Responsive image
博碩士論文 etd-0106118-152623 詳細資訊
Title page for etd-0106118-152623
論文名稱
Title
高壓合成鈣鈦礦結構化合物與其物理特性
Perovskite-related-structure Materials with High Pressure Synthesis and Their Physical Properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
138
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-19
繳交日期
Date of Submission
2018-02-07
關鍵字
Keywords
K2NiF4-type結構、A位有序鈣鈦礦結構、鈣鈦礦結構、高溫高壓合成、3d及4d過渡金屬
perovskite-related structure, 3d and 4d transition metal, K2NiF4-type structure, A-site ordered perovskite, high-pressure and high-temperature synthesis
統計
Statistics
本論文已被瀏覽 5688 次,被下載 205
The thesis/dissertation has been browsed 5688 times, has been downloaded 205 times.
中文摘要
3d及4d過渡金屬鈣欽礦結構氧化物因擁有多樣化的物理特性而吸引科學家的關注。對 於某些特別的化合物,樣品製備需要在高溫高壓環境下合成,在這篇論文中主要在 探討K2NiF4結構與A位有序鈣欽礦結構的化合物,我們合成高品質的化合物並研究其 物理特性。此篇論文內含三個研究主題,第一個主題是研究”3d3電子結構之K2NiF4- type結構鎔氧化物與蜢氧化物的晶體結構與物理特性”,我們發現並合成新的鎔氧化 物YSrCrO4,電子繞射以及粉末X光繞射實驗結果顯示YSrCrO4具有正交結構,其空間 群為Pccn。我們探討YSrCrO4的磁性及電性,並將其特性與LaSrCrO4, YCaCrO4 和 A2MnO4 (A = Sr and Ca)化合物比較。YSrCrO4具有二維自旋關聯以及具有傾斜反鐵 磁特性,隨著結構的扭曲增加,二維自旋關聯以及反鐵磁相變溫度減少,而自發磁化強 度增加。從電子自旋共振實驗得到YSrCrO4, LaSrCrO4和YCaCrO4的g值分別為1.976, 1.978 及1.976。介電常數實驗結果顯示這些化合物具有in-gap狀態,而磁電禍合現象則 不存在於這些化合物中。
第二個研究主題為CaCu3Ti4−xRuxO12系統化合物在電子局域態與巡遊態間的相 轉變。我們實驗室是第一個團隊利用高溫高壓合成法成功製備CaCu3Ti4−xRuxO12全 參雜化合物的團隊,磁性實驗結果顯示在 2 ≤ x ≤ 3 參雜的化合物中其殘餘磁場強 度發生劇烈變化,且自旋玻璃相在 x = 2.5的樣品中突然消失,證明此樣品具有first order電子相轉變。電阻實驗結果證明在x ≤ 1的樣品具有variable-range-hopping type行 為,而 x ≥ 3.5的樣品具有金屬行為特性,在 x = 2.0, 2.5, 及 3.0的樣品我們觀測到 電阻最小值分別在T p ∼ 150 K, 8.5 K及3.5 K。 由先前的磁性及電阻實驗,我們提出 了CaCu3Ti4−xRuxO12化合物的電子結構相圖,由電子結構相圖可清楚的觀測到當Ru離 子參雜在Ti化合物時的相變化。
最後一個研究主題為利用不同A位參雜的元素去探討CaCu3Ru4O12化合物中磁化 率最大值的發生原因。CaCu3Ru4O12化合物在溫度對磁化率的量測下在200 K時觀測 到broad maximum,由於broad maximum發生的原因尚未明瞭,我們利用高溫高壓合

成法製備出高品質Ca1−xAxCu3Ru4O12 (A = La, Na, and Sr)樣品,並探討其物理特
性,磁性量測結果發現隨著La的參雜maximum往低溫區移動,而Na參雜樣品broad maximum則是漸漸不明顯,對於Sr參雜則是沒明顯變化。我們的實驗結果強烈顯示磁 化率最大值是由電子態密度中費米能階上的尖峰所導致的。此外,在此研究中亦探
討LaCu3Ru4O12及NaCu3Ru4O12電子態的本質。
Abstract
The 3d and 4d transition metal (TM) oxides with perovskite-related structures are attracting research interest because they show a rich variety of interesting physical properties. The focus of this dissertation is making high-quality materials and studying their physical properties. Synthesizing high-quality materials in high-pressure and high-temperature are needed for some special compounds. This dissertation is focus on the physical properties of K2NiF4-type structure and A-site ordered perovskites compounds.
The first topic is "the crystal structure and physical properties of Cr and Mn oxides with 3d3 electronic configuration and a K2NiF4-type structure". YSrCrO4 is first synthesized and found to be a hettotype of the K2NiF4 structure, although the combination of Y and Sr ions in K2NiF4-type oxides is very rare. The space group of the compound is determined to be orthorhombic Pccn by the electron diffraction and the powder X-ray diffraction. Magnetic and dielectric properties of the compound, together with LaSrCrO4, YCaCrO4 and A2MnO4 (A = Sr and Ca), are investigated. YSrCrO4 shows two-dimensional (2D) spin correlations and a canted antiferromagnetic (AF) ordering. With increasing distortion of the crystal structure, 2D spin correlations and the Antiferromagnetic (AF) transition temperature decrease, while spontaneous magnetization increases. From the multi-frequency electron spin resonance (ESR) measurements, the g-value of the paramagnetic state are estimated to be 1.976, 1.978 and 1.976 for YSrCrO4, LaSrCrO4 and YCaCrO4, respectively. Evidence of AF ordering of the Cr oxides is obtained microscopically from ESR. The dielectric measurements suggest the existence of in-gap states, while no magneto-dielectric coupling was observed in the above compounds.
The second topic is "electronic phase transition between localized and itinerant states in the solid-solution system CaCu3Ti4-xRuxO12". The solid solution between CaCu3Ti4-xRuxO12 end members was first synthesized using a high-pressure synthesis technique. The residual magnetization at 2 K sharply changes at 2 x 3 and the spin-glass-like phase suddenly disappears at x = 2.5, suggesting a first-order electronic phase transition. Magnetic susceptibility shows a strong temperature dependence for x ≤ 1 and a weak one for x ≥ 3. At an intermediate x, the weak temperature dependence at high temperatures changes to a strong temperature dependence at low temperatures. The temperature at the change rapidly decreases with increasing x. The electrical resistivity shows variable-range- hopping type behavior for x ≤ 1, metallic behaviors for x ≥ 3.5, and resistivity minima at Tp ∼ 150 K, 8.5 K, and 3.5 K for x = 2.0, 2.5, and 3.0, respectively. A proposed electronic phase diagram of the solid-solution system accounts for these results. The local magnetic moments at CuO4 squares of the Ti compound become itinerant with increasing Ru content by means of a first-order phase transition. The transition can be regarded as a unique Mott transition because the atomic orbitals of the Ru cations play an important role in the increased hopping amplitude of the electrons/holes of CuO4 molecular-like orbitals.
In the last topic, we studied the origin of the magnetic susceptibility maximum in CaCu3Ru4O12 and electronic states in the A-site substituted compounds. CaCu3Ru4O12 shows a broad maximum at around 200 K in temperature dependence of magnetic susceptibility, whose origin is under debate. The present study addresses this problem, using high-quality samples of Ca1−xAxCu3Ru4O12 (A = La, Na, and Sr) made by high pressure synthesis technique. Unlike in a previous report, the maximum shifts to lower temperatures for the La substitution, becomes obscure by the Na substitution, and is less influenced by the Sr substitution. This behavior strongly suggests that the susceptibility maximum is caused by a sharp peak in the density of states just above the Fermi level, which induces strong spin fluctuations. Furthermore, the nature of electronic states of LaCu3Ru4O12 and NaCu3Ru4O12 are discussed; the former likely bears a Kondo character, and the latter has spin fluctuations of different origin below approximately 150 K.
目次 Table of Contents
List of Figures xi
List of Tables xvii
1 Introduction 1
1.1 Crystal structure 1
1.1.1 Perovskite 1
1.1.2 Layered perovskite 2
1.1.3 Ruddlesden-Popper type structure 3
1.1.4 A-site ordered perovskite and B-stie ordered perovskite 4
1.2 Electronic structure 7
1.2.1 Crystal field consideration 7
1.2.2 The Jahn-Teller interaction 8
1.3 Magnetism 9
1.3.1 Magnetism of Isolated Atoms and Ions 10
1.3.2 Pauli principle and Hund’s rule 11
1.3.3 Diamagnetism, Paramagnetism, Ferromagnetism, Ferrimagnetism, Antiferromagnetism 12
1.3.4 Antiferromagnetism 13
1.3.5 Magnetic susceptibility and Curie Weiss law 13
1.4 Theory of magnetic coupling 15
1.4.1 Superexchange interaction 15
1.4.2 Double exchange interaction 16
1.4.3 Dzyaloshinsky-Moriya interaction 17
2 Experimental methods 19
2.1 Sample synthesis: High pressure method 19
2.2 X-ray diffraction 21
2.2.1 Powder X-ray diffraction 21
2.2.2 The Rietveld method 22
2.3 Transmission electron microscope (TEM) 25
2.4 Magnetic properties 25
2.5 Specific heat properties/ Heat capacity 27
2.6 Electrical properties 28
2.7 Electron Spin Resonance (ESR) 28
3 Layered perovskite LnACrO4 (Ln = La, Y; A = Sr, Ca) 29
3.1 Introduction 29
3.2 Experiment 32
3.3 Results and Discussion 33
3.3.1 Structural analysis of YSrCrO4 33
3.3.2 Magnetic properties 35
3.3.3 ESR measurements 39
3.3.4 Dielectric properties 43
4 A-site ordered perovskite CaCu3Ti4−xRuxO12 51
4.1 Introduction 51
4.2 Experiment 54
4.3 Results 56
4.3.1 Phase characterization 56
4.3.2 Magnetic properties 58
4.3.3 Thermal properties 64
4.3.4 Electrical resistivity 67
4.4 Discussion 69
5 A-site substituted perovskite Ca1−xAxCu3Ru4O12 77
5.1 Introduction 77
5.2 Experiment 79
5.3 Results 81
5.4 Discussion 84
5.4.1 Broad (T) maximum 88
5.4.2 Kondo character in LaCu3Ru4O12 91
5.4.3 Electronic state at low temperatures 94
6 Conclusion 96
7 List of publications 98
Bibliography 100
參考文獻 References
[1] Pooja Sawant Mahadik, Pranesh Sengupta, Rumu Halder, G. Abraham, and
G.K. Dey. Perovskite–Ni composite: A potential route for management of radioactive metallic waste. Journal of Hazardous Materials, 287:207 – 216, 2015. xii, 1, 2
[2] Serge Kaliaguine Wilfrid PrellierPascal Granger Vasile I. Parvulescu Serge Kaliaguine Wilfrid Prellier Pascal Granger, Vasile I. Parvulescu. Perovskites and Related Mixed Oxides: Concepts and Applications. Wiley, 2016. xii, 5
[3] Youwen Long. A-site ordered quadruple perovskite oxides. Chinese Physics B, 25(7):078108, 2016. xii, 7
[4] D. A. Tarr G. L. Miessler. Inorganic Chemistry. Pearson Education, 2004. xii, 8
[5] Y. Tokura and N. Nagaosa. Orbital physics in transition-metal oxides. Science, 288(5465):462–468, 2000. xii, 8
[6] C. Kittel. Introduction to Solid State Physics. Wiley, 2004. xiii, 13, 15, 16, 17

[7] J. B.Goodenough. Magnetism And The Chemical Bond. John Wiley And Sons, 1963. xiii, 16, 17
[8] Kazunari Yamaura. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides. Journal of Solid State Chemistry, 236(Supplement C):45 – 54, 2016. Materials Discovery Through Crystal Growth. xiii, 22

[9] Fujio Izumi and Takuji Ikeda. Rietveld analysis and mem-based whole-pattern fitting under partial profile relaxation. The Rigaku Journal, 17(1):34, 2000. xiii, 26
[10] Koichi Aso. Physical properties of magnetic 2-d oxides containing Cr3+, (SrCaR)2(CrxGa1−x)O4, (R=La or Sm). Journal of the Physical Society of Japan, 44(4):1083–1090, 1978. xiii, 31, 32, 39, 40
[11] M.A. Subramanian, Dong Li, N. Duan, B.A. Reisner, and A.W. Sleight. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. Journal of Solid State Chemistry, 151(2):323 – 325, 2000. xiv, 54, 55
[12] A. Collomb, D. Samaras, B. Bochu, and J. C. Joubert. Propriétés et structure magnétiques de CaCu3Ti4O12 à structure pérovskite. physica status solidi (a), 41(2):459–463, 1977. xiv, 54, 56
[13] Wataru Kobayashi, Ichiro Terasaki, Jun ichi Takeya, Ichiro Tsukada, and Yoichi Ando. A novel heavy-fermion state in CaCu3Ru4O12. Journal of the Physical Society of Japan, 73(9):2373–2376, 2004. xv, 54, 55, 57, 58, 61, 64, 67
[14] Lixin He, J. B. Neaton, Morrel H. Cohen, David Vanderbilt, and C. C. Homes. First-principles study of the structure and lattice dielectric response of cacu3ti4o12. Phys. Rev. B, 65:214112, Jun 2002. xvi, 73, 76
[15] Hongping Xiang, Xiaojuan Liu, Erjun Zhao, Jian Meng, and Zhijian Wu. First- principles study on the conducting mechanism of the heavy-fermion system CaCu3Ru4O12. Phys. Rev. B, 76:155103, Oct 2007. xvi, 55, 73, 74, 77, 78
[16] Soutarou Tanaka, Nobuhiro Shimazui, Hiroshi Takatsu, Shingo Yonezawa, and Yoshiteru Maeno. Heavy-mass behavior of ordered perovskites ACu3Ru4O12 (A = Na, Ca, La). Journal of the Physical Society of Japan, 78(2):024706, 2009. xvi, 82, 83, 86
[17] Soutarou Tanaka, Hiroshi Takatsu, Shingo Yonezawa, and Yoshiteru Maeno. Suppression of the mass enhancement in cacu3ru4o12. Phys. Rev. B, 80:035113, Jul 2009. xvi, 83, 84, 89

[18] Ting-Hui Kao, Hiroya Sakurai, Harukazu Kato, Naohito Tsujii, and Hung- Duen Yang. Nonstoichiometry and magnetic susceptibility of LaCu3Ru4O12. Journal of the Physical Society of Japan, 85(2):025001, 2016. xvi, 84, 85, 86,
97, 99

[19] U. Schwingenschlögl, V. Eyert, and U. Eckern. Octahedral tilting in ACu3Ru4O12 (A=Na, Ca, Sr, La, Nd). Chemical Physics Letters, 370(5):719 – 724, 2003. xvii, 94, 95, 96, 99
[20] J.-G. Cheng, J.-S. Zhou, Y.-F Yang, H. D. Zhou, K. Matsubayashi, Y. Uwa- toko, A. MacDonald, and J. B. Goodenough. Possible kondo physics near a metal-insulator crossover in the a-site ordered perovskite cacu3ir4o12. Phys.
Rev. Lett., 111:176403, Oct 2013. xvii, 90, 93, 97, 98

[21] Gustav Rose. Beschreibung einiger neuen mineralien des urals. Annalen der Physik, 124(12):551–573, 1839. 1
[22] P.K. Davies, H. Wu, A.Y. Borisevich, I.E. Molodetsky, and L. Farber. Crystal chemistry of complex perovskites: New cation-ordered dielectric oxides. Annual Review of Materials Research, 38(1):369–401, 2008. 2
[23] V. M. Goldschmidt. Die gesetze der krystallochemie. Naturwissenschaften, 14(21):477–485, May 1926. 2
[24] S. N. Ruddlesden and P. Popper. New compounds of the K2NIF4 type. Acta Crystallographica, 10(8):538–539, Aug 1957. 4
[25] S. N. Ruddlesden and P. Popper. The compound Sr3Ti2O7 and its structure.
Acta Crystallographica, 11(1):54–55, Jan 1958. 4

[26] Peter D. Battle, Jonathan C. Burley, Daniel J. Gallon, Clare P. Grey, and Jeremy Sloan. Magnetism and structural chemistry of the n=2 Ruddles- den–Popper phase La3LiMnO7. Journal of Solid State Chemistry, 177(1):119
– 125, 2004. 4

[27] Maite Caldes, Claude Michel, Thierry Rouillon, Maryvonne Hervieu, and Bernard Raveau. Novel indates Ln2BaIn2O7, n = 2 members of the Ruddlesden-Popper family (Ln = La, Nd). J. Mater. Chem., 12:473–476, 2002. 4
[28] A. N. Vasil’ev and O. S. Volkova. New functional materials AC3B4O12 (Review), journal = Low Temperature Physics, vol- ume = 33, number = 11, pages = 895-914, year = 2007, doi = 10.1063/1.2747047, url = http://dx.doi.org/10.1063/1.2747047 , eprint
= http://dx.doi.org/10.1063/1.2747047 . 7

[29] H. A. Jahn and E. Teller. Stability of polyatomic molecules in degenerate electronic states. i. orbital degeneracy. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 161(905):220– 235, 1937. 9
[30] B. Halperin and R. Englman. Cooperative dynamic Jahn-Teller effect. ii. crys- tal distortion in perovskites. Phys. Rev. B, 3:1698–1708, Mar 1971. 9
[31] John T. Vallin and George D. Watkins. The Jahn-Teller effect for Cr2+ in II–VI crystals. Solid State Communications, 9(13):953 – 956, 1971. 9
[32] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, and M. T. Fernández-Díaz. Evolution of the Jahn-Teller distortion of MnO6 Octahedra in RMnO3 Per- ovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A neutron diffraction study. Inor- ganic Chemistry, 39(5):917–923, 2000. PMID: 12526369. 9
[33] Lirong Kong, Xiaofeng Lu, and Wanjin Zhang. Facile synthesis of multifunc- tional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline compos- ite nanotubes. Journal of Solid State Chemistry, 181(3):628 – 636, 2008. 9
[34] M.P. Attfield, P.D. Battle, S.K. Bollen, S.H. Kim, A.V. Powell, and M. Work- man. Structural and electrical studies of mixed copper/ruthenium oxides and related compounds of zinc and antimony. Journal of Solid State Chemistry, 96(2):344 – 359, 1992. 9

[35] K. H. J. Buschow and F. R. de Boer. Physics of Magnetism and Magnetic Materials, pages VII, 182. Springer US, 2003. 10
[36] B. D. Cullity and C. D. Graham. Frontmatter, pages i–xvii. John Wiley Sons,
Inc., 2008. 10

[37] Claudine Lacroix. Introduction to Magnetism, pages 1–13. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. 11
[38] H.A Kramers. L’interaction entre les atomes magne´toge`nes dans un cristal paramagne´tique. Physica, 1(1):182 – 192, 1934. 16

[39] P. W. Anderson. Antiferromagnetism. theory of superexchange interaction.
Phys. Rev., 79:350–356, Jul 1950. 16
[40] John B. Goodenough. Theory of the role of covalence in the perovskite-type manganites [La, M (II)]MnO3. Phys. Rev., 100:564–573, Oct 1955. 16

[41] Junjiro Kanamori. Superexchange interaction and symmetry properties of elec- tron orbitals. Journal of Physics and Chemistry of Solids, 10(2):87 – 98, 1959. 16
[42] Clarence Zener. Interaction between the d-shells in the transition metals. ii. ferromagnetic compounds of manganese with perovskite structure. Phys. Rev., 82:403–405, May 1951. 18
[43] P. W. Anderson and H. Hasegawa. Considerations on double exchange. Phys.
Rev., 100:675–681, Oct 1955. 18

[44] A. S. Bhalla, R. Guo, and R. Roy. The perovskite structure - a review of its role in ceramic science and technology. Material Research Innovations, 4(1):3–26, 2000. 18
[45] O. Fukunaga, Y.S. Ko, M. Konoue, N. Ohashi, and T. Tsurumi. Pressure and temperature control in flat-belt type high pressure apparatus for reproducible diamond synthesis. Diamond and Related Materials, 8(11):2036 – 2042, 1999. 20

[46] Noriko Nakagawa, Takafumi Yamada, Koji Akioka, Susumu Okubo, Shojiro Kimura, and Hitoshi Ohta. Millimeter and submillimeter wave ESR system:
Using 30 t pulsed magnetic field. International Journal of Infrared and Mil-
limeter Waves, 19(2):167–176, Feb 1998. 30

[47] R. J. Cava, R. B. van Dover, B. Batlogg, and E. A. Rietman. Bulk supercon- ductivity at 36 k in La1.8Sr0.2CuO4. Phys. Rev. Lett., 58:408–410, Jan 1987. 31
[48] S. J. Chen, C. F. Chang, H. L. Tsay, H. D. Yang, and J.-Y. Lin. Magnetic-field dependence of the low-temperature specific heat of La2−xSrxCuO4. Phys. Rev.
B, 58:R14753–R14756, Dec 1998. 31

[49] J. M. Tranquada, D. J. Buttrey, and V. Sachan. Incommensurate stripe order in La2−x Srx NiO4 with x=0.225. Phys. Rev. B, 54:12318–12323, Nov 1996. 31
[50] J. Matsuno, Y. Okimoto, Z. Fang, X. Z. Yu, Y. Matsui, N. Nagaosa,
M. Kawasaki, and Y. Tokura. Metallic ferromagnet with square-lattice CoO2 sheets. Phys. Rev. Lett., 93:167202, Oct 2004. 31
[51] X. L. Wang and E. Takayama-Muromachi. Magnetic and transport properties of the layered perovskite system Sr2−y Yy CoO4 (0y1). Phys. Rev. B, 72:064401,
Aug 2005. 31, 36

[52] A. Collomb, D. Samaras, and J. C. Joubert. Détermination par diffraction neutronique des structures magnétiques des composés SrTCrO4 (T = La, Nd). physica status solidi (a), 50(2):635–642, 1978. 31
[53] A. Morales Sánchez, F. Fernández, R. Sáez Puche, and F. Fernández-Martín. Structural and magnetic characterization of novel stoichiometric LnCaCrO4 oxides (Ln, rare earth). Journal of Alloys and Compounds, 203(Supplement C):143 – 148, 1994. 31, 39
[54] J. Romero, R. Saez Puche, F. Fernandez, J. L. Martinez, Q. Chen, M. Castro, and R. Burriel. Phase transitions and magnetic behaviour of R1−xCa1+xCrO4

oxides (R = Y or Sm) (0 ≤ x ≤ 0.5). Journal of Alloys and Compounds,
225(1):203 – 207, 1995. Proceedings of the 2nd International Conference on f-Elements. 31, 35, 39
[55] R. Berjoan, J. P. Coutures, G. Le Flem, and M. Saux. A structural and magnetic study of the CaLa1−xYxCrO4 system (0 ≤ x ≤ 1). Journal of Solid State Chemistry, 42(1):75 – 79, 1982. 31, 35, 39, 45

[56] J. L. Martínez, M. T. Fernández-Díaz, Q. Chen, C. Prieto, A. de Andrés,
R. Sáez-Puche, and J. Romero. Bulk magnetic characterization of RCaCrO4 (R Y, Pr, Sm) oxides. Journal of Magnetism and Magnetic Materials, 140(Part 2):1179 – 1180, 1995. International Conference on Magnetism. 31, 39
[57] Jean-Claude Bouloux, Jean-Louis Soubeyroux, Gilles Le Flem, and Paul Ha- genguller. Bidimensional magnetic properties of β-Sr2MnO4. Journal of Solid State Chemistry, 38(1):34 – 39, 1981. 31, 33, 39
[58] R. Kriegel, A. Feltz, L. Walz, A. Simon, and H.-J. Mattausch. Über die Verbindung Sr7Mn4O15 und Beziehungen zur Struktur von Sr2MnO4 und α- SrMnO3. Zeitschrift für anorganische und allgemeine Chemie, 617(11):99–104, 1992. 33

[59] C. Autret, C. Martin, M. Hervieu, R. Retoux, B. Raveau, G. André, and
F. Bourée. Structural investigation of Ca2MnO4 by neutron powder diffraction and electron microscopy. Journal of Solid State Chemistry, 177(6):2044 – 2052, 2004. 33, 39, 41
[60] D. E. COX, G. SHIRANE, R. J. BIRGENEAU, and J. B. MACCHESNEY.
Neutron-diffraction study of magnetic ordering in Ca2MnO4. Phys. Rev., 188:930–932, Dec 1969. 33, 39, 41
[61] J. B. MacChesney, H. J. Williams, J. F. Potter, and R. C. Sherwood. Magnetic study of the manganate phases: CaMnO3, Ca4Mn3O10, Ca3Mn2O7, Ca2MnO4. Phys. Rev., 164:779–785, Dec 1967. 33, 36, 39, 41

[62] G. Ollivier and G. Buisson. Ordre magnetique a deux dimensions dans Ca2MnO4. Solid State Communications, 9(3):235 – 240, 1971. 33, 39
[63] Keitaro Tezuka, Masaaki Inamura, Yukio Hinatsu, Yutaka Shimojo, and Yukio Morii. Crystal structures and magnetic properties of Ca2−xSrxMnO4. Journal of Solid State Chemistry, 145(2):705 – 710, 1999. 33

[64] C. Chaumont, A. Daoudi, G. Le Flem, and P. Hagenmuller. Préparation, propriétés cristallographiques, magnétiques et electriques de la solution solide Ca2−xYxMnO4. Journal of Solid State Chemistry, 14(4):335 – 341, 1975. 34,
49
[65] R. Kriegel and N. Preugb. Dilatometric determination of phase transition temperatures and oxidation temperatures on the com- pounds SrMnO3−y and Sr2MnO4−y . ThermochimicaActa, 285(1) :
91 − −98, 1996. AdvancesinInternationalThermalSciences :
Polymers, Inorganics, BiologicalMaterialsandTechniques. 34

[66] Junichi Takahashi and Naoki Kamegashira. X-ray structural study of calcium manganese oxide by rietveld analysis at high temperatures [Ca2MnO4]. Mate- rials Research Bulletin, 28(6):565 – 573, 1993. 34
[67] Fujio Izumi and Koichi Momma. Three-dimensional visualization in powder diffraction. In APPLIED CRYSTALLOGRAPHY XX, volume 130 of Solid State Phenomena, pages 15–20. Trans Tech Publications, 10 2007. 34
[68] Noriko Nakagawa, Takafumi Yamada, Koji Akioka, Susumu Okubo, Shojiro Kimura, and Hitoshi Ohta. Millimeter and submillimeter wave ESR system: Using 30 T pulsed magnetic field. International Journal of Infrared and Mil- limeter Waves, 19(2):167–176, Feb 1998. 35
[69] M. Hücker. Structural aspects of materials with static stripe order. Physica C: Superconductivity, 481(Supplement C):3 – 14, 2012. Stripes and Electronic Liquid Crystals in Strongly Correlated Materials. 36

[70] In-Seon Kim, Hitoshi Kawaji, Mitsuru Itoh, and Tetsur¯o Nakamura. Struc- tural and dielectric studies on the new series of layered compounds, strontium lanthanum scandium oxides. Materials Research Bulletin, 27(10):1193 – 1203, 1992. 36
[71] M. M. Nguyen-Trut-Dinh, M. Vlasse, M. Perrin, and G. Le Flem. Un oxyde magnetique bidimensionnel: CaLaFeO4. Journal of Solid State Chemistry, 32(1):1 – 8, 1980. 36
[72] W. T Fu, D. Visser, and D.J.W IJdo. High-resolution neutron powder diffrac- tion study on the structure of Sr2SnO4. Journal of Solid State Chemistry, 169(2):208 – 213, 2002. 36, 37
[73] R. D. Shannon. Revised effective ionic radii and systematic studies of inter- atomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5):751–767, Sep 1976. 36
[74] Brajesh Tiwari, M Krishna Surendra, and M S Ramachandra Rao. HoCrO3 and YCrO3 : a comparative study. Journal of Physics: Condensed Matter, 25(21):216004, 2013. 37
[75] K Ramesha, A Llobet, Th Proffen, C R Serrao, and C N R Rao. Observation of local non-centrosymmetry in weakly biferroic YCrO3. Journal of Physics:
Condensed Matter, 19(10):102202, 2007. 37

[76] Claudy Rayan Serrao, Asish K. Kundu, S. B. Krupanidhi, Umesh V. Wagh- mare, and C. N. R. Rao. Biferroic YCrO3. Phys. Rev. B, 72:220101, Dec 2005. 37
[77] J Rodriguez-Carvajal, M T Fernandez-Diaz, and J L Martinez. Neutron diffrac- tion study on structural and magnetic properties of La2NiO4. Journal of Physics: Condensed Matter, 3(19):3215, 1991. 40
[78] Tôru Moriya. Anisotropic superexchange interaction and weak ferromagnetism.
Phys. Rev., 120:91–98, Oct 1960. 40

[79] B Bleaney and K W H Stevens. Paramagnetic resonance. Reports on Progress in Physics, 16(1):108, 1953. 41
[80] K D Bowers and J Owen. Paramagnetic resonance ii. Reports on Progress in Physics, 18(1):304, 1955. 41
[81] J W Orton. Paramagnetic resonance data. Reports on Progress in Physics, 22(1):204, 1959. 41
[82] J. E. Geusic, M. Peter, and E. O. Schulz-Du Bois. Paramagnetic resonance spectrum of Cr x002B; x002B; x002B; in emerald. The Bell System Technical Journal, 38(1):291–296, Jan 1959. 41
[83] P T Squire and J W Orton. Relaxation of the Cr3+ ion in emerald. Proceedings of the Physical Society, 88(3):649, 1966. 41
[84] Adolfo Franco and Ricardo C. Santana. Electron paramagnetic resonance (EPR) of antiferromagnetic nanoparticles of La1−xSrxCrO3 (0.000 ≤ x ≤0.020) synthesized by combustion reaction. Materials Chemistry and Physics, 120(1):225 – 228, 2010. 45

[85] T. Kolodiazhnyi, H. Sakurai, and N. Vittayakorn. Spin-flop driven magneto- dielectric effect in Co4Nb2O9. Applied Physics Letters, 99(13):132906, 2011. 48
[86] O. Bidault, M. Maglione, M. Actis, M. Kchikech, and B. Salce. Polaronic relaxation in perovskites. Phys. Rev. B, 52:4191–4197, Aug 1995. 48
[87] Yutaka Moritomo, Taka hisa Arima, and Yoshinori Tokura. Electronic struc- ture of layered perovskite LaSrMO4 (M=Cr, Mn, Fe and Co). Journal of the Physical Society of Japan, 64(11):4117–4120, 1995. 48
[88] A. Paolone, P. Giura, P. Calvani, P. Dore, S. Lupi, and P. Maselli. Charge- localization effects in the infrared transmittance of layered perovskites. Physica B: Condensed Matter, 244(Supplement C):33 – 40, 1998. Proceedings of the International Conference on Low Energy Electrodynamics in Solids. 48

[89] K.L. Yadav and R.N.P. Choudhary. Structural and electrical properties of PZT (La, K) ceramics. Materials Letters, 16(5):291 – 294, 1993. 48
[90] G. Le Flem, R. Colmet, J. Claverie, P. Hagenmuller, and R. Georges. Proprietes magnetiques et electriques de la phase Ca2MnO4−xFx. Journal of Physics and Chemistry of Solids, 41(1):55 – 59, 1980. 49

[91] Ian D. Fawcett, Sunstrom, Martha Greenblatt, Mark Croft, and K. V. Ramanu- jachary. Structure, magnetism, and properties of Ruddlesden-Popper calcium manganates prepared from citrate gels. Chemistry of Materials, 10(11):3643– 3651, 1998. 49
[92] A.P Ramirez, M.A Subramanian, M Gardel, G Blumberg, D Li, T Vogt, and
S.M Shapiro. Giant dielectric constant response in a copper-titanate. Solid State Communications, 115(5):217 – 220, 2000. 54
[93] A.P Ramirez, G Lawes, D Li, and M.A Subramanian. Valence-electron transfer and a metal-insulator transition in a strongly correlated perovskite oxide. Solid State Communications, 131(3):251 – 255, 2004. 54, 55, 64, 79
[94] Harukazu Kato, Takuya Tsuruta, Masahiro Matsumura, Takashi Nishioka, Hironori Sakai, Yo Tokunaga, Shinsaku Kambe, and Russell E. Walstedt. Temperature-induced change in the magnitude of the effective density of states: A nqr/nmr study of the a-site-ordered perovskite system CaCu3Ru4O12. Jour- nal of the Physical Society of Japan, 78(5):054707, 2009. 55
[95] Soutarou Tanaka, Hiroshi Takatsu, Shingo Yonezawa, and Yoshiteru Maeno. Suppression of the mass enhancement in CaCu3Ru4O12. Phys. Rev. B, 80:035113, Jul 2009. 55
[96] Soutarou Tanaka, Nobuhiro Shimazui, Hiroshi Takatsu, Shingo Yonezawa, and Yoshiteru Maeno. Heavy-mass behavior of ordered perovskites ACu3Ru4O12 (a = na, ca, la). Journal of the Physical Society of Japan, 78(2):024706, 2009. 55

[97] A. Krimmel, A. Günther, W. Kraetschmer, H. Dekinger, N. Büttgen, A. Loidl,
S. G. Ebbinghaus, E.-W. Scheidt, and W. Scherer. Non-fermi-liquid behavior in CaCu3Ru4O12. Phys. Rev. B, 78:165126, Oct 2008. 55, 80
[98] Y. Wada Y. Onoda T. Mitsuhashi, A. Watanabe and Y. Komatsu. Non-fermi- liquid behavior in CaCu3Ru4O12. 1999. 59, 61
[99] J. Málek, A. Watanabe, and T. Mitsuhashi. Sol-gel preparation of rutile type solid solution in TiO2-RuO2 system. Journal of Thermal Analysis and Calorimetry, 60(2):699–705, May 2000. 59
[100] T. Mitsuhashi and A. Watanabe. Anomalies in heat capacity measurements of RuO2-TiO2 system. Journal of Thermal Analysis and Calorimetry, 60(2):683– 689, May 2000. 59
[101] Ting-Hui Kao, Hiroya Sakurai, Harukazu Kato, Naohito Tsujii, and Hung- Duen Yang. Nonstoichiometry and magnetic susceptibility of LaCu3Ru4O12.
Journal of the Physical Society of Japan, 85(2):025001, 2016. 61

[102] V. J. Emery, S. A. Kivelson, and H. Q. Lin. Phase separation in the t-j model.
Phys. Rev. Lett., 64:475–478, Jan 1990. 61

[103] Masao Ogata and Hidetoshi Fukuyama. The t – j model for the oxide high- Tc superconductors. Reports on Progress in Physics, 71(3):036501, 2008. 61
[104] B Bleaney and K W H Stevens. Paramagnetic resonance. Reports on Progress in Physics, 16(1):108, 1953. 67
[105] J W Orton. Paramagnetic resonance data. Reports on Progress in Physics, 22(1):204, 1959. 67
[106] Maria Cristina Mozzati, Carlo Bruno Azzoni, Doretta Capsoni, Marcella Bini, and Vincenzo Massarotti. Electron paramagnetic resonance investiga- tion of polycrystalline CaCu3Ti4O12. Journal of Physics: Condensed Matter, 15(43):7365, 2003. 67, 81

[107] T. Sasaki, N. Yoneyama, A. Suzuki, N. Kobayashi, Y. Ikemoto, and H. Kimura. Real space imaging of the metal–insulator phase separation in the band width
controlled organic mott system κ-(BEDT-TTF)2Cu[N(CN)2]Br. Journal of the
Physical Society of Japan, 74(8):2351–2360, 2005. 68, 73, 79

[108] M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong. Percolative phase separa- tion underlies colossal magnetoresistance in mixed-valent manganites. Nature, 399:560, Jun 1999. 68
[109] Keji Lai, Masao Nakamura, Worasom Kundhikanjana, Masashi Kawasaki, Yoshinori Tokura, Michael A. Kelly, and Zhi-Xun Shen. Mesoscopic percolating resistance network in a strained manganite thin film. Science, 329(5988):190– 193, 2010. 68
[110] Adriana Moreo, Matthias Mayr, Adrian Feiguin, Seiji Yunoki, and Elbio Dagotto. Giant cluster coexistence in doped manganites and other compounds.
Phys. Rev. Lett., 84:5568–5571, Jun 2000. 68, 79

[111] A. Koitzsch, G. Blumberg, A. Gozar, B. Dennis, A. P. Ramirez, S. Trebst, and Shuichi Wakimoto. Antiferromagnetism in cacu3ti4o12 studied by magnetic raman spectroscopy. Phys. Rev. B, 65:052406, Jan 2002. 69, 80
[112] I. Tsukada, R. Kammuri, T. Kida, S. Yoshii, T. Takeuchi, M. Hagiwara,
M. Iwakawa, W. Kobayashi, and I. Terasaki. Heat capacity proportional to

T 2 induced by ru substitution in CaCu3(Ti4
B, 79:054430, Feb 2009. 69, 80

−xRux

)O12

(x ≈ 0.5). Phys. Rev.


[113] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière,
M. Fourmigué, and P. Batail. Mott transition, antiferromagnetism, and un- conventional superconductivity in layered organic superconductors. Phys. Rev.
Lett., 85:5420–5423, Dec 2000. 79

[114] Hiroshi Ito, Takehiko Ishiguro, Masahiro Kubota, and Gunzi Saito. Metal- nonmetal transition and superconductivity localization in the two-dimensional

conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl under pressure. Journal of the Phys-
ical Society of Japan, 65(9):2987–2993, 1996. 79

[115] Atsushi Kawamoto, Hiromi Taniguchi, and Kazushi Kanoda. Superconduc- torinsulator transition controlled by partial deuteration in BEDT-TTF salt.
Journal of the American Chemical Society, 120(42):10984–10985, 1998. 79

[116] Wataru Kobayashi, Ichiro Terasaki, Jun ichi Takeya, Ichiro Tsukada, and Yoichi Ando. A novel heavy-fermion state in CaCu3Ru4O12, journal = Journal of the Physical Society of Japan, volume = 73, number = 9, pages = 2373-2376, year = 2004, doi = 10.1143/JPSJ.73.2373, url =
https://doi.org/10.1143/JPSJ.73.2373,. 82

[117] Harukazu Kato, Takuya Tsuruta, Masahiro Matsumura, Takashi Nishioka, Hironori Sakai, Yo Tokunaga, Shinsaku Kambe, and Russell E. Walstedt. Temperature-induced change in the magnitude of the effective density of states: A nqr/nmr study of the A-Site-Ordered Perovskite System CaCu3Ru4O12.
Journal of the Physical Society of Japan, 78(5):054707, 2009. 82, 84, 93

[118] Ting-Hui Kao, Hiroya Sakurai, Shan Yu, Harukazu Kato, Naohito Tsujii, and Hung-Duen Yang. Electronic phase transition between localized and itinerant states in the solid-solution system cacu3ti4−xruxo12. Phys. Rev. B, 95:195141,
May 2017. 82, 86

[119] Hongping Xiang, Xiaojuan Liu, Erjun Zhao, Jian Meng, and Zhijian Wu. First- principles study on the conducting mechanism of the heavy-fermion system Cacu3ru4o12. Phys. Rev. B, 76:155103, Oct 2007. 82, 96
[120] A. Krimmel, A. Günther, W. Kraetschmer, H. Dekinger, N. Büttgen, V. Eyert,
A. Loidl, D. V. Sheptyakov, E.-W. Scheidt, and W. Scherer. Intermediate- valence behavior of the transition-metal oxide cacu3ru4o12. Phys. Rev. B, 80:121101, Sep 2009. 84, 93
[121] Harukazu Kato, Takashi Nishioka, and Masahiro Matsumura. An NQR Study of ACu3Ru4O12: Effect of the A-Ion Substitution. 84, 99

[122] Hiroya Sakurai. Multiple magnetic states and metal-insulator transition in ca1−xnaxv2o4 with double-chain structure. Phys. Rev. B, 78:094410, Sep 2008. 84

[123] Hiroya Sakurai. Synthesis conditions and magnetic properties of Sr2CrO4 with the K2NiF4-type structure. Journal of the Physical Society of Japan, 83(12):123701, 2014. 84
[124] K. Yoshimura, T. Imai, T. Kiyama, K. R. Thurber, A. W. Hunt, and K. Kosuge. 17O nmr observation of universal behavior of ferromagnetic spin fluctuations in the itinerant magnetic system Sr1−xCaxRuO3. Phys. Rev. Lett., 83:4397–4400,
Nov 1999. 89, 94

[125] A. Krimmel, A. Günther, W. Kraetschmer, H. Dekinger, N. Büttgen, A. Loidl,
S. G. Ebbinghaus, E.-W. Scheidt, and W. Scherer. Non-fermi-liquid behavior in cacu3ru4o12. Phys. Rev. B, 78:165126, Oct 2008. 89
[126] Hiroya Sakurai. Phase transitions of α-Sr2VO4 with K2NiF4-type structure. Physics Procedia, 75(Supplement C):829 – 836, 2015. 20th International Con- ference on Magnetism, ICM 2015. 93

[127] Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shi- makawa. Temperature-induced a-b intersite charge transfer in an A-site- ordered LaCu3Fe4O12 perovskite. Nature, 458:60 EP –, Mar 2009. 93
[128] T. Moriya. Spin fluctuations in itinerant electron magnetism. 1985. 93

[129] H Yamada, J Inoue, K Terao, S Kanda, and M Shimizu. Electronic structure and magnetic properties of YM2 compounds (m=mn, fe, co and ni). Journal of Physics F: Metal Physics, 14(8):1943, 1984. 94
[130] D. J. Singh and I. I. Mazin. Electronic structure and magnetism of sr3ru2o7.
Phys. Rev. B, 63:165101, Mar 2001. 94

[131] H. Yamada. Metamagnetic transition and susceptibility maximum in an itinerant-electron system. Phys. Rev. B, 47:11211–11219, May 1993. 94, 96

[132] Neville V. Smith. Photoemission spectra and band structures of d-band metals.
iii. model band calculations on Rh, Pd, Ag, Ir, Pt, and Au. Phys. Rev. B, 9:1365–1376, Feb 1974. 96
[133] Neville V. Smith, G. K. Wertheim, S. Hüfner, and Morton M. Traum. Photoe- mission spectra and band structures of d-band metals. iv. x-ray photoemission spectra and densities of states in Rh, Pd, Ag, Ir, Pt, and Au. Phys. Rev. B, 10:3197–3206, Oct 1974. 96
[134] T. K. Sham. L-edge x-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4d elements. Phys. Rev. B, 31:1888–1902, Feb 1985. 96

[135] P. Mohn and K. Schwarz. Spin fluctuations in the strongly enhanced pauli paramagnets YCo2 and Pd. Journal of Magnetism and Magnetic Materials, 104-107(Part 1):685 – 686, 1992. 96
[136] K. Terao D. Kondou and H. Yamada. J. Fac. Sci. Shinshu Univ., 34:127, 1999.
96

[137] A.P Ramirez, G Lawes, D Li, and M.A Subramanian. Valence-electron transfer and a metal-insulator transition in a strongly correlated perovskite oxide. Solid State Communications, 131(3):251 – 255, 2004. 96
[138] V. T. Rajan. Magnetic susceptibility and specific heat of the coqblin-schrieffer model. Phys. Rev. Lett., 51:308–311, Jul 1983. 97
[139] Shin-Ichi Ikeda, Yoshiteru Maeno, Satoru Nakatsuji, Masashi Kosaka, and Yoshiya Uwatoko. Ground state in Sr3Ru2O7 : fermi liquid close to a fer- romagnetic instability. Phys. Rev. B, 62:R6089–R6092, Sep 2000. 99
[140] P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, and F. Steglich. Ferromag- netic quantum critical fluctuations in YbRh2(Si0.95Ge0.05)2. Phys. Rev. Lett., 94:076402, Feb 2005. 99
[141] K. Yamada. Electron correlation in metals. 2004. 100
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code