Responsive image
博碩士論文 etd-0108106-101943 詳細資訊
Title page for etd-0108106-101943
論文名稱
Title
過量表現內皮細胞一氧化氮合成酶與粒線體超氧離子歧化酶參與大鼠鼻端腹外側核調控心臟血管功能之研究
Overexpression of endothelial nitric oxide synthase and mitochondrial superoxide dismutase in the rostral ventrolateralmedulla in central cardiovascular regulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-12-28
繳交日期
Date of Submission
2006-01-08
關鍵字
Keywords
高血壓、超氧陰離子、鼻端腹外側核、粒線體超氧離子歧化酶、內皮細胞一氧化氮合成酶
Hypertension, Superoxide anion, SOD2, RVLM, eNOS
統計
Statistics
本論文已被瀏覽 5686 次,被下載 3392
The thesis/dissertation has been browsed 5686 times, has been downloaded 3392 times.
中文摘要
高血壓是人類常見疾病之一,其作用機轉非常複雜。而中樞神經系統的延腦鼻端腹外側核經由感壓反射和強直性興奮交感神經系統兩種機轉,來維持血壓和心跳穩定。反應性氧族是由嗜氧細胞所產生之氧分子或其衍生物所組成之家族,可造成氧化壓力。文獻指出,超氧陰離子可引發高血壓。超氧化物岐化酶是細胞抵禦氧化壓力最重要的酶類之一,主要是將超氧陰離子催化成氧氣和過氧化氫。一氧化氮是精胺酸經由一氧化氮合成酶以及NADPH輔酶合成的氣體分子。一氧化氮在延腦鼻端腹外側核區對心血管的影響,主要是透過調節神經傳導物質的釋放而改變自主神經系統的活性,參與調控血壓和心跳。雖然氧化壓力與一氧化氮在文獻中均有報導,指出其參與心臟血管功能調控,然而此兩分子物質如何相互作用,在延腦鼻端腹外側核參與中樞調控心臟血管功能,則有待進一步了解。
本實驗以微量注射腺病毒載體AdeNOS (Adenoviral vectors encoding endothelial nitric oxide synthase),AdSOD2 (Adenoviral vectors encoding superoxide dismutase 2)或合併AdeNOS與AdSOD2於正常血壓Wistar-Kyoto (WKY)或自發性高血壓spontaneously hypertensive rats (SHR)的雙側延腦鼻端腹外側核區,觀察大鼠心血管系統的長期變化。結果顯示:1. 微量注射腺病毒載體AdeNOS於SHR或WKY兩組大鼠的雙側延腦鼻端腹外側核區中,可以明顯降低兩組大鼠血壓和心跳。根據先前研究結果,推測是eNOS經由增加GABAergic神經傳導,降低大鼠自主神經系統的活性而產生。SHR組的血壓下降幅度大於WKY組,可能的原因是SHR大鼠的延腦鼻端腹外側核區中,原存有之一氧化氮的含量低於WKY組所致。而SHR組大鼠的血壓於給予病毒後第28天反彈高於基準值,推測與SHR大鼠的延腦鼻端腹外側核區超氧陰離子濃度較高,造成一氧化氮活性減低有關。2. 微量注射腺病毒載體AdSOD2於SHR或WKY兩組大鼠的雙側延腦鼻端腹外側核區中,只能使SHR組血壓下降,對WKY大鼠之基礎血壓,與SHR 或WKY大鼠心跳沒有影響。其原因可能是SHR大鼠延腦鼻端腹外側核區產生的超氧陰離子濃度過高,或是抗氧化壓力的酶類功能不正常,因此當加入外來的SOD2時,可以代謝過多超氧陰離子,減少氧化壓力,進而降低血壓。3. 合併微量注射腺病毒載體AdeNOS與AdSOD2於雙側延腦鼻端腹外側核區,發現在SHR大鼠上,可產生比單獨注射AdeNOS組或AdSOD2組更大幅度地降血壓作用;而且血壓下降的時效,至少延長至第28天。我們推論是SOD2可以清除超氧陰離子,使超氧陰離子不能和一氧化氮結合,延長一氧化氮的半衰期,增加一氧化氮的功能。
綜合本研究所得結果,推論一氧化氮在延腦鼻端腹外側核區中樞調節心血管功能中扮演重要角色,並且一氧化氮活性衰竭可能是造成高血壓原因之一;另一方面在SHR高血壓大鼠延腦鼻端腹外側核區,較多的氧化壓力也是引起高血壓之重要原因。根據研究結果進一步推論,超氧陰離子在延腦鼻端腹外側核區參與高血壓之角色有雙重,其一為引起氧化傷害,另一則為與一氧化氮產生反應,降低原本已不足之一氧化氮活性,使高血壓持續維持。
Abstract
The dissection of etiology of hypertension is a medical imperative. In the central nervous system, rostral ventral lateral medulla (RVLM) plays an essential role in the maintenance of arterial pressure and heart rate through tonic activation of the sympathetic vasomotor activity and regulation of baroreflex response. Oxidative stress of an enhanced cellular content of the reactive oxygen species, in particular the superoxide anion (O2-), has been implicated in hypertension. Superoxide dismutase (SOD) is one of the most important defense enzymes against the oxidative stress through catalysis of O2- into O2 and H2O2. SOD treatment has been demonstrated to decrease arterial pressure. Moreover, in addition to its peripheral vasodilatory effect, nitric oxide (NO) plays an active role in central regulation of arterial pressure and heart rate via modulation of the autonomic system. In the RVLM, both O2- and NO have been demonstrated to be involved in hypertension. Interactions between these two molecules, however, are not understood. The aims of this study are therefore to establish the significance of O2- and NO in the RVLM on blood pressure regulation in hypertension and to examine whether O2- interacts with NO to participate in the pathogenesis of hypertension.
To examine their long term effects on mean systemic arterial pressure (MSAP) and heart rate (HR), SOD and/or NO was over-expressed by microinjection of the adenoviral vectors encoding the endothelial NO synthase (AdeNOS) and/or mitochondrial SOD (AdSOD2) into RVLM of the normotensive Wistar-Kyoto (WKY) rats or the spontaneously hypertensive rats (SHR). I found that microinjection of AdeNOS in the RVLM of SHR or WKY rats significantly decreased MSAP or HR that lasted for around 10 days postinjection. The hypotensive effect of AdeNOS was significantly greater in SHR than WKY rats. The AdeNOS-promoted hypotension in SHR, but not WKY rats, was followed by a rebound hypertension, detected in 28 days after the gene transfer. In the AdeSOD2-treated animals, I found a significant decrease in the MSAP in SHR, but not WKY rats, that lasted for about 7 days postinjection. On the other hand, no change in HR was detected in either SHR or WKY rats after the AdSOD2 gene transfer into the RVLM. In animals that received co-microinjection into the bilateral RVLM of AdeNOS and AdSOD2, there was a further prolonged decrease in MSAP or HR in SHR. The rebound hypertension observed in the AdeNOS-treated SHR was reversed to hypotension in the AdeNOS+AdSOD2-treated SHR. There was no difference in the hypotensive or bradycardiac effects in WKY rats that received the AdeNOS+AdSOD2 or AdeNOS gene transfer.
Together these results suggest that (1) NO in RVLM plays an important role in central regulation of arterial pressure and heart rate under both normotensive and hypertensive conditions. A greater reduction in MSAP in the AdeNOS-treated SHR further indicates a reduced action of NO at the RVLM in the pathogenesis of hypertension. (2) An excessive oxidative stress of a reduced function of SOD2 in RVLM may be an important factor in neural mechanism of hypertension in SHR. The same mechanism, at the same time, may underlie the rebound hypertensive observed in the AdeNOS-treated SHR. (3) The excessive oxidative stress in the RVLM contributes to hypertension by at least two mechanisms. One is to cause oxidative injury in the RVLM and the other is to interact with NO to decrease already insufficient activity of NO in central cardiovascular regulation.
目次 Table of Contents
正文目錄

頁次
第一章 緒 論 10
第二章 研究動機與目的 21
第三章 實驗材料和方法 24
第四章 實驗結果 29
第五章 討論 38
第六章 結論 46
第七章 未來研究方向 49
參考文獻 51
附圖 58
參考文獻 References
Benarroch EE, Granata AR, Ruggiero DA, Park DH, Reis DJ. (1986) Neurons of C1 area mediate cardiovascular responses initiated from ventral medullary surface. Am J Physiol. 250:R932-R945.

Bergamaschi C, Campos RR, Schor N, Lopes OU. (1995) Role of the rostral ventrolateral medulla in maintenance of blood pressure in rats with Goldblatt. hypertension. Hypertension. 26:1117-1120.

Borders CL Jr, Fridovich I. (1985) A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch Biochem Biophys. 241:472-476.

Bredt DS, Snyder SH. (1990) Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA. 87:682-685.

Cai H, Harrison DG. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 87:840-844.

Calaresu FR, Yardley CP. (1988) Medullary basal sympathetic tone. Annu Rev Physiol. 50:511-524.

Carlsson LM, Jonsson J, Edlund T, Marklund SL. (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA. 92:6264-6268.

Chan JYH, Wang LL, Wu KLH, Chan SHH. (2001) Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation. 104:1676-1681.

Chan SHH, Wang LL, Wang SH, Chan JYH.(2001) Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat.Br J Pharmacol. 133:606-614.

Chan SHH, Wang LL, Chan JYH. (2003) Differential engagements and GABA receptors in cardiovascular actions of endogenous nNOS or iNOS at rostral ventrolateral medulla of rats. Br J Pharmacol. 138:584-593.

Chang AYW, Chan JYH, Chan SHH. (2003) Differential distribution of nitric oxide synthase isoforms in the rostral ventrolateral medulla of the rat. J Biomed Sci. 10:285-291.

Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU. (2001) Role of the medulla oblongata in hypertension. Hypertension. 38:549-554.

Cuzzocrea S, Mazzon E, Dugo L, Di Paola R, Caputi AP, Salvemini D. (2004) Superoxide: a key player in hypertension. FASEB J. 18:94-101.

Dampney RA, Moon EA. (1980) Role of ventrolateral medulla in vasomotor response to cerebral ischemia. Am J Physiol. 239:H349-H358.

Dampney RA, Goodchild AK, Robertson LG, Montgomery W. (1982) Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res. 249:223-235.

Dean C, Coote JH. (1986) A ventromedullary relay involved in the hypothalamic and chemoreceptor activation of sympathetic postganglionic neurones to skeletal muscle, kidney and splanchnic area. Brain Res. 377:279-285.

De La Torre R, Casado A, Lopez-Fernandez E, Carrascosa D, Ramirez V, Saez J. (1996) Overexpression of copper-zinc superoxide dismutase in trisomy 21. Experientia. 52:871-873.

Finkel T, Holbrook NJ. (2000) Oxidants, oxidative stress and the biology of ageing. Nature. 408:239-247.

Forstermann U, Mulsch A, Bohme E, Busse R. (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res. 58:531-538.

Forstermann U, Kleinert H, Gath I, Schwarz P, Closs EI, Dun NJ. (1995) Expressional and expressional control of nitric oxide synthase in various cell types. Adv Pharmacol. 34:171-186.

Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q 4th, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK. (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res. 80:45-51.

Garthwaite J, Boulton CL. (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol. 57:683-706.


Graham FL, Prevec L. (1995) Methods for construction of adenovirus vectors. Mol Biotechnol. 3:207-220.

Granata AR, Kumada M, Reis DJ. (1985) Sympathoinhibition by A1-noradrenergic neurons is mediated by neurons in the C1 area of the rostral medulla. J Auton Nerv Syst. 14:387-395.

Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 74:1141-1148.

Griendling KK, Sorescu D, Ushio-Fukai M. (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 86:494-501.

Grover AK, Samson SE, Robinson S, Kwan CY. (2003) Effects of peroxynitrite on sarcoplasmic reticulum Ca2+ pump in pig coronary artery smooth muscle. Am J Physiol.Cell Physiol 284:C294-C301.

Grunfeld S, Hamilton CA, Mesaros S, McClain SW, Dominiczak AF, Bohr DF, Malinski T.(1995) Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension. 26:854-857.

Hawkins RD, Son H, Arancio O. (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res. 118:155-172.

Hirooka Y, Kishi T, Sakai K, Shimokawa H, Takeshita A. (2003) Effect of overproduction of nitric oxide in the brain stem on the cardiovascular response in conscious rats. J Cardiovasc Pharmacol. 41:S119-S126.

Hirooka Y. (2004) Adeno virus-mediated gene transfer into the brain stem to examine cardiovascular function: role of nitric oxide and Rho-kinase. Prog Biophys Mol Biol. 84:233-249.

Ignarro LJ, Byrns RE, Buga GM, Wood KS. (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 61:866-879.

Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA. (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension. 33:1353-1358.

Kishi T, Hirooka Y, Sakai K, Shigematsu H, Shimokawa H, Takeshita A.(2001) Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension. 38:896-901.

Kishi T, Hirooka Y, Ito K, Sakei K, Shimokawa H, Takeshita A. (2002) Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension. 39:264-268.

Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. (2004) Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 109:2357-2362.

Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG. (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation. 95:588-593.

Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Nobel LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ. (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 11:376-381.

Makino A, Skelton MM, Zou AP, Cowley AW Jr. (2003) Increased renal medullary H2O2 leads to hypertension. Hypertension. 42:25-30.

Malinski T, Kapturczak M, Dayharsh J, Bohr D. (1993) Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun. 194:654-658.

Marklund SL. (1990) Expression of extracellular superoxide dismutase by human cell lines. Biochem J. 266:213-219.

McCord JM, Fridovich I. (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem. 244:6049-6055.

McIntyre M, Hamilton CA, Rees DD, Reid JL, Dominiczak AF. (1997) Sex differences in the abundance of endothelial nitric oxide in a model of genetic hypertension. Hypertension. 30:1517-1524.

McIntyre M, Bohr DF, Dominiczak AF. (1999) Endothelial function in hypertension: the role of superoxide anion. Hypertension. 34: 539-545.

Moncada S, Palmer RM, Higgs EA. (1991) Nitric oxide; physiology, pathophysiology and pharmacology. Pharmacol Rev. 43:109-142.

Morrison RA, Mcgrath A, Davidson G, Brown JJ, Murray GD, Lever AF. (1996) Low blood pressure in Down’s syndrome; a link with Alzeimer’s disease? Hypertension. 28:569-575.

Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP. (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 16:323-328.

Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A. 88:10045-10048.

Nathan C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051-3064.

Patel KP, Li YF, Hirooka Y. (2001) Role of nitric oxide in central sympathetic outflow. Exp Biol Med. 226:814-824.

Prast H, Philippu A. (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol. 64:51-68.

Romero JC, Reckelhoff JF. (1999) Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 34:943-949.

Rubanyi GM, Vanhoutte PM. (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 250:H822-H827.

Sindhu RK, Roberts CK, Ehdaie A, Zhan CD, Vaziri ND. (2005) Effects of aortic coarctation on aortic antioxidant enzymes and NADPH oxidase protein expression. Life Sci. 76:945-953.

Suzuki H, Swei A, Zweifach BW, Schmid-Schonbein GW. (1995) In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension. 25:1083-1089.

Tagawa T, Horiuchi J, Potts PD, Dampney RA. (1999) Sympathoinhibition after angiotensin receptor blockade in the rostral ventrolateral medulla is independent of glutamate and gamma-aminobutyric acid receptor. J Auton Nerv Syst. 77:21-30.

Tai MH, Hsiao M, Chan JYH, Lo WC, Wang FS, Liu GS, Howng SL, Tseng CJ. (2004) Gene delivery of endothelial nitric oxide synthase into nucleus tractus solitarii induces biphasic response in cardiovascular functions of hypertensive rats. Am J Hypertens. 17:63-70.

Tai MH, Wang LL, Wu KLH, Chan JYH. (2005) Increased superoxide anion in rostralventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radic Biol Med. 38:450-462.

Taniyama Y, Griendling KK. (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 42:1075-1081.

Tarpey MM, Fridovich I. (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res. 89:224-236.

Thomson L, Trujillo M, Telleri R, Radi R. (1995) Kinetics of cytochrome C2+ oxidation by peroxynitrite: implications for superoxide measurement in nitric oxide-producing biological systems. Arch Biochem Biophys. 319:491-497.

Tschudi MR, Mesaros S, Luscher TF, Malinski T. (1996) Direct in situ measurement of nitric oxide in mesenteric arteries. Hypertension. 27:32-35.

Turrens JF. (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 17:3-8.

Weisiger RA, Fridovich I. (1973) Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 248:4793-4796.

Yarom R, Sapoznikov D, Havivi Y, Avraham KB, Schickler M, Groner Y. (1988) Premature aging changes in neuromuscular junctions of transgenic mice with an extra human Cu/Zn SOD gene: a model for tongue pathology in Down’s syndrome. J Neurol Sci. 88:41-53.

Yin GY, Yin YF, He XF. (1995) Effect of zhuchun pill on immunity and endocrine function of elderly with kidney-yang deficiency. Zhongguo Zhong Xi Yi Jie He Za Zhi. 15:601-603.

Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, Diez J. (2001) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension. 38:1395-1399.
Zanzinger J. (2002) Mechanisms of action of nitric oxide in the brain stem: role of oxidative stress. Auton Neurosci. 98:24-27.

Zhou MS, Adam AG, Jaimes EA, Raij L. (2003) In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension. 42:945-951.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code