Responsive image
博碩士論文 etd-0108104-185332 詳細資訊
Title page for etd-0108104-185332
論文名稱
Title
銑刀設計與加工特性之研究
A Study on the Design and Machining Characteristics of Milling Cutters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-12-26
繳交日期
Date of Submission
2004-01-08
關鍵字
Keywords
逆包絡、包絡、刃口曲線、球頭銑刀
envelope, inverse-envelope, ball-end cutters, cutting- edge curves
統計
Statistics
本論文已被瀏覽 5870 次,被下載 6518
The thesis/dissertation has been browsed 5870 times, has been downloaded 6518 times.
中文摘要
刀具是製造工業非常重要的技術工具,刀具的性能和品質的優劣對於切削加工的精度、效率和產品品質都有直接而嚴重的影響,刀具產業的振興,首先需徹底研究引進新技術,進一步加強基礎研究與應用,提昇研發能力,掌握現代先進產品之新技術,方能使技術理論化,打破經驗的侷限性,開創屬於本國特色的刀具技術體系。
刀具的幾何模型研究包括兩方面,一是從切削理論和使用性能出發,討論新型刀具開發或最佳刀具參數設計問題;二是由已知理想刀具的結構和設計參數要求,尋求其幾何形態的數學描述,稱為幾何建模。幾何建模是實現刀具CAD技術的關鍵,無疑是刀具設計,加工理論研究的首要前提,是加工干涉檢查和加工誤差分析的基礎。
現代刀具設計與製造技術結合了基礎數學理論,電腦輔助應用技術現代設計方法,材料科學與加工技術等各領域學門的研究成果,數學理論的發展更是推動技術進步的主要關鍵,是應用電腦輔助設計技術解決實際問題之重要橋樑,因此本文應用微分幾何,共軛嚙合理論、座標系轉換、數值方法等理論基礎,來探討特種迴轉銑刀的設計製造、模擬與補償,透過數學建模建立可行,而有效的系統化製造模型並利用動力訊號分析及田口方法來探討不同刀刃曲線設計對鎳基超合金加工特性之影響,綜合全文,主要可歸結於以下幾點結果:
1.探討球頭端銑刀,錐球頭銑刀,帶角圓錐形銑刀,刃口曲線,溝槽設計模型,進而根據包絡反問題求解原理導出磨製溝槽的砂輪截形和砂輪相對銑刀的位置和NC加工中的相對運動,並就實得溝槽曲面的求解模型和具體電腦模擬方法進行探討還就模擬中所見殘留迴轉面和局部無刃帶問題進行補償,從而為NC加工特種迴轉銑刀提供了參考。
2.藉出田口實驗法L9之實驗計畫表,分別設計錐球頭銑刀,平面型,S型,傳統型的刃口曲線,以分析不同刀具刃口曲線對Inconel 718加工特性之影響,同時找出其最佳的加工條件,以建立此航太材料的加工技術資訊,並建立基本數據資料庫作為自動化加工時的參考。
3.探討旋轉銼與一般迴轉銑刀的設計、製造中的刃口曲線、溝槽曲面、砂輪底角設計及相關幾何模型的差異,並針對三軸聯動NC加工這類刀具的相對運動進給及實得刃口曲線之探討。
Abstract
The cutter is a fundamental machine tool used extensively throughout manufacturing industries. The performance and quality of the cutter have a direct influence upon the cutting precision, product quality and production rate. Invigorating the domestic cutter industry and establishing a characteristic syscxtem of cutter technology requires that new technology be imported, the constraints of previous experience be overcome, a fundamental research and development capability be developed and new machine tool materials be adopted
Two basic approaches exist when considering geometrical models of the cutter. In the first approach, developing new cutters and establishing an optimal set of cutter design parameters is performed in accordance with general cutting theory and the operational functions of the machine tool. Meanwhile, in the second approach, the structural requirements and design parameters of an ideal cutter are used to establish a geometrical cutter model which describes the various contours of the cutter. Developing an accurate geometrical model is an essential prerequisite to realizing the com-puter-aided design of a cutter, and is necessary in order to apply the theory of cutter design and manufacturing theory to the practical manufacturing proc-ess. Moreover, the geometrical model provides the basis for interference checking and manufacturing error analysis.
Modern cutter design and manufacturing technologies integrate the results from a diverse range of previous studies, including those performed within the fields of fundamental mathematical theory, computer-aided ap-plication technology, modern design technology, material science and manufacturing technology. In each field, technological progress is reliant upon the development of mathematical theory. In the present study, differen-tial geometry, conjugate theory, engagement relationship theory, coordinate transfer and numerical methods are used to develop a systematic method for the design, simulation, manufacturing and compensation of special revolving cutters. Using the proposed mathematical models, this paper presents real-izable and effective manufacturing models for these revolving cutters. Fur-thermore, the Taguchi method and power signal analysis techniques are em-ployed to investigate the effects of different cutting-edge curves on the cut-ting characteristics of Inconel tool material. The basic research activities performed within the present study can be summarized as follows:
1.The study develops geometrical models for the cutting-edge curves and flute designs of ball-end cutters, truncated-cone ball-end cutters and toroid-cone shape cutters. Applying the inverse-envelope theory, a geometrical model for the cross-section of the grinding wheel used to grind the required helical groove on the cutter is developed. Further-more, the relative positions and velocities of the grinding wheel and workpiece during the NC manufacturing of the cutter are developed and investigated via a process of computer simulation. Finally, a compensation method is developed which resolves the problems of residual revolution surface and localized non-existence of the cutting-edge. The theoretical models and results provide a valuable source of reference for the NC manufacturing of revolving cutters.
2.A series of experiments are performed to investigate the effects of the cutting-edge geometry on the machining performance when machining Inconel 718. The Taguchi method is adopted to determine the set of optimal machining parameters for a variety of cutting-edge types, in-cluding those of the truncated-cone ball-end cutter, the plane type, the S type and the traditional type. The results of these experiments serve as a valuable reference for the automated machining of aero-materials.
3.Study the design and manufacture of the cutting-edge curve, flute sur-face and the coning angle of the grinding wheel for both the rotating burr and the revolving cutter, and discuss the difference of the related geometrical models. Also, the practical cutting-edge curve and the feeding rate of the relative movement for the cutter of the two and half axes processes of the NC machine have been discussed.
目次 Table of Contents
總 目 錄
總目錄 i
圖目錄 iv
表目錄 vii
符號說明 viii
論文摘要(中文) xii
論文摘要(英文) xiv
第一章 緒論
1.1 研究動機及目的 1
1.2 文獻回顧 3
1.3 研究內容 12
1.4 論文組織與章節 13
1.5 研究步驟 15
第二章 迴轉銑刀的設計與NC加工模型
2.1 前言 16
2.2 理想刀刃曲線 19
2.3 溝槽截形設計 40
2.4 磨用砂輪截形設計 44
2.5 實施NC加工徑向運動速度修正與實得溝槽模型 48
2.6 電腦實體切削模擬補償與實體加工 61
2.7 結論 69
第三章 刀刃曲線對Inconel 718加工特性之影響
3.1 前言 70
3.2 圓錐面刀刃曲線 71
3.3 球頭平面刀刃曲線 75
3.4 具負前角錐球面銑刀前刀面的製造模型 82
3.5 具正前角錐球頭端銑刀前刀面 89
3.6 S型刃口曲線 92
3.7 傳統型刃口曲線 93
3.8 計實例與刀具實體切削模擬 95
3.8.1模擬設計所得之刃口曲線 95
3.8.2刀具實體切削摸擬 100
3.9 實驗設備與步驟 104
3.10 實驗設計與田口分析 105
3.11 結論 115
第四章 旋轉銼的設計與製造問題之研究
4.1 前言 117
4.2 刃口設計及其特殊點 118
4.3 砂輪底角設計 121
4.4 實得刃口曲線 123
4.5 實例模擬 125
4.6 結論 126
第五章 結論與建議
5.1 結論 127
5.2 建議 128
參考文獻 130
著作目錄 139
作者簡介 140
參考文獻 References
參考文獻
Alauddin, M., EI Baradie, M. A., and Hashmi, M. S. J., 1995, “Tool-Life Testing in the End Milling of Inconel 718,” Journal of Materials Processing Technol-ogy, No.55, pp.321-330.
Alauddin, M., EI Baradi, M. A., and Hashmi, M. S. J., 1996a, “Optimization of Sur-face Finish in End Milling Inconel 718,” Journal of Materials Processing Technology, No. 56, pp.54-65.
Alauddin, M., EI Baradieb, M.A., and Hashmib, M.S.J., 1996b, “Modelling of Cut-ting Force in End Milling Inconel 718,” Journal of Materials Processing Technology, No. 58, pp.100-108.
Alauddin, M., Mazid, M. A., El Baradi, M. A., and Hashmi, M. S. J., 1998, “Cutting Forces in the End Milling of Inconel 718,” Journal of Materials Processing Technology, No.77, pp.153-159, .
Altintas, Y., and Lee, P., 1996, “A General Mechanics and Dynamics Model for Heli-cal End Mills,” Annals of the CIRP, Vol. 45, No. 1, pp. 59-63.
Aucote, J., and Foster S. R., 1986, “Performance of Sialon Cutting Tools When Ma-chining Nickel-Base Aerospace Alloys,” Material Science and Technology, No.2, pp.700-708.
Balazinski, M., and Songmene, V., 1995, “Improvement of Tool Life Through Vari-able Feed Milling of Incinel 600,” Annals of the CIRP, Vol. 44, No. 1, pp. 55-58.
Chen, C. K., and Kuo, T. Y., 1998a, “The Theory of Center Offset and Its Application in Cutter Manufacture,” Journal of Materials Processing Technology, No. 83, pp. 217-222.
Choi, B. K., and Jun, C. S., 1989, “Ball-End Cutter Interference Avoidance in NC Machining of Sculptured Surfaces,” Computer-Aided Design, Vol. 21, No. 6, pp.371-378.
Coker, S. A., Oh, S. J., and Shin, Y. C., 1997, “In-Process Monitoring of Surface Roughness Utilizing Ultrasound,” Journal of Manufacture Scicence. and Engineers., Vol.120, pp.197-200.
Ehmann, K. F., 1990, “Grinding Wheel Profile Definition for the Manufacture of Drill Flutes,” Annals of the CIRP, Vol. 39, No. 1, pp. 153-156.
Elhachimi, M., Torbaty, S., and Joyot, P., 1999, “Mechanical Modeling of High Speed Drilling. 2:Predicated and Experimental Results, ” International Journal of Machine Tools & Manufacture, Vol.39, pp. 569-581.
Huang, W. H., and Lin, S. C., 1997, “Monitoring Surface Roughness Using Force Signals for Turning,” Journal of the Chinese Society of Mechanical Engi-neers, Vol. 18, No. 1, pp. 23-29.
Huang, Y., and Oliver, J. H., 1994, “Non-Constant Parameter NC Tool Path Genera-tion of Sculptured Surfaces,” International Journal of Advanced Manufac-turing Technology, Vol. 9, pp. 281-290.
Kaldor, S., Trendler, P. H. H., and Hodgson, T., 1984, “Investigation into the Clear-ance Geometry of End Mills,” Annals of the CIRP, Vol. 33, No. 1, pp. 133-139.
Kaldor, S., Trendler, P. H. H., and Hodgson, T., 1985, “Investigation and Optimization of the Clearance Geometry of End Mills,” Annals of the CIRP, Vol. 34, No.1, pp. 153-159.
Kang, S. K., Ehmann, K. F., and Lin, C., 1996, “A CAD Approach to Helical Flute Machining-I. Mathematical Model and Model Solution,” International. Journal of Machine Tools & Manufacture, Vol. 36, No. 1, pp. 141-153.
Kang, S. K., Ehmann, K. F., and Lin, C., 1997, “A CAD Approach to Helical Groove Machining: Numerical Evaluation and Sensitivity Analysis,” International. Journal of Machine Tools & Manufacture, Vol. 37, No.1, pp. 101-117.
Kasashima, N., Mori, K., Ruiz, G. H., and Taniguchi, N., 1995, “Online Failure De-tection in Face Milling Using Discrete Wavelet Transform,” Annals of the CIRP, Vol. 44, No. 1, pp. 483-387.
Komanduri, R., and Schroeder, T. A., 1984, “On Shear Instability in Machining a Nickel-Iron Base Superalloy,” ASME PED, No. 12, pp.287-307.
Komanduri, R., and Rrown, R. H., 1981, “On the Mechanics of Chip Segmentation in Machining,” Journal of Engineering for Industry, Trans. ASME, No.103, pp. 33-51.
Kops, L., and Vo, D. T., 1990, “Determination of the Equivalent Diameter of an End Mill Based on Its Compliance,” Annals of the CIRP, Vol. 39, No.1, pp. 93-96.
Kramer, B. M., and Hartung, P. D., 1981, “Theoretical Considerations in the Machin-ing of Nickel-Based Alloys,” Cutting Tool Materials, pp.57-74.
Lai, J. Y., and Wang, D. J., 1994, “A Strategy for Finish Cutting Path Generation of Compound Surfaces,” Computer in Industry, Vol. 25, pp. 189-209.
Lee, P., and Altintas, Y., 1996, “Prediction of ball-end milling forces from orthogonal cutting data,” International. Journal of Machine Tools & Manufacture, Vol. 369, No. 9, pp. 1059-1063.
Li, S. X., and Jerard, R. B., 1994, “5-Axis Machining of Sculptured Surfaces with a Flat-End Cutter,” Computer-Aided Design, Vol. 26, No. 3, pp. 377-386.
Lin, P. D., and Lee, M. F., 1997, “NC Data Generation for 4-Axis Machine Tools Equipped with Rotary Angle Head Attachments to Produce Variable Pitch Screws, ” International. Journal of Machine Tools & Manufacture, Vol.37, No. 3, pp. 341-353.
Lin, Y. L., and Lee, T. S., 1999, “An Adaptive Tool Path Generation Algorithm for Precision Surface Machining,” Computer-Aided Design, Vol. 31, pp. 237-247.
Liu, M., and Liang, S.Y., 1990, “Monitoring of Peripheral Milling Using Acoustic Emission,” Transactions of NAMRI/SME, pp.120-127.
Liu, M., and Liang, S.Y., 1991, “Analytical Modeling of Acoustic Emission for Moni-toring of Peripheral Milling Process,” International Journal of Machine Tools and Manufacture, Vol.31, No.4, pp. 589-606.
Loney, G. C., and Ozsoy, T. M., 1987, “NC Machining of Free Form Surfaces,” Com-puter-Aided Design, Vol. 19, No. 2, pp. 85-90.
Matsumoto, Y., Barash, M. M. and Liu, C. R., 1987, “Cutting Mechanisms During Machining of Hardened Steels,” Material Science and Technology, No.3, pp. 299-305.
Ng, E. G., Lee, D. W., Sharman, A. R. C., Dewes, R. C., and Aspinwall, D. K., 2000, “High Speed Ball Nose End Milling of Inconel 718,” Annals of the CIRP, Vol. 49, No.1, pp. 41-46.
Prengel, H. G., Jindal, P. C., Wendt, K.H., Santhanam, A.T., Hegde, P.L., and Penich, R.M., 2001, “A New Class of High Performance PVD Coatings for Carbide Cutting Tools,” Surface and Coating Technology, Vol. 139, pp. 25-34.
Richard, N., and Aspinwall, D., 1989, “Use of Ceramic Tools for Machining Nickel Based Alloys,” International Journal of Machine Tools & Manufacture, Vol.29, No.4, pp.575-588.
Sarma, R., and Dutta, D., 1997, “The Geometry and Generation of NC Tool Paths,” Tran. Of the ASME., Journal of Mechanical Design, Vol. 119, No. 2, pp. 96-103.
Sarma, R., and Dutta, D., 1998, “Tool Path Generation for NC Grinding,” Interna-tional. Journal of Machine Tools & Manufacture, Vol. 38, No. 3, pp. 177-195.
Shintani, K., Kato H., Ohshima, A., and Kohno, Y., 1996, “Machining of Nickel-Based Superalloy Using PcBN Endmill Tool,” International Journal of Japan Society Precision Engineering, Vol. 30, No. 4, pp.323-324.
Tai, C. C., and Fuh, K. H., 1995, “Model for cutting forces prediction in ball-end mill-ing,” International Journal of Machine Tools & Manufacture, Vol. 35, No. 4, pp. 511-524.
Takench, T. I., 1991, “5-Axis Control Machining and Grinding Based on Solid Model,” Annals of the CIRP, Vol. 40, No. 1, pp. 455-458.
Takeoka, E., Saitou H., Aida, S., Miyaguchi, H., Ishikawa, A., and Iwabe, H., 1996, “High Speed End Milling of Hardened Steel (1st Report),” International Journal of Japan Society Precision Engineering, Vol. 62, No. 1, pp.115-119.
Tansel, I. N., Mekdeci, C., and Mclaughlin, C., 1995, “Detection of Tool, Failure in End Milling with Wavelet Transformations and Neural Networks,” Interna-tional Journal of Machine Tools & Manufacture, Vol. 35, No. 8, pp. 1137-1147.
Tansel, I., Nedbouyan, A., Trujillo, M., and Tansel, B., 1998, “Micro-End -Milling -II Extending Tool Life with a Smart Workpiece Holder,” International Journal of Machine Tools & Manufacture, Vol. 38, pp.1437-1448.
Tansel, I., Trujillo, M., Nedbouyan, A., Velez, C., and Tansel, B., 1998, “Micro -End-Milling-III. Wear Estimation and Tool Breakage Detection Using Acoustic Emission Signals,” International Journal of Machine Tools & Manufacture, Vol. 38, pp.1449-1466.
Ueda, N., Matsuo, T., and Uehara, K., 1982, “Analysis of Saw-Toothed Chip Forma-tion,” Ann. CIRP, Vol. 31, No.1, pp. 81-84.
Wu, C.T., and Chen, C. K., 2001, “Manufacturing Models for the Design and NC Grinding of a Revolving Tool with a Circular Arc Generatrix,” Journal of Materials Processing Technology, No.116, pp.114-123.
Wu, C.T., and Chen, C. K., 2001, “Modeling and Computer Simulation of Grinding of the Ball End Type Rotating Cutter with a Constant Helical Angle,” Journal of Engineering Manufacture. Proceedings of the Institution of Mechanical En-gineering, Part B Vol. 215, Issue 11, No.B11, pp.1581-1594.
Yang, D. C. H., and Han, Z., 1999, “Interference Detection and Optimal Tool Selec-tion in 3-Axis NC Machining of Free-form Surfaces,” Computer-Aided De-sign, Vol. 31, No. 10, pp. 303-315.
Yang, M., and Heeduck, P., 1991, “The Prediction of Cutting Force in Ball-End Mill-ing,” International Journal of Machine Tools & Manufacture, Vol. 31, No. 1, pp. 45-54.
Yucesan, G., and Altintas, Y., 1996, “Prediction of Ball End Milling Forces,” Journal of Engineering for Industry, Vol. 118, No.2 , pp. 95-103.
Zhu, C., 1991, “Tool-Path Generation in Manufacturing Sculptured Surfaces with a Cylindrical End-Milling Cutter,” Computers in Industry, Vol. 17, pp. 385-389.
王清輝,廖文和,劉狀等,1997,“五坐標數控加工刀位軌跡及其干涉檢查的算法研究 ”,航空學報,Vol.18,No.3,pp.330-335.
吳序堂,1983,“圓錐螺旋面加工原理及其在分析等螺旋角錐銑刀斷削槽形狀中的應用 ”,西安交大科技報告,西安。
吳昌祚,2000,“微分幾何在數控加工與切削刀具製造模型之研究”,國 立成功大學博士論文,台南。
呂維成,黃國經,唐永新,1998,“小波理論於鑽削加工顫振偵測之研究”,第十五屆全國學術研討會論文集,製造與生產,pp.417-424.
李小俚,姚英學,袁哲俊,1998,“基于小波模糊神經網路刀具監控系統研究”,機械工程學報,北京,Vol.34,No.1,pp.417-424.
李有學,董英武,1987,“立銑刀端截形優化設計-正交試驗法”,工具技術,Vol.11,pp.36-38.
李政鋼,2001,“微分幾何在齒輪機構與壓縮機設計之應用研究”,國立成功大學博士論文,台南。
李瓊硯,陸際聯,1998,“平頭銑刀加工曲面的無干涉路徑規劃”,機械工程學報,北京,Vol.34,No.1,pp.75-81.
周長秀,1995,“複合型刀刃的特種迴轉面刀具齒槽的成形原理”,工具技術,Vol.29,No.3,pp.24-27.
周長秀,沈謙,王珉,1995,“異型回轉銑刀數控加工數學模型-前刀面成形方法”東南大學學報,Vol.25,No.2,pp.25-29.
周長秀,樂兌謙,吳序堂,1991,“平面型前刀面的特種回轉面刀具的成形原理”,工具技術,Vol.25,No.5,pp.17-21.
易德明,廖剛築,1996,“S形刃球頭立銑刀的研究(1)-數學模型”,湖南大學學報,Vol.23,No.2,pp.65-69.
奚威,1995,“設計螺旋槽成形銑刀的CAD方法”,工具技術,Vol.29,No.12,pp.11-13.
孫春華,2000,“迴轉體溝槽曲面數控加工理論的研究”,哈爾濱工業大學博士論文,哈爾濱。
孫春華,唐余勇,吳昌祚,劉華明,2000,“關於螺旋銑刀刃口設計問題”,黑龍江大學自然科學學報,Vol.1,pp.28-38.
時培林,王偉,唐余勇,1994,“球面銑刀制造中的數學模型研究”,機械工程學報,北京,Vol.30,No.5, pp.55-59.
康德純,徐旬,姚南珣,1994,“螺旋槽指形齒輪顯刀切削參數的計算與測量”,工具技術,Vol.5,pp.15-20.
張民惠,朱沛洪,1994,“旋轉銼螺旋刃加工時機床運動的分析”,機械科學與技術,Vol.1,pp.70-77.
張利波,牟欣等,1996,“組合曲面加工無干涉刀具路徑的產生”,華中理工大學學報,Vol.24,No.9,pp.15-17.
張利波,林奕鴻,1993,“複雜曲面的五軸聯動加工”中國機械工程,北京,Vol.4,pp.187-189.
張輝,姚南珣,1997,“一次走刀磨削等螺旋角銑刀前後刀面的通用算法”,大連理工大學學報,Vol.37,No.5,pp.572-575.
張輝,姚南珣等,1997,“等螺旋角迴轉刀具刀刃曲線的通用算法”,大連理工大學學報,Vol.37,No.1,pp.63-67.
郭添源,1998,“微分幾何在硬質合金刀具製造模型之研究”,國立成功大學博士論文,台南。
郭鳳鳴,1995,“單角銑刀銑製圓柱銑刀螺旋槽時刀具角度和機床調整參數的計算”,機械工藝師,Vol.4,pp.25-28.
陳信宏,1993,加工直線創成變導程螺旋面之刀具外形設計”,國立成功大學碩士論文,台南。
陳朝光,唐余勇,吳鴻業,1998,微分幾何及其在機械工程中的應用,哈爾濱爾濱工業大學出版社,哈爾濱。
陳維方,2002,“特殊鉋銑刀之幾何模型與磨輪設計研究”,國立成功大學博士論文,台南。
傅則紹,1999,微分幾何與齒輪齒合原理,石油大學出版社,山東。
趙良才,吳春才,1994,“空間直紋和準直紋曲面加工刀具軌跡生成及五軸後置軟件研製”,機械工業自動化,Vol.16,No.3,pp.43-46.
劉井玉,1998,“特種迴轉面刀具幾何建模及數控磨削加工原理研究”,哈爾濱工業大學博士論文,哈爾濱。
劉井玉,劉華明,1997,“圓錐形銑刀螺旋槽的數學建模”,工具技術,Vol.4,pp.3-6.
劉井玉,劉華明,1998,“球頭銑刀平面型前刀面的幾何模型和數控磨削模型研究”,哈爾濱工業大學學報,Vol.3,No.3,pp.103-106.
劉井玉,劉華明,王延福,1997, “特種回轉球頭銑刀刀刃曲線的幾何模型”,工具技術,Vol.31,增刊,pp.118-120.
劉俊佑,1992,“具圓柱齒合件變導程螺桿傳動機構之幾何設計”,博士論文,國立成功大學,台南。
劉華明,1989,“加工立銑刀溝槽用成型銑刀的計算機輔助設計”,工具技術,Vol.1,pp.6-9.
劉鵠然,1993,“曲面交線族包絡及在螺旋錐銑刀加工中的應用”,刃具研究,Vol.2,pp.6-11.
劉鵠然,1993,“特種迴轉刀具上的刀刃曲線”,工具技術,Vol.2,pp.10-12.
劉鵠然,1995,“球頭端銑刀刀刃曲線的光滑連接”,工具技術,Vol.29,No.2,pp.11-13.
劉鵠然,1996,“旋轉銼加工的干涉檢驗”,刃具研究,Vol.1,pp.22-24.
劉鵠然,1997,“帶橫刃旋轉銼的成形原理與刃線結構”,工具技術,Vol.31,No.2,pp.15-16.
劉懷蘭,周艷紅等,1996,“自由曲面NC加工無干涉刀位軌跡生成”,中國機械工程,北京,Vol.7,No.3,pp.47-49.
樂兌謙,1984,“螺旋槽錐形刀具的製造新工藝”,工具技術,No.1,pp.1-10.
羅穎,1995,“用數控銑床加工等螺旋角錐度棒銑刀”,工具技術,Vol.12,pp.14-16.
龔智輝,賓鴻贊,1994,“螺旋角的廣義定義及其應用”,中國機械工程,北京,Vol.1,pp.14-15.
龔智輝,賓鴻贊,1997,“刀刃點跟蹤CNC磨削法及其在圓錐球頭立銑刀上的應用”,工具技術,Vol.31,No.9,pp.19-24.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code