Responsive image
博碩士論文 etd-0109114-182816 詳細資訊
Title page for etd-0109114-182816
論文名稱
Title
基於隨機向量量化之強韌式多天線合作式頻譜共享設計
Robust Multiple Antennas Cooperative Spectrum Sharing Design with Random Vector Quantization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-23
繳交日期
Date of Submission
2014-02-09
關鍵字
Keywords
覆蓋式感知傳收機設計、線性最小均方誤差、隨機向量量化、強韌式設計、通道狀態資訊、放大轉發
amplify-and-forward (AF), Cognitive overlay transceiver design, robust design, random vector quantization (RVQ), linear minimum mean-squared error (LMMSE), channel state information (CSI)
統計
Statistics
本論文已被瀏覽 5695 次,被下載 426
The thesis/dissertation has been browsed 5695 times, has been downloaded 426 times.
中文摘要
本篇論文提出覆蓋式感知傳收機設計。該系統包含主要使用者及次要使用者共存在同一個網路,其中主要使用者允許次要使用者以合作式中繼放大轉發主要使用者訊號,同時傳輸次要使用者的訊號。由於我們的傳收機設計,主要目標在次要使用者的傳送端做預編碼設計。然而,預編碼設計需在傳送端知道完美通道狀態資訊,於實際系統並不可行。所以於本論文中,我們考量一種不完整通道迴授機制,稱為隨機向量量化通道迴授機制,回傳量化通道方向資訊給次要使用著傳送端。由於量化通道方向資訊將會有量化誤差,所以我們首先考量量化誤差的統計特性,於線性最小均方誤差接收機之下,推導出對應於主要使用者及次要使用者的最小均方誤差的解析解。其後,根據此均方誤差的統計結果,我們提出兩種強韌式的設計準則:第一種是在保證主要使用者以及次要使用者的服務質量之下,最小化次要使用者傳送端的功率;第二種是在保證主要使用者的服務質量以及次要使用者傳送端滿足功率消耗限制之下,最小化次要使用者的均方誤差。由於兩種方法皆非凸函數,欲求出全域解是有困難的。因此我們提出一種疊代的方法,把原本的兩種最佳化問題皆分為兩個子問題,再分別交替疊代求其解。模擬結果驗證了我們的兩種設計方法確實有達到強韌式設計。
Abstract
In this thesis, we propose cognitive overlay transceiver designs, where a primary transceiver pair and a secondary transceiver pair coexist in a network and the primary user (PU) allows the secondary user (SU) to transmit concurrently its signals at the price of reducing the power of the PU’s signal relayed by cooperative amplify-and-forward (AF). Since the considered transceiver design is mainly to devise the precoders both for the PU and the SU at the secondary transmitter (ST), the channel state information (CSI) has to be known at the ST. We therefore consider the limited feedback scheme with the random vector quantization (RVQ), where the ST can only know the quantized channel direction information (CDI). Considering the statistics of the CSI quantization error and the linear minimum mean-squared error (LMMSE) receiver, we derive the closed-form MSE expressions corresponding to the PU and the SU. With the derived MSEs, we propose two robust design criterions. One is to minimize the ST’s power consumption under the constraint that the PU’s and SU’s quality-of-service (QoS) (i.e. MSE) can be met. And the other is to minimize the SU’s MSE when the PU’s QoS can be controlled under a certain value and the ST satisfies the limitation of its transmission power consumption. Both the optimization problems of the proposed design criteria are not convex and the corresponding solutions cannot be obtained directly. We then propose to transfer the original optimization problems into two sub-problems, where each of them is eventually formulated as a convex optimization problem and the solutions are obtained iteratively, which is effective. Thus, the results can be obtained with the interior-point method. Simulations certify the robustness of our designs.
目次 Table of Contents
[論文審定書+i]
[誌謝+ii]
[中文摘要+iii]
[英文摘要+iv]
[目錄+v]
[圖次+vi]
[表次+viii]
[第1章 序言+1]
[第2章 系統模型+9]
[第2.1節 隨機向量量化系統模型+9]
[第2.2節 隨機向量量化通道的均方誤差+12]
[第3章 隨機向量量化通道回授機制下強韌式傳收機設計+16]
[第3.1節 最小化次要使用者傳送端的功率消耗+16]
[第3.2節 最小化次要使用者均方誤差+21]
[第3.3節 通道狀態資訊回授探討+24]
[第4章 系統模擬及分析探討+26]
[第5章 結論與未來展望+39]
[參考文獻+40]
[附錄A+43]
[附錄B+46]
[附錄C+49]
參考文獻 References
[1] J. Mitola, “Cognitive radio: an integrated agent architecture for software defined radio,” PhD dissertation, Department of Teleinformatics, KTH, Stocholm, Sweden, Dec. 2000.
[2] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Trans. J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.
[3] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” in Proc. IEEE, vol. 97, no. 5, pp. 894-914, May 2009.
[4] D. J. Love, R. W. Health Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE Trans. J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341-1365, 2008.
[5] D. Samardzija and N. Mandyam, “Unquantized and uncoded channel state information feedback in multi-antenna multiuser systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1335-1345, July 2006.
[6] M. M. Shanechi, R. Porat, and U. Erez, “Comparison of practical feedback algorithms for mulit-user MIMO,” IEEE Trans. Commun., vol. 58, no. 8, pp. 2436-2446, Aug. 2010.
[7] D. J. Love and R. W. Heath, Jr., “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inform. Theory, vol. 51, pp. 2967–2976, Aug. 2005.
[8] R. Blasco-Serrano, J. Lv, R. Thobaben, E. Jorswieck, A. Kliks, M. Skoglund, “Comparison of underlay and overlay spectrum sharing strategies in MISO cognitive channels,” in Proc. IEEE CROWNCOM 2012.
[9] R. Manna, R. H. Y. Louie, Y. Li, and B. Vucetic, “Cooperative spectrum sharing in cognitive radio networks with multiple antennas,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5509-5522, Nov. 2011.
[10] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[11] V. Bohara, S. H. Ting, Y. Han, and A. Pandharipande, “Interference-free overlay cognitive radio network based on cooperative space time coding,” in Proc. IEEE CROWNCOM 2012.
[12] N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” IEEE Trans. Inform. Theory, vol. 52, no. 5, pp. 1813-1827, May 2006.
[13] A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic perspective,” IEEE Trans. Inform. Theory, vol. 55, no. 9, pp. 3945-3958, Sep. 2009.
[14] O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and R. Pickholtz, “Spectrum leasing to cooperating secondary and ad hoc networks,” IEEE Tran. J. Sel. Areas Commun., vol. 26, no. 1, pp. 203-213, Jan. 2008.
[15] Y. Han, A. Pandharipande, and S. Ting, “Cooperative decode-and-forward relaying for secondary spectrum access,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 4945-4950, Oct. 2009.
[16] L. Giupponi and C. Ibars, “Distributed cooperation among cognitive radios with complete and incomplete informations,” EURASIP J. on Advanced in Signal Process., vol. 2009, Article ID 905185 2009.
[17] E. Kurniawan, A. Goldsmith, and S. Rini, “Practical coding schemes for cognitive overlay radios,” in Proc. IEEE Global comm. 2012.
[18] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 5045-5060, Nov. 2006.
[19] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO achievable rates with downlink training and channel state feedback,” IEEE Trans. Inform. Theory, vol. 56, no. 6, pp. 2845-2866, June 2010.
[20] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless link?,” IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951-963, April 2003.
[21] O. Simeone and U. Spagnolini, “Lower bound on training-based channel estimation error for frequency-selective block-fading Rayleigh MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 11, pp. 3265-3277, Nov. 2004.
[22] T. L. Marzetta and B. M. Hochwald, “Fast transfer of channel state information in wireless systems,” IEEE Trans. Signal Process., vol. 54, no. 4, pp. 1268-1278, April. 2006.
[23] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna downlink channels with limited feedback and user selection,” IEEE Trans. J. Sel. Areas Commun., vol. 25, no. 7, pp. 1478-1491. Sep. 2007.
[24] D. Marco and D. L. Neuhoff, “The validity of the additive noise model for uniform scalar quantization,” IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 1793-1755, May 2005.
[25] P. Ubaidulla, and A. Chockalingam, “Relay precoder optimization in MIMO-relay networks with imperfect CSI,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5473-5484, Nov. 2011.
[26] C. Zhang, W. Xu, and M. Chen, “Robust MMSE beamforming for multiuser MISO systems with limited feedback,” IEEE Signal Process. Letters, vol. 16, no. 7, pp. 588-591, July 2009.
[27] D. P. Palomar, J. M. Cioffi, and M. A. Laguna, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381- 2401, Sept. 2003.
[28] C. K. Au Yeung and D. J. Love, “On the performance of random vector quantization limited feedback beamforming,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 458-462,Feb. 2007.
[29] M. Grant and S. Boyd, “CVX: Matlab software for discipline convex programming,” http://cvxr.com/cvx/.
[30] E. R. Hansen, A Table of Series and Products. Prentice Hall Inc., 1975.
[31] D.S. Bernstein, Matrix Mathematics, Princeton University Press 2005.
[32] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press 2004.
[33] R. Blasco-Serrano, J. Lv, R. Thobaben, E. Jorswieck, M. Skoglund, “Multi-antenna transmission for underlay and overlay cognitive radio with explicit message learning phase,” EURASIP J. on Wireless Commun. and Networking, vol. 7, Article ID 1687-1499-2013-195, pp. 1-21, 2013.
[34] R. Zhang, Y.-C. Liang, ”Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks,” IEEE Trans. J. Sel. Topics in Signal Process., vol. 2, no. 1, pp. 88-102, Feb. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code