Responsive image
博碩士論文 etd-0105110-170618 詳細資訊
Title page for etd-0105110-170618
論文名稱
Title
無線隨意網路效能增強之研究
The Researches on Performance Enhancement in Ad Hoc Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-12-21
繳交日期
Date of Submission
2010-01-05
關鍵字
Keywords
雙卡模式、隨意網路、IP 命名、頻道指派、自我組織、分碼、先前佈署、網路介面卡
IP naming, channel assignment, ad hoc networks, dual-card-mode, code division, pre-deployment, network interface card, self-organization
統計
Statistics
本論文已被瀏覽 5661 次,被下載 5
The thesis/dissertation has been browsed 5661 times, has been downloaded 5 times.
中文摘要
在隨意網路中,大部份的研究著重傳輸層的TCP(傳輸控制協定),網路層的繞徑,資料連結層的多重跳躍,藉由WWAN 與WLAN 整合來增加負載平衡、涵蓋區域、與減少能源之消耗。在此論文中,四個藉由應用資料連結層和網路層的功\能來增加系統效能的方法被提出。
在資料連結層中的一個目的是執行錯誤的更正和偵測,另外一個目的是讓許多不同的使用者可以共用傳輸媒介,MAC (Medium Access Control) 次層即是負責允許資料在共用媒體傳輸但不要過度與其他的使用者產生干擾,這個觀念被稱為多重存取通訊,在第一個和第三個方法,FDMA (Frequency-division multiple access)之觀念被使用,而第四個方法,CDMA (Code-division multiple access)之想法被使用來提昇整個系統的效能。
網路層具有許多功\能,第一是決定路徑的資訊,第二是決定服務的品質,第三是控制資料流的流量以避免交通的擁塞,第三個方法同時利用資料連結層和網路層的功能來提昇系統的效能,而第二個方法則提出節省能源的佈置且應用於無線感測網路中。
在隨意網路中,資訊的傳送絕大部份都是藉由多重跳躍的繞徑方式來完成的。但是在此情況下,無論使用何種傳統繞徑方式都可能導致傳送的延遲與負荷,為了克服這個在隨意網路下隱含的特性,本論文提出了一個想法,那就是在毎一個節點安置雙卡而構成雙卡模式、透過節點自我組織的機制、在共有的IP 命名、和頻道指派之前提之下,形成階層星狀隨意網路,我們又稱之為HSG 隨意網路,在此一網路架構與機制之下,不僅能加速傳送的到達時間,而且當有資訊要傳送時也可免除了路徑查詢的程序,因此整體網路的可靠性和穩定度可以大大地提高,從NS2 模擬器的實驗的結果可知道不論是平均的兩終端結點的傳送的延遲、平均輸出、資料的傳送成功比率都可以大大地被提升。
在一個大規模感測系統的無線網路中,需要一個拓樸來收集所感測到的資訊,此架構必需達到消耗最小能源進而延長了網路的夀命,在本論文中一個以同心環為核心的階層式叢集架構被提出,在此架構下運用了四個階段,其為、先前佈署(pre-deployment)、建立父親兒子關係、佈署、以及成員加入等四階段,進而達到減少能源消耗及延長網路夀命的目的。
於隨意網路(ad hoc networks) 中,大部份的繞徑協定只著重找出一條可行的路徑,但並未考慮網路的擁塞狀況。因此QoS(服務品質保證)要在即時系統或多媒體應用程式中是不太容易實現的。為了要支援 QoS,本論文提出了以QoS 認知為導向的有效率之繞徑方法,於路徑查覺與路徑建立時期引進允許控制(admission control)機制,使其符合使用者的要求,同時為了加強效率,我們也使用兩張網卡與兩種不同頻率來收集資訊以增加系統的效率。從實驗結果顯示,我們所提出的方法不論是在封包傳輸成功比率(packet delivery ratio)或輸出量(throughput)或平均延遲時間(average end-to-end delay)都比沒有以QoS 為導向的繞徑要好得很多。
無線隨意網路的效能受限於多重跳躍傳輸的問題,為了解決此問題,本論文提出以分碼(code division)的方式來分別以 ”共通碼”與 ”特定碼”來調變資料框(frame)的表頭(header)及表身(payload)資訊,將RTS/CTS 改成ERTS/ECTS 格式以配合本方法,毎個節點並以SCT(spreading code table)來記錄正在使用的特定碼,如此一來,大大提高了傳輸的效能,由實驗得到証明。
Abstract
The most studies on ad hoc network mainly focus on TCP (Transmission Control Protocol) of transport layer, the routing of network layer, multi-hop of Data-link layer, and the integration of WWAN and WLAN to increase the load balancing, coverage, and power savings. Nevertheless, in this dissertation, the system performances of four schemes proposed are improved with respect to data-link and network layers.
One purpose of the data link layer is to perform error correction or detection. The other is responsible for the way in which different users share the transmission medium. The Medium Access Control (MAC) sublayer is responsible for allowing frames to be sent over the shared media without undue interference with other users. This aspect is referred to as multi-access communications. In the first and third schemes, the FDMA (Frequently-division multiple access) is employed to improve system performance, while in the fourth scheme the CDMA (Code-division multiple access) is used to enhance performance.
Network layer has several functions, first is to determine the routing information. A second function is to determine the quality of service. A third function is flow control to avoid network to become congested. In the third scheme, the data-link and network layers have been used to increase system performance. Furthermore, the second scheme mainly concentrates on power savings under wireless sensor network.
In ad hoc wireless networks, most data delivery is accomplished through multi-hop routing (hop by hop). This approach may leads to long delay and routing overhead regardless of which routing protocol is used. To overcome this inherent characteristic, this work presents a novel idea adopting dual-card-mode and performing self-organization process with specific IP naming and channel assignment to form a hierarchical star-graph ad hoc network (HSG-ad hoc) which can not only expedite the data transmission but also eliminate the route discovery procedure during data transmission. Therefore, the overall network reliability and stability can be significantly improved. Simulation results show that the proposed approach achieves substantial improvements in terms of average end-to-end delay, throughput, and packet delivery ratio.
In a large-scale wireless sensor network, a topology is needed to gather state-based data from sensor network and efficiently aggregate the data given the requirements of balanced load, minimal energy consumption and prolonged network lifetime. In this study, we proposed a ring-based hierarchical clustering scheme (RHC) consisting of four phases: pre-deployment, parent-child relationship building, deployment, and member join phases. Two node types are distributed throughout the network: cluster head nodes (type 1 node) and general sensor nodes (type 2 node). The type 1 node has better battery life, software capability and hardware features than the type 2 node does; therefore, the type 1 node is a better cluster head than type 2 node.
Most routing protocols focus mainly on obtaining a workable route without considering network traffic conditions for a mobile ad hoc network. Consequently, real time and multimedia applications do not achieve adequate quality of service (QoS). To support QoS, this work proposes a QoS-aware routing protocol, i.e. QUality of service with Admission control RouTing (QUART), that incorporates an admission control scheme into route discovery and route setup procedures. One variant of QUART, called, QUART-DD, adopts a dual-card dual-signal mechanism to increase system performance. Simulation results indicate that QUART-DD can significantly improve packet delivery ratio and throughput, while having a lower average end-to-end delay than routing protocols without QoS support.
The performance of ad hoc wireless network suffers from problems in multi-hop transmission. This study adopts code division to modulate the frame header and the frame payload separately. A common spreading code modulates the frame header, and a special spreading code is negotiated and to modulate the frame payload. A field in the frame header indicates the spreading code used to modulate the successive frame payload. The modulated frame is transparent for every node, enabling many frames to be transmitted simultaneously. To allow the special spreading code negotiation, the RTS/CTS command is modified as ERTS/ECTS, and a spreading code table (SCT) is maintained in every node. Due to the space reuse, the proposed scheme has superior performance in latency and bandwidth utilization, as revealed by the simulation results.
目次 Table of Contents
Contents
1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . 3
2 Topology of Hierarchical Star Graph (HSG) 5
2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dual-card-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Channel assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Gateway operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Routing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Node disjoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 ARP and Gateway Table . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Single-card-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 30
2.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Ring-based Deployment 35
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Pre-deployment process . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Deployment process . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Parent-child relationship building and member join process . . 41
3.2.4 IP Naming (Assignment) rule . . . . . . . . . . . . . . . . . . 42
3.2.5 Energy Consumption of an L-level hierarchy . . . . . . . . . . 45
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 QoS-aware Routing 56
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Clear and unclear neighboring nodes . . . . . . . . . . . . . . 60
4.2.2 Collect neighboring nodes and bandwidth information . . . . . 63
4.2.3 Bandwidth estimation . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Admission scheme . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Code Division 79
5.1 Overview of Multi-Hop Ad Hoc Network and Code Division Technology 81
5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Code Division Technology . . . . . . . . . . . . . . . . . . . . 82
5.1.3 Use of Code Division in Ad Hoc Network . . . . . . . . . . . . 82
5.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 ERTS/ECTS Negotiation Process . . . . . . . . . . . . . . . . 85
5.2.2 SSCN Determination for a Single Frame Communication . . . 87
5.2.3 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.4 Common Code Free Sense Multiple Access with Collision Avoidance
(CCFSMA/CA) . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6 Conclusion and Future Work 96
7 Bibliography 99
List of Figures
2.1 A hierarchical ad hoc topology based on dual-card-mode . . . . . . . . . 8
2.2 Gray area : sub-root node candidate area (SRCA) . . . . . . . . . . . . . 9
2.3 Creating of a root node . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Join of a sub-root node . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Creating of a leaf node . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Naming of a root node . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Naming of a sub-root node . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Naming of a leaf node . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Naming of an ad hoc domain . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 Throughput's comparison for 50 nodes . . . . . . . . . . . . . . . . . . . 31
2.12 Throughput's comparison for 100 nodes . . . . . . . . . . . . . . . . . . 31
2.13 Average end-to-end delay's comparison for 50 nodes . . . . . . . . . . . . 32
2.14 Average end-to-end delay's comparison for 100 nodes . . . . . . . . . . . 32
2.15 Packet delivery ratio's comparison for 50 nodes . . . . . . . . . . . . . . 33
2.16 Packet delivery ratio's comparison for 100 nodes . . . . . . . . . . . . . . 33
3.1 one-level hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 two-level hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Relationship between number of level and cluster number . . . . . . . . . 53
3.4 Total energy consumption for two di erent schemes . . . . . . . . . . . . 53
3.5 Maximum energy consumption of type 1 node for two di erent schemes . . 54
3.6 LC1i from level 1 to level 9 using proposed scheme . . . . . . . . . . . . 54
3.7 Lifetime cycle gain by increasing one unit cost of type 1 node . . . . . . . 55
4.1 Transmission and Interference ranges . . . . . . . . . . . . . . . . . . . 61
4.2 Clear and Unclear areas . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 multi-hop and hidden nodes . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Route discovery procedure . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Route setup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 An example of the proposed method . . . . . . . . . . . . . . . . . . . . 72
4.7 Package Delivery Ratio Comparison . . . . . . . . . . . . . . . . . . . . 75
4.8 Average End-to-end Delay Comparison . . . . . . . . . . . . . . . . . . 76
4.9 Average End-to-end delay of QUART and AODV . . . . . . . . . . . . . 77
4.10 Throughput Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1 Format of a MAC Data Frame . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Spreading Code Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 The Format of RTS/CTS and ERTS/ECTS . . . . . . . . . . . . . . . . 85
5.4 A Communication Instance . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 CSMA/CA timing graph . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Common Code Free Sense Multiple Access/Collision Avoidance (CCF-
SMA/CA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Throughput comparison of 50 nodes . . . . . . . . . . . . . . . . . . . . 92
5.8 Throughput comparison of 100 nodes . . . . . . . . . . . . . . . . . . . 93
5.9 Average end-to-end delay comparison of 50 nodes . . . . . . . . . . . . . 93
5.10 Average end-to-end delay comparison of 100 nodes . . . . . . . . . . . . 94
5.11 Package delivery ratio comparison of 50 nodes . . . . . . . . . . . . . . 94
5.12 Package delivery ratio comparison of 100 nodes . . . . . . . . . . . . . . 95
List of Tables
2.1 Routing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Routing-process( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Receive-process( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Gateway-operation-process( ) . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Gateway-routing-process( ) . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 System notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
參考文獻 References
Bibliography
[1] Jian Liu and Suresh Singh, "ATCP: TCP for Mobile Ad Hoc Networks," IEEE
Journal on Selected Areas in Communications, vol. 19, no. 7, pp. 136-143, July
2001.
[2] Venkatesh Ramarathinam and Miguel A. Labrador, "Performance Analysis of
TCP over Static Ad Hoc Wireless Networks," In Proc. fourteenth IASTED International
Conference on Parallel and Distributed Computing and Systems(PDCS
2002), pp. 410-415, Nov. 4-6, 2002.
[3] Zhenghua Fu, Xiaoqiao Meng, Songwu Lu, "How bad TCP can perform in mobile
ad hoc networks," Seventh International Symposium on Computers and
Communications, pp. 298 - 303, July 2002.
[4] D. Sun, H. Man, "TCP
ow-based performance analysis of two on-demand routing
protocols for mobile ad hoc networks," Vehicular Technology Conference,
vol.1, pp. 272 - 275, 2001.
[5] K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash, "A feedback based
scheme for improving TCP performance in ad hoc wireless networks," Personal
Communications, vol. 8, pp. 34-39, Feb. 2001.
[6] Dong Sun, Hong Man, "ENIC - an improved reliable transport scheme for mobile
ad hoc networks," Global Telecommunications Conference, vol. 5, pp. 2852 -
2856, Nov. 2001.
[7] M. Sugano,M. Murata, "Performance improvement of TCP on a wireless ad hoc
network," Vehicular Technology Conference, vol. 4, pp. 2276 - 2280, April 2003.
[8] D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless
Networks," In Mobile Computing, edited by Tomasz Imielinski and Hank Korth,
chapter 5, Kluwer Academic Publishersx, pp. 153-181, April 2003.
[9] Charles E. Perkins, Pravin Bhagwat, "Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers," Computer Communications
Rev.,vol. 24, no. 4, pp.234-244, Oct. 1994.
[10] Charles E. Perkins, Elizabeth M. Royer, "Ad-hoc On-Demand Distance Vector
Routing," Second IEEE Workshop on Mobile Computing Systems and Applications,
pp. 90-100, Feb. 1999.
[11] S.-J. Lee, C.-K. Toh, Mario Gerla, "Performance Evaluation of Table-Driven
and On-Demand Ad Hoc Routing Protocols," Proc. IEEE PIMRC., pp.297-301,
Sept. 1999.
[12] Dong-Hee Kown, Woo-Jae Kim, and Young-Joo Suh," Performance Comparisons
of Two On-demand Ad Hoc Routing Protocols in Dynamic Rate Shifting
WLANs," Proceedings of IEEE International Conference on Communications
(ICC 2003), pp.512-516, May 2003.
[13] Y. Lu, W. Wang, Y. Zhong and B. Bhargava,"Study of Distance Vector Routing
Protocols for Mobile Ad Hoc Networks," IEEE International Conference on Pervasive Computing and Communications (PerCom'2003),Texas, pp. 187-194,
March 2003.
[14] T. Clausen and P. Jacquet, Optimized Link State Routing Protocol, IETF
Internet Draft, draft-ietf-manet-olsr-11.txt, July 2003.
[15] Z. J. Haas and M. R. Pearlman, The performance of query control schemes for
the zone routing protocol, in SIGCOMM, 1998, pp. 167V177.
[16] V. Park and S. Corson, Temporally-Ordered Routing Algorithm (TORA), IETF
Internet Draft, July 2001.
[17] F. H. P. Fitzek, D. Angelini, G. Mazzini, M. Zorzi, "Design and Performance
of an Enhanced IEEE 802.11 MAC Protocol for Multihop Coverage Extension,"
IEEE Wireless Comm., vol. 10, n. 6, pp. 30-39, Dec. 2003.
[18] Arup Acharya, Archan Misra, Sorav Bansal, "High-performance architectures
for IP-based multihop 802.11 networks," IEEE Wireless Communications, vol.
10, no. 5, pp. 22-28, Oct. 2003.
[19] I. Maric and R. Yates, "Cooperative multihop broadcast for wireless networks,"
IEEE Journal on Selected Areas in Communications, vol.22, no6, pp.1080-1088,
August 2004.
[20] Shiang-Rung Ye, You-Chiun Wang, Yu-Chee Tseng, "A jamming-based MAC
protocol for wireless multihop ad hoc networks," Proc. IEEE Vehicular Technology
Conference, vol. 39, no. 6, pp.1396-1400, Oct. 2003.
[21] S. Xu and T. Saadawi, "Does the IEEE 802.11 MAC protocol work well in
multihop wireless ad hoc networks?," in IEEE Communications Magazine, pp.
130-137, Jun. 2001.
[22] Baccelli, F., Blaszczyszyn, B., Muhlethaler, "An Aloha protocol for multihop
mobile ad-hoc wireless networks," in Proc of 16th ITC Specialist Seminar,
Antwerp, Belgium, pp.29-40, 2004.
[23] Sankaran, C. and A. Ephremides, "The Use of Multiuser Detectors for Multicasting
in Wireless Ad hoc CDMA Networks," IEEE Trans. on Information
Theory vol. 48, No. 11, pp. 2873-2887, 2002.
[24] JQ Bai and T. Lang, "A performance comparison between ad hoc and centrally
controlled CDMA wireless LANs," IEEE Transactions on Wireless Communications,
vol. 1, no. 4, pp. 829-841, Oct. 2002.
[25] H.Wu, C. Qiao, S. De, and O. Tonguz, "Integrated cellular and ad-hoc relay
systems: iCAR," IEEE Journal on Selected Areas in Communications special issue
on Mobility and Resource Management in Next Generation Wireless System,
vol. 19, no. 10, pp. 2105-2115, Oct. 2001.
[26] X. Wu, S.-H. Chan and B. Mukherjee, "MADF: A Novel Approach to Add
an Ad-hoc Overlay on a Fixed Cellular Infrastructure," Proceedings of IEEE
WCNC, Chicago, IL USA, vol. 8, no. 6, pp.549-554, Sept. 2000.
[27] George Neonakis Agg~lou and Rahim Tafazolli, "On the Relaying Capability
of Next-Generation GSM Cellular Networks," IEEE Personal Communications,
pp.40-47, Feb. 2001.
[28] A. Zadeh, B. Jabbari, R. Pickholtz and B. Vojcic, "Self-Organizing Packet
Radio Ad Hoc Networks with Overlay (SOPRANO)," IEEE Communications
Magazine, pp.149-157, June 2002.
[29] T. Rouse, S. McLaughlin, and H. Haas, "Coverage-capacity analysis of opportunity
driven multiple access (ODMA) in UTRA TDD," in Proc. IEE 3G Mobile
Communication Technologies, pp. 252-256, Mar. 2001.
[30] Hung-Yu Wei, Richard D. Gitlin, "Two-hop-relay architecture for nextgeneration
WWAN/WLAN integration," IEEE Wireless Communications, vol.
11, no. 2, pp.24-30, Apr. 2004.
[31] Alberto Cerpa, Deborah Estrin, "ASCENT: Adaptive Self-Con guring sEnsor
Networks Topologies," IEEE Trans. Mobile Computing, vol. 3, no. 3, pp.272-285,
September. 2004.
[32] Y.Wang and X.-Y. Li, "Geometric Spanners for Wireless Ad Hoc Networks,"
Proc. 22nd Int'l Conf. Distributed Computing Systems (ICDCS 2002), pp. 171-
178, July 2002.
[33] K. Sohrabi and G. Pottie, "Performance of a Novel Self-Organization Protocol
for Wireless Ad Hoc Sensor Networks," Proc. IEEE Vehicular Technology Conf.,
pp. 1222-1226, Sept. 2000.
[34] W. Ye, J. Heidemann, and D. Estrin, "An Energy-E cient MAC Protocol for
Wireless Sensor Networks," Proc. 21st Ann. Joint Conf. IEEE Computer and
Comm. Soc. (INFOCOM), pp. 1567-1576, June 2002.
[35] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: An Energy-
E cient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless
Networks," Proc. Seventh Ann. ACM/IEEE Int'l Conf. Mobile Computing and
Networking (MobiCom), pp. 85-96, July 2001.
103
[36] Q. Li and D. Rus, "Sending Messages to Disconnected Users in Disconnected
Ad Hoc Mobile Networks," Proc. Sixth Ann. ACM/IEEE Int'l Conf. Mobile
Computing and Networking (MobiCom)x, pp. 44-55, July 2001.
[37] Yu Du, Ye Bao and J.J. Garcia-Luna-Aceves "A History-based Scheduling Protocol
for Ad Hoc Networks," ICCCN 2003, pp. 223-228, Oct. 2003
[38] S. Madden, M. J. Frankin, J. Hellerstein, and W. Hong, "TAG: A tiny aggregation
service for ad-hoc sensor networks, in the Proc. 5th Symp. OSDI, Boston,
MA, pp. 131-146, Dec.2002
[39] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, "Directed
di usion for wireless sensor networking," IEEE/ACM Transaction on Networking,
vol. 11, no. 1, pp. 2-16, Feb. 2003
[40] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrisnan, "An applicationspeci
c Protocol Architecture for Wireless Microsensor networks," IEEE Transaction
on Wireless Communication, vol. 1, no. 4, pp. 660-670, Oct, 2002.
[41] M. Bhardwaj, T. Garnett, and A. Chandrakasan, "Upper bounds on the lifetime
of sensor networks," in Proc. IEEE Int. Conf. Commun. Helsinki, Finland, vol.3,
pp. 785-790, Jun. 2001.
[42] V. Mhatre and C. Rosenberg, "Design Guidelines for Wireless Sensor Networks:
Communication, clustering and aggregation," Ad Hoc Networking, vol.2, no. 1,
pp. 45-63, Jan. 2004.
[43] Bandyopadhyay and E. J. Coyle, "An energy e cient hierarchical clustering
algorithm for wireless sensor networks," in Proc. INFOCOM, San Francisco,
CA, Mar. 2003, pp. 1713-1723
[44] Y. P. Chen, A. L. Liestman, J. Liu, "A Hierarchical Energy-E cient Framework
for Data Aggregation in wireless Sensor Networks," IEEE Transactions on
vehicular technology, vol. 55, no. 3, pp. 789-796, May 2006.
[45] F. Kuhn, T. Moscibroda, and R. Wattenhofer, "Initializing Newly Deployed Ad
Hoc and Sensor Networks," Proc. ACM MOBICOM, Sept. 2004, pp. 260-74.
[46] Alan D. Amis Ravi Prakash Thai H.P. Vuong Dung T. Huynh, "Max-Min DCluster
Formation in Wireless Ad Hoc Networks, "Proc. IEEE INFOCOM, Mar.
2000, pp. 32-41.
[47] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris, "SPAN:
An Energy-E cient Coordination Algorithm for Topology Maintenance in Ad
Hoc Wireless Networks," ACM Wireless Networks, vol. 8, no. 5, Sept. 2002, pp.
481-94.
[48] S. Banerjee and S. Khuller, "A Clustering Scheme for Hierarchical Control in
Multihop Wireless Networks," Proc. IEEE INFOCOM, Apr. 2001, pp. 1028-37
[49] L. Kleinrock, J. Silvester, Optimum transmission radii for packet radio networks
or why six is a magic number, in: Proceedings of the IEEE National
Telecommunications Conference, Birmingham, Alabama, December 1978, pp.
4.3.1-4.3.5.
[50] R.Kerschner, "The number of circles covering a set," Amer. J. Math., vol. 61,
no.3, pp 665 -671, Jul. 1939.
[51] Tung-Shih Su, Wei-Lun Jeng, Jeng-Yi Huang, Wen-Shyong Hsieh, "A Novel
Hierarchical ad Hoc Networks", Proceedings of the International Conference on
Networking and Services, pp. 19, 2006.
[52] Weifa Liang, Yuzhen Liu, "Online Data Gathering for Maximizing Network
Lifetime in Sensor Networks", IEEE Transactions on mobile computing, vol. 6,
No.1, Jan. 2007
[53] C. Perkins and E.Royer, "ad hoc on-demand distance vector routing," in Proc.
2nd IEEE Workshop Mobile Comput. Syst. pp.90-100, Apr. 1999
[54] C. M. Royer and C. K. Toh, "A review of current routing protocol for ad hoc
mobile wireless networks," IEEE Pers. Comm. pp. 46-55, Apr 1999
[55] S. Chen and K. Nahrstedt, "Distributed quality-of-service in ad hoc networks,"
IEEE j. Selected Areas in Comm. vol. 17, no. 8, Aug 1999
[56] P. Sinha, R. Sivakumar, and V. Bharghavan, "CEDAR: a Core-Extraction Distributed
Ad hoc Routing algorithm," in IEEE Infocom99, New York, NY, March
1999.
[57] C.R. Lin and J. S. Liu, "QoS routing in ad hoc wireless networks," IEEE J.
Selected Areas in Comm., vol. 17, no. 8, pp.1426-1438, Aug 1999
[58] C. R. Lin, "On-demand QoS routing in multihop mobile networks," in Proc.
IEEE INFOCOM, pp. 1735-1744, 2001
[59] W. H. Liao, Y. C. Tseng, S. L.Wang, and J. P. Sheu, "A multi-path QoS routing
protocol in a wireless mobile ad hoc network", Telecommunication Systems,
19(3):329-347, 2002.
[60] J. Li and P. Mohapatra, "PANDA: A positional Attribute-Based Next-Hop
Determination Approach for Mobile Ad Hoc Networks," Tech. Rep., Dept. of
Comp. Sci., UC Davis, 2002
[61] Y. Ge, T. Kunz, and L. Lamont, "Quality of Service Routing in Ad-Hoc Networks
Using OLSR," in Proceeding of the 36th Hawii International Conference
on System Science, 2003.
[62] Y. Hwang and P. Varshney, "An Adaptive Routing Protocol for Ad-hoc Netowrks
using Multiple Disjoint Path," in VTC, May, 2003.
[63] Y. Hwang, H. Lee, and P. Varshney, "An Adaptive QoS Routing Protocol with
Dispersity for Ad-hoc Networks," in Proceedings of the 36th Hawaii International
Conference on System Sciences, 2003.
[64] L. Chen and W. B. Heinzelman, "QoS-aware routing based on bandwidth estimation
for mobile ad hoc networks," IEEE J. Selected Areas in Comm., vol.23,
no. 3, pp. 561-572, Mar. 2005
[65] Y. Yang and R. Kravets, "Contention-aware admission control for ad hoc networks,"
IEEE trans. on mobile computing, vol. 4, No. 4, pp. 363-377, Aug 2005
[66] Luis Villasenor-Gonzalez, Ying Ge, and Louise Lamont, "HOLSR: A Hierarchical
Proactive Routing Mechanism for Mobile Ad Hoc Networks," IEEE Communication
Magazine July 2005, pp. 118-125.
[67] C. Adjih, E. Baccelli, and P. jacquet, "Link State Routing in Wireless Ad-Hoc
Networks, " IEEE Military Commun. Conf., vol. 2, Oct. 2003, pp. 1274-1279.
[68] D.B. Johnson, D.A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless Networking",
in Mobile Computing, pp.153-181,1996.
[69] Samir R. Das, Charles E. Perkins, and Elizabeth M. Royer, "Performance comparison
of two on-demand Routing Protocols for Ad Hoc Networks", in IEEE
INFOCOM 2000, pp3-12
[70] F. H. P. Fitzek, D. Angelini, G. Mazzini, M. Zorzi, "Design and Performance
of an Enhanced IEEE 802.11 MAC Protocol for Multihop Coverage Extension,"
IEEE Wireless Comm., vol. 10, no. 6, pp. 30-39, Dec. 2003.
[71] Chen-Mou Cheng; Pai-Hsiang Hsiao; Kung, H.T.; DarioVlah, "Parallel Use
of Multiple Channels in Multi-hop 802.11 Wireless Networks", MILCOM 2006,
Oct. 2006 Page(s):1 - 9
[72] G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination
Function," IEEE J. Selected Areas in Comm., vol. 18, no.3, 2000
[73] P. Gupta and P. R. Kumar, "Capacity of wireless Networks," IEEE Trans.
Information Theory, no. 2, pp. 388-404, 2000
[74] Wei Wang and Soung C. Liew, "Solutions to Performance Problems in VoIP
over 802.11 Wireless LAN", IEEE Trans. Vehicular Technology, vol. 54, pp. 366-
384, 2005
[75] Digi.InternationalInc; http://www.digi.com/technology/rf-articles/receiversensitivity.
jsp
[76] I. F. Akyildiz and X. Wang, "A survey on wireless mesh networks," IEEE
Commun. Mag., vol. 43, no. 9, pp. 523-530, Sep. 2005.
[77] Frank H.P. Fitzek, Diego Angelini, Gianluca Mazzini, and Michele Zorzi, "Design
and Performance of an Enhanced IEEE 802.11 MAC Protocol for Multi-hop
Coverage Extension" IEEE Wireless Commun., vol.10, no.6, pp.30-39, December
2003
[78] IEEE 802.11 Working group, "Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Speci cations", ANSI/IEEE std. 802.11,
September 1999
[79] Arup Acharya and Archan Misra, Aorav Bansal, "High-Performance Architecture
for IP-Based Multi-hop 802.11 Networks" IEEE Wireless Commun., vol.10,
no.5, pp.22-28, October 2003
[80] C.E. Perkins, E. M. Royer: "Ad-hoc On-Demand Distance Vector Routing",
Proc. 2nd IEEE Workshop on Mobile Computer System and Application, pp.
90-100, February 1999
[81] Prasant Mohapatra, Jian Li, and Chao Gui, "QoS in Mobile Ad Hoc Networks"
IEEE Wireless Commun., pp.44-52, June 2003
[82] William Stallings, "Wireless Communications and Networking", Prentice Hall,
2002
[83] J. Deng and Z. J. Hass. Dual Busy Tone Multiple Access (DBTMA): A New
Medium Access Control for Packet Radio Networks. In International Conference
on Universal Personal Communication Oct. 1998
[84] Andrew S. Tanenbaum, "Computer Networks", fourth edition, Prentice Hall
PTR
[85] P. Karn, "MACA - a New Channel Access Method for packet Radio"
ARRL/CRRL Amateur Radio 9th comp. Net. Conf., pp. 134- 140, 1990
[86] V. Bharghavan et al., "MACAW: A Media Access Protocol for wireless LANs,
" Proc. ACM SIGCOMM, pp. 212 - 225 , 1994
[87] Hongyi Wu, Chunming Qiao, S. De, O. Tonguz, "Integrated cellular and ad hoc
relaying systems:iCAR",Selected Areas in Communications, IEEE Journal on ,
Volume: 19 , Issue: 10 , pp.2105 - 2115, Oct. 2001
[88] J.Q. Bao, Lang Tong," A performance comparison between ad hoc and centrally
controlled CDMA wireless LANs"Wireless Communications, IEEE Transactions
on, Volume: 1, Issue: 4, pp.829 - 841, Oct. 2002
[89] A. Pandya, G. Pottie, " QoS in ad hoc networks "Vehicular Technology Conference,
2003. VTC 2003-Fall. 2003 IEEE 58th, Volume: 5, pp.3089 - 3093 Vol.5,
6-9 Oct. 2003
[90] T. ElBatt, A. Ephremides, "Joint scheduling and power control for wireless
ad hoc networks"Wireless Communications, IEEE Transactions on, Volume: 3,
Issue: 1, pp.74 - 85, Jan. 2004
[91] Il-Min Kim, Hyung-Myung Kim, " An optimum power management scheme
for wireless video service in CDMA systems "Wireless Communications, IEEE
Transactions on, Volume: 2, Issue: 1, pp.81 - 91, Jan. 2003
[92] Telecommunications and Information exchange Between Systems - Local And
Metropolitan Area Networks-speci c Requirements - part 11: Wireless Lan
Medium Access Control (MAC) And Physical Layer (PHY) Speci cations IEEE
Std 802.11-1997, pp.i - 445, November 1997
[93] Shu-Lin Wu, Yu-Chee Tseng, and Jang-Ping Sheu, "Intelligent Medium Access
for Mobile Ad Hoc Networks with Busy Tones and power Control", IEEE Journal
on Selected Areas in Communications, Vol. 18, No. 9, pp. 1647-1657, Sep. 2000
[94] Shih-Lin Wu, Yu -Chee Tseng, Chih-Yu Lin, and Jang -Ping Sheu, "A multichannel
MAC Protocol with Power Control for Multi-hop Mobile Ad hoc Networks,"
The Computer Journal, Vol. 45, No. 1, pp. 101-110, 2002
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.136.154.103
論文開放下載的時間是 校外不公開

Your IP address is 3.136.154.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code