Responsive image
博碩士論文 etd-0109107-200348 詳細資訊
Title page for etd-0109107-200348
論文名稱
Title
利用交聯網狀結構來限制以茀為基礎的螢光交替及團聯共聚物之群聚
Restraining Associations of Fluorene-Based Fluorescent Alternative and Block Copolymers by Crosslinked Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-12-22
繳交日期
Date of Submission
2007-01-09
關鍵字
Keywords
交聯網狀結構、螢光高分子、光致發光、群聚
crosslinking network, fluorescent polymer, photoluminescence, association
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
聚茀 (polyfluorenes)及其衍生物之固態薄膜對於光電應用而言,具有良好化學性質、熱穩定性及高螢光效率。然而,因聚茀分子在經過高溫熱處理後或者是在薄膜態中,容易產生高分子鏈之分子間作用,結果發生群聚(激發雙體、凝聚體)。此研究中,利用植入之聚茀分子交替以及團鏈共聚物於交聯網狀結構基材中,來限制其群聚之延伸。
首先,將二種平面芳香族發光體單體(例如:蔥(anthracene)、茀(fluorene)以及砒啶 (pyridine))以Suzuki偶合法(coupling)做成交替共聚物(alternative copolymer),此交替共聚物由於相鄰二苯環鄰位(ortho-)氫原子之空間障礙形成扭曲(twisting)之分子鍵形態,此扭曲分子鏈使得高分子鏈不易相互靠近,從而降低其群聚之形成。進一步地,上述之交替共聚物亦可以使用原子轉移自由基聚合法(atom transfer radical polymerization)進一步與聚甲基丙烯酸甲酯(poly(methyl methacrylate))化學連結而得到一柔軟–剛硬–柔軟(flexible-rigid-flexible之三團聯共聚物(triblock copolymer),此三團聯共聚物中間為一扭曲高分子鏈,二邊為具阻隔作用之柔軟高分子鏈,可有效地降低群聚趨勢。在高分子薄膜經過高溫熱處理之後,結果指出此系列高分子具有穩定性藍光,有此得知其熱穩定性和群聚效應兩者乃會受到高分子化學結構之影響。確實地,含有蔥之共聚物擁有較大之立體障礙而使得空間上扭曲之分子鍵形態,故具有較少群聚效應。對於聚茀高分子而言,此策略可以有效地改善之,並且使得此高分子可以被廣泛地應用。第三,將上述之高分子溶解於壓克力衍生單體中(methyl methacrylate (MMA)/ di-trimethylolproane tetracrylate (DTTPT)以及光起始劑,並配置所需之溶液。將配製之高分子混和液施予紫外光光硬化反應而產生固態薄膜複合材料交聯網狀物中含有螢光高分子。可利用此非流動性網狀交聯體將成功地凍結住螢光高分子構形與高分子群聚程度。
對於光硬化之前後系統而言,凝聚體之程度並可利用吸收、螢光、螢光激發光譜儀器觀察而所得知。研究中在討論對於控制凝聚體之程度,發現其重要之因素為高分子濃度。高分子材料經高溫熱處理之後,硬化複合材料相較於聚茀衍生物高分子,複合材料更具原有高分子構型及熱穩定性。並且可有效地限制群聚效應出現。在大部分研究中,量子效率可被用來測量並鑑定策略之影響。
Abstract
Polyfluorene (PF) and its derivates as well-known fluorescent materials are promising materials in optoelectronic applications due to their high quantum yields in the solid state. Nevertheless, the easy chain inter-action in PFs to result in the unfavorable associations (aggregate and excimer) are generally considered to be detrimental to the emission efficiency in the concentrated solid state and/or at high temperatures. In the study, restraining the extent of associations is therefore by embedding fluorene-based alternative and block copolymers in crosslinked network as matrix.
Firstly, alternative copolymers with fluorene connected by anthracene (or pyridine or fluorene) ring were prepared through Suzuki coupling. In this way, the steric hindrance between the o-hydrogens in the neighboring aromatic ring causes the twisting of the constructed polymer chain and the resulting twisting chain conformation keeps the polymer chains from the unfavorable inter-chain interactions and reduces the extent of the association. Secondly, the alternative fluorene-anthracene copolymer (a-PFA) from the first approach can be further chemically formulated to obtain a triblock copolymer with the central a-PFA rod block connected by two flexible poly(methyl methacrylate) (PMMA) segments. In this way, the two flexible PMMA chains serve as spatial isolator to keep the central PFA rod from approaching each other and a reduced extent of association is expected for this block polymer of b-PMMA-PFA. Thirdly, all the alternative and block copolymers cited above were immersed in the curable liquid methyl metharcylate (MMA)/ditrimethylolproanetetracrylate (DTTPT) monomer mixtures and photo-irradiated to obtain composites with the fluorescent polymers immersed in the cured crosslinked network. The chain morphology and thus the degree of associations will be successfully frozen by the immobilized crosslinked network.
For systems before and after photo-irradiation, the degree of aggregation was evaluated by Uv-vis absorption, photoluminescent (PL) and PL excitation spectroscopy. Polymer concentration was found to be important factor in controlling the degree of aggregation and was discussed in this study. In addition, the cured solid composites after high-temperature annealing were studied and compared with pure PFs to evaluate the effectiveness of this crosslinking strategy in restraining the extent of aggregation. In most cases, quantum yields (ΦPLs) also were measured to evaluate the effectiveness of this strategy.
目次 Table of Contents
TABLE OF CONTENTS
TABLE OF CONTENTS I
LIST OF SCHEMES III
LIST OF TABLES IV
LIST OF FIGURES V
Chapter 1 Background 1
1-1 Conjugated Polymers 1
1-1-1 Polyacetylene - the Simplest Conjugated Polymer 2
1-1-2 Historical development of Conjugated polymers 3
1-1-3 Conjugated Polymers other than PA 4
1-1-3-1 Poly(phenylene vinylenes) (PPVs) 4
1-1-3-2 Polythiophenes (PTs) 9
1-1-3-3 Polyfluorenes (PFs) 13
1-1-4 Fundamental Photochemistry 17
1-1-4-1 Fluorescence and Phosphorescence 17
1-1-4-2 Association (Aggregate and Excimer) in Conjugated Polymers 18
1-1-4-3 Electroluminescent devices for light emission 20
1-1-5 Applications 21
1-2 Rod-Coil Block Copolymers (RCBCs) 23
1-2-1 Synthetic Strategies toward RCBCs 24
1-2-2 General Characters of Rod-Coil Block Copolymers 27
1-3 Motivations 31
1-4 References 35
Chapter 2 Influence of Chemical Structure on the Extent of Association during Thermal Treatments of Fluorene-Based Polymers 41
2-1 Abstract 41
2-2 Introduction 41
2-3-1 Experimental Section 43
2-3-2 Instrumentation 43
2-3-3 Procedures 44
2-4 Results and Discussion 48
2-5 Conclusions 53
2-6 References 54
Chapter 3 Effect of Crosslinked Network on the Extent of Associations of Fluorene-Based Copoloymers 71
3-1 Abstract 71
3-2 Introduction 71
3-3 Experimental Section 75
3-3-1 Materials 75
3-3-2 Instrumentation 75
3-3-3 Procedure 76
3-3-4 Sample preparation 76
3-5 Results and discussion 77
3-6 Conclusions 86
3-7 References 87
Chapter 4 Restraining the Extent of Aggregation on Fluorene-Based Block Copolymers by Crosslinked Matrix 103
4-1 Abstract 103
4-2 Introduction 103
4-3 Experimental Section 106
4-3-1 Materials 106
4-3-2 Instrumentation 106
4-3-3 Sample preparation for AFM 107
4-3-4 Sample preparation for photo-curing 107
4-4 Results and Discussion 107
4-4-1 Morphology of the deposited thin film of b-PMMA-PFA 107
4-4-2 Solution PL and PLE spectra of polymers in THF and MMA/DTTPT: 108
4-4-3 b-PMMA-PFA in the Crosslinked PMMA (X-PMMA) Matrix 110
4-5 Conclusions 113
4-6 References 114
Chapter 5 Conclusion 129

LIST OF SCHEMES
Scheme 1.1 Chemical structure of substituted polyfluorenes. 32
Scheme 1.2 Suzuki coupling of conjugated polymers, whereas Ar is an aromatic group (such as anthracene, fluorene, and pyridine) and R is aliphatic chain (such as C6H13). 33
Scheme 2.1 Preparations of monomers and PF and a-PFA polymers via Suzuki coupling. 56
Scheme 2.2 Preparations of b-PMMA-PFA block copolymer by Suzuki coupling and ATRP. 57
Scheme 3.1 Polymerization of a-PFP via Suzuki coupling. 89

LIST OF TABLES
Table 2.1 Polymeric Properties 57
Table 2.2 Polymeric Electronic Properties 58
Table 2.3 Polymeric Electronic Properties after Shearing and Annealing. 58
Table 3.1 Emission edges Characterization of PF, and a-PFP, and a-PFA at various states (in solution, bulk film, and X-PMMA). 89
Table 3.2 Polymeric Electronic Properties before and after Thermal Annealing. 90
Table 3.3 PL quantum efficiencies of polymers thin films and cured composites were prepared from toluene and MMA/DTTPT solutions. 91
Table 4.1 Polymeric Electronic Properties 116
Table 4.2 Polymeric Electronic Properties after Annealing 116

LIST OF FIGURES
Figure 1.1 A sketch of the single occupied pz-orbitals that provide the pathway for charge transport along a conjugated chain of carbon atoms. (To each carbon atom a hydrogen atom is bonded but these are not shown for clarity.) 2
Figure 1.2 Chemical structures of well-known conjugated polymers. 4
Figure 1.3 Synthesis of PPV via the sulfonium salt. 5
Figure 1.4 a) CV of MEH-PPV (poly(2-methoxy-5-(2’-ethylhexykoxy)-1,4-phenylene vinylene), MEH-PPV; ref. 20). b) Typical absorption, photo- and electroluminescence spectra of PPV (given for poly(2-butyl-5- (2’-ethylhexyl)-1,4-phenylenevinylene), BUEH-PPV; ref.21). 5
Figure 1.5 Synthesis of the first soluble PPV derivative, DH-PPV. 6
Figure 1.6 Chemical structure of poly(2-methoxy-5-(2’-ethylhexykoxy)-1,4-phenyl- enevinylene) (MEH-PPV). 7
Figure 1.7 Chemical structure of CS-PPV. 7
Figure 1.8 Chemical structures of Si-containing polymers. 8
Figure 1.9 Chemical structures of high-performance PPV polymers. 9
Figure 1.10 Synthesis of polythiophene (PT) via metal-catalyzed couplings. 10
Figure 1.11 Chemical structures of PTs with different 3- and 3,4- substituents on the ring. 12
Figure 1.12 a) PL spectra from spin-coated film of PTs (from ref. 63) and b) EL spectra of ITO/Polymer/Ca/Al device (from ref. 61) 13
Figure 1.13 Chemical structures of monomer F1 and polymer PF. 14
Figure 1.14 Use of co-monomers to construct fluorene-based alternative copolymers. 16
Figure 1.15 Schematic illustration for electronic states involved in a photo-irradiation pathway (Jablonski diagram). 18
Figure 1.16 a) Excimer formation with the corresponding monomer and excimer emissions (see ref. 62); and b) schematic diagrams for aggregate formation between fluorophore segments of inter-chain and intra-chain. 19
Figure 1.17 Polymer LED with the simplified illustration of cathode, emitter and anode layers. 21
Figure 1.18 Architectures of rod-coil block copolymer: a) Rod-coil diblock copolymer; b) Coil-rod-coil triblock copolymer; c) Rod-coil-rod triblock copolymer; d) Rod-like side chain-coil diblock copolymer; e) Dendritic Rod-coil diblock copolymer. 24
Figure 1.19 Synthetic strategies toward RCBCs with (a) grafting-onto process and (b) grafting-from process. 25
Figure 1.20 Chemical structure of PF-PEO. 26
Figure 1.21 Thermolysis of PTHPMA-PF-PTHPMA to form PMAA-PF-PMAA. 27
Figure 1.22 Chemical structure of PPE-PDMS. 29
Figure 1.23 AFM images of PPE-PDMS cast from toluene solutions on mica substrate with different concentrations. a) 1.0 mg/mL, b) 0.01 mg/ mL (phase image 5×5 μm2 of thin film). 29
Figure 1.24 Simulation result of the most stable packing of π-stacked configuration of three head-to-tail PPE-PDMS chains as obtained from MM/MD calculations. 30
Figure 1.25 Proposed model for the stacking of the PPE-PDMS chains in a ribbon. 30
Figure 1.26 The chemical structure of PPP-PS. 31
Figure 1.27 AFM image of PPP-PS (phase image 3×3 μm2 of thin film). 31
Figure 2.1 1H NMR spectrum of monomer 2. 59
Figure 2.2 1H NMR spectrum of monomer 3. 60
Figure 2.3 1H NMR spectrum of PF. 61
Figure 2.4 1H NMR spectrum of a-PFA. 62
Figure 2.5 1H NMR spectrum of PFA-OH. 63
Figure 2.6 1H NMR spectrum of PFA-in macroinitiator. 64
Figure 2.7 1H NMR spectrum of b-PMMA-PFA. 65
Figure 2.8 Normalized a) absorption and b) emission spectra of PF, a-PFA, and b-PMMA-PFA in THF (10-5 M). Emission spectra were obtained by exciting at 360 nm. 66
Figure 2.9 Normalized absorption spectra of a) PF, b) a-PFA and c) b-PMMA-PFA thin films before and after shearing and thermal annealing at 200 ℃ for 1, 3 and 5 hr (in air). 67
Figure 2.10 Normalized emission spectra of a) PF, b) a-PFA and c) b-PMMA-PFA thin films before and after shear and thermal annealing at 200 ℃ for 1, 3, and 5 hr (in air); the inset shows the non-normalized emission spectra (excitation at 360 nm). 68
Figure 2.11 Normalized PL excitation spectra of a) PF, b) a-PFA and c) b-PMMA-PFA polymers as thin films before and after shearing and thermal annealing at 200 ℃ for 1, 3, and 5 hr (in air) (monitored at 520 nm). 69
Figure 2.12 Conformations of a) fluorene hexamer (F6), b) fluorene-anthracene ((F-An)3) hexamer by computer simulation from ChemDraw and c) the proposed chain arrangements in b-PMMA-PFA. 70
Figure 3.1 Chemical structures of PF, a-PFP, and a-PFA. 92
Figure 3.2 1H-NMR spectrum of a-PFP. 92
Figure 3.3 Normalized absorption and PL spectra of PF in dilute solutions of MMA/DTTPT (1×10-6 M) and toluene solvent (1×10-6 M) (excitation at 360 nm). 93
Figure 3.4 Size distributions from light scattering for solutions of a) PF (1×10-6 M), b) a-PFP (6×10-7 M), and c) a-PFA (6.4×10-7 M) in MMA/DTTPT and toluene solvents. 94
Figure 3.5 Normalized PL spectra of a) PF, b) a-PFP, and c) a-PFA in MMA/DTTPT solvent at different concentrations (excitation at 360 nm). 95
Figure 3.6 PL spectra of PF, a-PFP, and a-PFA in MMA/DTTPT solution at different concentrations. The inset shows the emission spectrum of above 500 nm (excitation at 360 nm). 96
Figure 3.7 Normalized PLE spectra of a) PF, b) a-PFP, and c) a-PFA in MMA/DTTPT solvent monitored at 520 nm at different concentrations. (band maxima: 368 to 380 nm for PF, 382 to 398 nm for a-PFP) 97
Figure 3.8 Normalized emission spectra of a) PF/X-PMMA-wt%, b) a-PFP/X-PMMA-wt%, and c) a-PFA/X-PMMA-wt% at different concentrations (excitation at 360 nm). The inset shows the emission spectrum of above 500 nm (excitation at 360 nm). 98
Figure 3.9 Normalized PLE spectra of a) PF/X-PMMA-wt%, b) a-PFP/X-PMMA-wt%, and c) a-PFA/X-PMMA-wt% monitored at 520 nm at different concentrations. (band maxima:380 to 389 nm for PF, 393 to 403 nm for a-PFP) 99
Figure 3.10 Normalized absorption spectra of a) PF/X-PMMA-wt% (at 7.33x10-2 wt%, this concentration is over scale), b) a-PFP/X-PMMA-wt% (at 7.33x10-2 wt%, this concentration is over scale), and c) a-PFA/X-PMMA-wt% at different concentrations. 100
Figure 3.11 Normalized absorption and emission (excitation at 360 nm) spectra of a) PF and PF/X-PMMA-wt% ((1.04×10-3 wt%), b) a-PFP and a-PFP/X-PMMA-wt% (1.04×10-3 wt%), and c) a-PFA and a-PFA/X-PMMA-wt% (1.04×10-3 M) films after thermal treatment at 120 ℃ for 5 hr. 101
Figure 3.12 Normalized absorption and emission spectra (excitation at 360 nm) of a) PF and PF/X-PMMA-wt% ((1.04×10-3 wt%), b) a-PFP and a-PFP/X-PM-MA-wt% (1.04×10-3 wt%), and c) a-PFA and a-PFA/X-PMMA-wt% (1.04×10-3 wt%) films after thermal treatment at 200 ℃ for 5 hr. 102
Figure 4.1 Photo-irradiation of b-PMMA-PFA in MMA/DTTPT to form b-PMMA-PFA/X-PMMA composites. 117
Figure 4.2 TM-AFM of a) height and b) phase image 6×6 μm of thin film deposit of b-PMMA-PFA on mica from toluene. c) Possible packing scheme of the b-PMMA-PFA in the thin film. 118
Figure 4.3 Normalized absorption spectra of b-PMMA-PFA in MMA/DTTPT solution at different concentrations. 119
Figure 4.4 a) normalized and b) non-normalized emission spectra of b-PMMA-PFA in MMA/DTTPT solution at different concentrations. The inset shows the emission spectrum of above 500 nm (excitation at 360 nm). 120
Figure 4.5 Normalized PL excitation (PLE) spectra of b-PMMA-PFA in MMA/DTTPT solution monitored at 520 nm at different concentrations. 121
Figure 4.6 Normalized absorption spectra of b-PMMA-PFA/X-PMMA-wt % at different concentrations. 122
Figure 4.7 a) normalized and b) non-normalized emission spectra of b-PMMA-PFA/X-PMMA-wt% at different concentrations. The inset shows the emission spectrum of above 500 nm (excitation at 360 nm). 123
Figure 4.8 Normalized PL excitation (PLE) spectra of b-PMMA-PFA/X-PMMA-wt% monitored at 520 nm at different concentrations. 124
Figure 4.9 Normalized absorption spectra of a) b-PMMA-PFA and b) b-PMMA-PFA/X-PMMA-wt% (8.38x10-2 wt%) thin films before and after shearing and thermal annealing at 200 ℃ for 1, 3 and 5 hr (in air). 125
Figure 4.10 Normalized emission spectra of a) b-PMMA-PFA and b) b-PMMA-PFA/X-PMMA-wt% (8.38x10-2 wt%) thin films before and after shear and thermal annealing at 200 ℃ for 1, 3, and 5 hr (in air); the inset shows the non-normalized emission spectra (excitation at 360 nm). The inset shows the non-normalized emission spectra. 126
Figure 4.11 Normalized PL excitation (PLE) spectra of a) b-PMMA-PFA and b) b-PMMA-PFA/X-PMMA-wt% (8.38x10-2 wt%) as thin films before and after shearing and thermal annealing at 200 ℃ for 1, 3, and 5 hr (in air) (monitored at 520 nm). 127
Figure 4.12 Simply Model of separated block copolymer chain in crosslinking network system. 128
Figure 5.1 Normalized emission spectra of a) PF, b) a-PFP, c) a-PFA and d) b-PMMA-PFA thin films before and after shear and thermal annealing at 200 ℃ for 1, 3, and 5 hr (in air); the inset shows the non-normalized emission spectra (excitation at 360 nm). 131
Figure 5.2 Normalized absorption and emission spectra (excitation at 360 nm) of a) PF and PF/X-PMMA-wt% ((1.04×10-3 wt%), b) a-PFP and a-PFP/X-PM-MA-wt% (1.04×10-3 wt%), c) a-PFA and a-PFA/X-PMMA-wt% (1.04×10-3 wt%), and d) b-PMMA-PFA and b-PMMA/X-PMMA-wt% (8.38x10-2 wt%) films before and after thermal treatment at 200 ℃ for 5 hr. The inset shows the non-normalized emission spectra. 132
參考文獻 References
1-4 References
1. Hide, F.; Garcia, M. A.; Schwartz, B.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430.
2. Brown, A. R.; Bradley, D. D. C.; Burroughes, J. H.; Friend, R. H.; Greemham, N. C.; Burn, P. L.; Holmes, A. B.; Kraft, A. Appl. Phys. Lett. 1992, 61, 2793.
3. Rothberg, L. J.; Yan, M.; Papadimitrakopoulos, F.; Galvin, M. E.; Kwock, E. W.; Miller, T. M. Synth. Met. 1996, 80, 41.
4. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. Engl. 1998, 37, 402.
5. Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, 2069.
6. Osaheni, J. A.; Jenekhe, S. A. Macromolecules 1994, 27, 739.
7. Kong, X.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992.
8. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439.
9. Reichenbach, J.; Kaiser, A.; Roth, S. Phys. Rev. B 1993, 48, 14101.
10. Meriwether, L. S.; Clothup, E. C.; Kennerly, G. W.; Reusch, R. N. J. Org. Chem. 1961, 26, 5155.
11. Martelock, H.; Greiner, A.; Heitz, W. Makromol. Chem. 1991, 192, 967.
12. Kovacic, P.; Jones, M. B. Chem. Rev. 1987, 87, 357.
13. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc. Chem. Commun. 1977, 578.
14. Bredas, J. L.; Street, G. B. Acc. Chem. Res. 1985, 18, 309.
15. Sze, S.; M. Physics of Semiconductor Devices; Wiley: New York, 1981; Part 5.
16. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
17. Ito T, Shirakawa, H.; Ikeda, S. J. Polym. Sci. Polym. Chem. Ed. 1974, 12, 11.
18. Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Rev. Mod. Phys. 1988, 60, 781.
19. Bredas, J. L.; Silbey, R. Conjugated Polymer, Kluver, Dordrecht, The Netherlands, 1991, p.211.
20. Friend, R. H.; Bradley, D. D. C.; Townsend, P. D. J. Phys. D: Appl. Phys. 1987, 20, 1367.
21. Kim, J. H.; Lee, H. Chem. Mater. 2002, 14, 2270.
22. Ndersson, M. R.; Yu, A G.; Heeger, A. J. Synth. Met. 1997, 85, 1275.
23. Jen, K. Y.; Shackletter, L. W.; Elsenbaumer, R. Synth. Met. 1987, 22, 179.
24. Murase, I.; Ohnishi, T.; Noguchi, T.; Hirooka, M. Synth. Met. 1987, 17, 639.
25. Askari, S. H.; Rughooputh, S. D.; Wudl, F. Synth. Met. 1989, 29, E129.
26. Wudl, F.; Srdanov, G. US Patent 5,189,136, 1993, 23.
27. Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2002, 14, 4775.
28. Niu,Y. H.; Huang, J.; Cao, Y. Adv. Mater. 2003, 15, 807.
29. Chu, H. Y.; Hwang, D.; Do, L.; Chang, J.; Shim, H.; Holmes, A. B.; Zyung, T. Synth. Met. 1999, 101, 216.
30. Höger, S.; McNamara, J.; Schricker, S.; Wudl, F. Chem. Mater. 1994, 6, 171.
31. Zhang, C.; Hoeger, S.; Pakbaz, K.; Wudl, F.; Heeger, A .J.; J. Electron. Mater. 1994, 23, 453.
32. Kim, S. T.; Hwang, D. H.; Li, X. C.; Grüner, J.; Friend, R. H.; Holmes, A. B.; Shim, H. K. Adv. Mater. 1996, 8, 979.
33. Hwang, D H.; Kim, S. T.; Shim, H. K.; Holmes, A. B.; Moratti, S. C.; Friend, R. H. J. Chem. Soc., Chem. Commun. 1996, 2241.
34. Ho, P. K. H.; Kim, J. S.; Burroughes, J. H.; Becker, H.; Li, S. F. Y.; Brown, T. M.; Cacialli, F.; Friend, R. H. Nature 2000, 404, 481.
35. Jin, S.; Kim, M.; Kim, J. Y.; Lee, K.; Gal, Y. J. Am. Chem. Soc. 2004, 126, 2474.
36. Roncali, J. Chem. Rev. 1992, 92, 711.
37. Fichou, D. Handbook of Oligo- and Polythiophenes, Wiley, Weinheim, 1999, p.534
38. McCullough, R. D. Adv. Mater. 1998, 10, 93.
39. Roncali, J. J. Mater. Chem. 1999, 9, 1875.
40. Greenham, N. C.; Samuel, I. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y. A. R. R.; Moratti, S. C.; Holmes, A. B.; R. H. Friend, Chem. Phys. Lett. 1995, 241, 89.
41. Chen, F.; Mehta, P. G.; Takiff, L.; McCullough, R. D.; J. Mater. Chem. 1996, 6, 1763.
42. Garnier, F. Acc. Chem. Res. 1999, 32, 209.
43. Saadeh, H.; Goodson, T. III.; Yu, L. Macromolecules 1997, 30, 4608.
44. Yamamoto, Y.; anechika, K.; Yamamoto, S A. J. Polym. Sci.: Polym. Lett. Ed. 1980, 18, 9.
45. Li, J. W.-P. L.; Dudek, P. J. Polym. Sci.: Polym. Chem. Ed. 1980, 18, 2869.
46. Andersson, M. R.; Berggren, M.; Inganäs, O.; Gustafsson, G.; Gustaffson-Carlberg, J. C.; Selse, D.; Hjertberg, T.; Wennerström, O. Macromolecules 1995, 28, 7525.
47. Andersoson, M. R.; Thomas, O.; Mammo,; Svensson, W. M.; Theander, M.; Inganäs, O. J. Mater. Chem. 1999, 9, 1933.
48. Pei, Q.; Järvinen, H.; Österholm, J. E.; Inganäs, O.; Laakso, J. Macromolecules 1992, 25, 4297.
49. Leclerc, M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867.
50. Neher, D. Macrom. Rapid Commun. 2001, 22, 1365.
51. Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477.
52. Fukuda, M.; Sawaka, K.; Yoshino, K. Jpn. J. Appl. Phys. 1989, 28, 1433.
53. Fukuda, M.; Sawaka, K.; Yoshino, K. J. Polym. Sci., Polym. Chem. Ed. 1993, 31, 2465.
54. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
55. Grell, M.; Bradley, D.; Inbasekaran, M.; Woo, E. Adv. Mater. 1997, 9, 798.
56. Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W.; Wujkowski, L. J. Mater. Sci.: Mater. Electron 2000, 11, 111.
57. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737.
58. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
59. Grice, A. W.; Bradley, D. D. C.; Bemius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 629.
60. Kreyenschmidt, M.; Kläemer, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
61. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
62. Valeur, B. Molecular Fluorescence: Principles and Applications, Wiley-VCH, New York, New York, 2001.
63. Halkyard, M. E.; Rampey, M. E.; Kloppenburg, L.; Studer-Martinez, S. L.; Bunz, U. H. F. Macromolecules 1998, 31, 8655.
64. Yang, Z.; Hu, B.; Karasz, F. E. Macromolecules 1995, 28, 6151.
65. Cacialli, F.; Li, X. C.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Synth. Met. 1995, 75, 161.
66. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810.
67. Peng, C.; Hirschman, K. D.; Fauchet, P. M. J. Appl. Phys. 1996, 80, 295.
68. Ho, P. P.; Lam, W.; Katz, A.; Yao, S. S.; Alfano, R. R. IEEE J. Quantum Electron. 1983, QE-9, 711.
69. Dreuth, H.; Heiden C. Mater. Sci. Eng. 1998, C5, 227.
70. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
71. Entwistle, C. D.; Marder, T. B. Angew. Chem. Int. Ed. 2002, 41, 2927.
72. Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Appl. Phys. Lett. 1993, 62, 585.
73. Renak, M. L.; Bazan, G. C.; Roitman, D. Synth. Met. 1998, 12, 1655.
74. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimodu, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2132.
75. Grandlund, T.; Nyberg, T. Stolz Roman, L.; Svensson, M.; Inganas, O. Adv. Mater. 2000, 12, 269.
76. Szwarc, M.; Levy, M.; Milkovich, R. J. Am. Chem. Soc. 1957, 78, 2656.
77. Miyamoto, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1984, 17, 265.
78. Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661.
79. Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921.
80. Marsitzky, D.; Klapper, M.; Mullen, K. Macromolecules 1999, 32, 8685.
81. Hillmyer, M. A.; Bates, F. S. Macromolecules 1996, 29, 6994.
82. Lu, S.; Fan, Q. L.; Liu, S. Y.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 9875.
83. Förster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
84. Leclere, P.; Calderone, A.; Marsitzky, D.; Francke, V.; Geerts, Y.; Mullen, K.; Bredas, J. L.; Lazzaroni, R. Adv. Mater. 2000, 12, 1042.
85. Diederich, F.; Stang, P. J. Metal-Catalyzed Cross Coupling Reactions, Wiley-VCH, 1998.
86. Rehahn, M.; Schluter, A. D.; Wegner, G.; Feast, W. J. Polymer 1989, 30, 1054.
87. Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J. F.; Leclerc, M. Macromolecules 2002, 35, 2122.
88. Tsuie, B.; Reddinger, J. L.; Sotzing, G. A.; Soloducho, J.; Katritzky, A. R.; Reynolds, J. R. J. Mater. Chem. 1999, 9, 2189.
89. Lee, J. H.; Hwang, D. H. Chem. Commun. 2003, 2836.
90. Chou, C. H.; Shu,C.F. Macromolecules 2002, 35, 9673.
91. Li, J.; Bo, Z. Macromolecules 2004, 37, 2013.

2-6 References
1. Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828.
2. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, L1941.
3. Weinfurtner, K. H.; Fujikawa, H.; Tokito, S.; Taga, Y. Appl. Phys. Lett. 2000, 76, 2502.
4. Lemmer, U.; Heun, S.; Mahrt, R. F.; Scherf, U.; Hopmeier, M.; Sieger, U.; Göbel, E. O.; Mü llen, K.; Bässler, H. Chem. Phys. Lett. 1995, 240, 373.
5. Chen, S. A.; Chou, H. L.; Su, A. C.; Chen, S. A. Macromolecules 2004, 37, 6833.
6. Peng, Q.; Lu, Z. Y.; Huang, Y.; Xie, M. G.; Han, S. H.; Peng, J. B.; Cao, Y. Macromolecules 2004, 37, 260.
7. Cheun, H.; Tanto, B.; Chunwaschirasiri, W.; Larson, B.; Winokur, M. J. Appl. Phys. Lett. 2004, 84, 22..
8. Chou, C.; Hsu, S. L.; Dinakaran, K.; Chiu, M. Y.; Wei, K. H. Macromolecules 2005, 38, 745.
9. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen, K.; Meghdadi. F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
10. Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214.
11. Yamamoto, T. Prog. Polym. Sci. 1992, 17, 1153.
12. Adams, J. M.; Ramdas, S. Acta Crystallogr. B 1979, 35, 679.
13. Klärner, G.; Daver, M. H.; Chen, W. D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993.
14. Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54, R2308.
15. Blatchford, J. W.; Gustafson, T. L.; Epstein, A. J.; Vanden-Bout, D. A.; Higgins, D. A.; Barbara, P. F. Phys Rev. B. 1996, 54, R3683.
16. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
17. Inbasekaran, M.; Wu, W.; Woo, E.; Bernius, M. T. US Patent 6 353 083, 2002.
18. Lu, S.; Fan, Q. L.; Chua, S. J.; Huang, W. Macromolecules 2003, 36, 304.
19. Lu, S.; Fan, Q. L.; Liu, S. Y.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 9875.
20. Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921.
21. Kodomari, M.; Satoh, H.; Yoshitomi, S.; J. Org. Chem. 1988, 53, 2093.
22. Pei, J.; Liu, X. L.; Chen, Z. K.; Zhang, X. H.; Lai, Y. H.; Huang, W. Macromolecules 2003, 36, 323.
23. Yang, J.; Jiang, C. Zhang, Y.; Yang, R.; Yang, W. Hou, Q.; Cao, Y. Macromolecules 2004, 37, 1211.
24. Chen, P.; Yang, G.; Liu, T.; Li, T.; Wang, M.; Huang, W. Polym. Int. 2006, 55, 473.
25. Ranger, M.; Dany, R.; Lerlerc, M. Macromolecules 1997, 30, 7686.
26. Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828.
27. Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
28. Marsitzky, D.; Klapper, M.; Müllen, K. Macromolecules 1999, 32, 8685.
29. Chou, C. H.; Hus, S. L.; Dinakaran, K.; Chiu, M. Y.; Wei, K. H. Macromolecules 2005, 38, 745.
30. Kreyeschmidt, M.; Kla¨rner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
31. Teetosy, J.; Bout, D. A. J. Phys. Chem. B 2000, 104, 9378.

3-7 References
1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
2. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradlay, D. D. C.; Dos Santo, D. A.; Brédas, J. L.; Lógdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
3. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402.
4. Shim, H. K.; Jin, J. I. Adv. Polym. Sci. 2002, 158, 194.
5. Grell, M.; Knoll, W.; Lpo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H. G.; Scherf, U.; Yasuda, A. Adv. Mater. 1999, 11, 671.
6. Hong, S. Y.; Kim, D. Y.; Kim, C. Y.; Hoffmann, R. Macromolecules 2001, 34, 6474.
7. Yang, Y.; Pei, Q. J. Appl. Phys. 1997, 81, 3294.
8. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, L1941.
9. Leclerc, M. J. Polym. Sci., Part A: Polym. Chem. 2001, 22, 1365.
10. Dias, F. B.; Macanita, A. L.; Melo, J. S. D.; Burrows, H.; Guntner, R.; Scherf, U.; Monkamn, A. P. J. Chem. Phys 2003, 118, 7119.
11. Kläerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007.
12. Schartel, B.; Wachtendorf, V.; Grell, M. Bradley, D. D. C.; Hennecke, M. Phys. Rev. B 1999, 60, 277.
13. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810.
14. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439.
15. Blatchford, J. W.; Jessen, S. W.; Lin L. B.;Gustafsson, T, L.; Fu, D. K.; Wang, H. L.; Swager, T. M.; MacDiarmid, A. G.; Epsrein, A. J. Phys. Rev. B 1996, 54, 9180.
16. Kreyenschmidt, M.; Klaemer, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
17. Klärmer, G.; Davey, M. H.; Chen, W. D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993.
18. Klärmer, G.; Davey, M. H.; Lee, J.-I.; Miller, R. D. Adv. Mater. 1999, 11, 115.
19. Yu, W.-L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828.
20. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
21. Jenekhe S. A.; Osaheni, J. A. Science 1994, 265, 765.
22. Samuel, I. D. W.; Rumbles, G.; Collison, C. J.; Moratii, S. C.; Holmes, A. B. Chem. Phys. 1998, 227, 75.
23. Li, Y.; Ding, J.; Day, M.; Tao, Y; Lu, J.; D’iorio, M. Chem. Mater. 2003, 15, 4936.
24. Chen, P.; Yang, G.; Liu, T.; Li, T.; Wang, M.; Huang, W. Polym. Int. 2006, 55, 473.
25. Inbasekaran, M.; Wu, W.; Woo, E.; Bernius, M. T. US Patent 6 353 083, 2002.
26. Liu, S. P.; Ng, S. C.; Chan, H. S. O. Synth. Met. 2005, 149, 1.
27. Kersting, R.; Lemmer, U.; Mahrt, R. F.; Leo, K.; Kurz, H.; Bässler, H.; Göbel, E. O. Phys. Rev. Lett. 1993, 70, 3820.
28. Hayes, G. R.; Samuel, I. D. W.; Phillips, R. T. Phys. Rev. B 2000, 52, R11569.
29. Warmuth, C. H..; Tortschanoff, A.; Brunner, K.; Mollay, B.; Kauffmann, H. F. J. Lumin. 1998, 498, 76.
30. Kersting, R.; Mollay, B.; Rusch, M.; Wenisch, Leising, J.; G.; Kauffmann, H. F. J. Chem. Phys. 1997, 106, 2850.
31. Nguyen, T. Q.; Doan, V.; Schwartz, B. J. J. Chem. Phys. 1999, 110, 4068.
32. Peng, K. Y.; Chen, S. A.; Fann, W. S. J. Am. Chem. Soc. 2001, 123, 11388.
33. Woo, E. M.; Su, C. C.; Kuo, J. F.; Seferis, J. C. Macromolecules 1994, 27, 5291.
34. Woo, E. M.; Shimp, D. A.; Seferis, J. C. Polymer 1994, 35, 1658.
35. Su, H. J.; Wu, F. I.; Shu, C. F.; Tung, Y. L.; Yun, C.; Lee, G. H. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 859.

4-6 References
1. Mao, G.; Ober, C. K. Acta Polym. 1997, 48, 405.
2. Lee, M.;Cho, B.-K.; Kim, H.; Yoon, J.-Y.; Zin, W.-C. J. Am. Chem. Soc. 1998, 120, 9168.
3. Bates, F. S. Science 1991, 251, 898.
4. Hempenius, M. A.; Langeveld-Voss, B. M. W.; Van-Haare, J. A. E. H.; Janssen, R. A. J.; Cheiko, S. S.; Spatz, J. P.; Möller, M.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 2798.
5. Chu, B.; Liu, T.; Wu, C.; Zhou, Z.; Nace, V. M. Macromol. Symp. 1997, 118, 221.
6. Marsitzky, D.; Klapper, M.; Mullen, K. Macromolecules 1999, 32, 8685.
7. Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903.
8. Bazan, G. C.; Miao, Y.-J.; Renak, M. L.; Sun, B. J. J. Am. Chem. Soc. 1996, 118, 2618.
9. Cho, B. K.; Kim, H.; Yoon, J. Y.; Zin, W. C. J. Am. Chem. Soc. 1998, 120, 9168.
10. Stupp, S.; Keser, M.; Tew. G. N. Polymer 1998, 39, 4505.
11. Franois, B.; Widawski, G.; Rawiso, M.; Cesar, B. Synth. Met. 1995, 69, 463.
12. Marsitzky, D.; Brand, T.; Geerts, Y.; Klapper, M.; Müllen, K. Macromol. Rapid Commun. 1998, 19, 385.
13. Lu, S.; Fan, Q. L.; Chua, S. J.; Huang, W. Macromolecules 2003, 36, 304.
14. Stupp, S. I.; LeBonheur, V.; Li, L. S.; Huggins, K. E.; Keser, M.; A. Armstutz, Science 1997, 276, 384.
15. Scherf, U. Oligo- and Polyarylenes, Oligo- and Polyarylenevinylenes.; de Meijere, A., Ed.; Springer: Berlin, 1999.
16. Kraft, A.; Holmes, A. B.; Grimsdale, A. D. Angew. Chem. 1998, 110, 417.
17. Skotheim, T., Elsenbaumer, R. L., Reynolds, J. R., Eds. Handbook of Conducting Polymers; Marcel Dekker: New York, 1998.
18. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474
19. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
20. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
21. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798.
22. Wu, F. I.; Reddy, S. D.; Shu, C. F.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 2003, 15, 269.
23. Chiang, C. L.; Shu, C. F. Chem. Mater. 2002, 14, 682.
24. Kreyenschmidt, M.; Klärner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
25. Marsitzky, D.; Murray, J.; Scott, J. C.; Carter, K. R. Chem. Mater. 2001, 13, 4285.
26. Tang, H. Z.; Fujiki, M.; Zhang, Z. B.; Torimitsu, K.; Motonaga, M. Chem. Commun. 2001, 2426.
27. Klärner, G.; Lee, J.-I.; Lee, V. Y.; Chan, E.; Chen, J.-P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D. Chem. Mater. 1999, 11, 1800.
28. Peng, K. Y.; Chen, S. A.; Fann, W. S. J. Am. Chem. Soc. 2001, 123, 11388.
29. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439.
30. Zeng, G.; Yu, E. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 6907.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.236.62
論文開放下載的時間是 校外不公開

Your IP address is 18.219.236.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code