手冊-石化業.
趙映琇. (2002). 石油分解微生物利用於土壤油污染之生物復育. 雲林科技大學, 雲林縣.
劉五星、駱永明、滕應、李振高、吴龍華. (2006). 石油污染土壤的生態風險评價和生物修復Ⅰ.一株具有乳化石油能力的細菌分離鑒定. 土壤學報.
劉五星、駱永明、滕應、李振高、吴龍華. (2007). 石油污染土壤的生態風險評價和生物修復Ⅱ.石油污染土壤的理化性質和微生物生態變化研究. 土壤學報.
劉五星、駱永明、滕應、李振高、吴龍華. (2008). 石油污染土壤的生態風險評價和生物修復Ⅲ.石油污染土壤的植物-微生物聯合修復. 土壤學報.
劉國良、蘇幼明、顧書敏、宋紅光、閻貴文、于維雨. (2008). 石油污染土壤生物修復研究新進展. 化學與生物工程.
潘聲旺、魏世强、袁馨、曹生憲. (2009). 油菜-紫花苜蓿混種對土壤中菲、芘的修復作用. 中國農業科學.
謝宗霖. (2009). 以兩階段生物整治策略處理受石油碳氫化合物汙染土壤復育之研究. 國立成功大學, 台南市.
魏毓宏. (2009). 生質酒精能源技術之開發. 化工.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code