Responsive image
博碩士論文 etd-0109115-132637 詳細資訊
Title page for etd-0109115-132637
論文名稱
Title
凹板式壓濾電脫水系統處理都市下水污泥之性能評估
Performance Evaluation of a Recessed-Plate Filter Press Electrodewatering System for the Treatment of Municipal Sewage Sludge
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-21
繳交日期
Date of Submission
2015-02-12
關鍵字
Keywords
都市下水污泥、無濾布凹板式壓濾機、田口式實驗設計、電脫水、擬二次加壓脫水、間歇性改變電場強度
Electrodewatering, Recessed plate filter press with no filter cloth, Pseudo-secondary dewatering, Taguchi Method, Sewage sludge, Intermittent change of applied electric field strength
統計
Statistics
本論文已被瀏覽 5641 次,被下載 39
The thesis/dissertation has been browsed 5641 times, has been downloaded 39 times.
中文摘要
本研究旨在開發模廠規模之一種新穎的凹板式壓濾電脫水設備(簡稱“電脫水系統”),於未加裝濾布之情況下,以不銹鋼網當作電脫水系統之電極,並以間歇性改變電場強度的操作方式,評估此電脫水系統處理都市下水污泥之效能。研究過程係藉由田口式實驗設計法,針對採集之都市下水污泥以L9 (34) 直交表進行脫水試驗規劃及進行相關操作參數影響之探討,試驗後,進行污泥餅之品質特性 (“最終污泥餅含水率”及“能源消耗”) 分析,進而推估此電脫水系統之最佳操作條件。針對上述兩項品質特性所獲得之最佳操作條件的試驗組別,其最終污泥餅含水率及處理每公噸污泥餅所產生額外之電動力能耗分別為:(Test A) 65.13%及154.89 kWh/ton (s=34.87%);與 (Test B) 70.98%及83.97 kWh/ton (s=29.02%)。綜合言之,利用電動力輔助新穎的凹板式壓濾脫水系統進行都市下水污泥脫水,其結果顯示,確實可有效提升污泥脫水效率,且於未加裝濾布之情況下,以及於電脫水期間執行間歇性改變電場強度之操作,更可進一步提升電滲透脫水之效益,此外,脫水後之污泥餅,其最終處置費用相較於現行之處理/處置方式可減少約27-35%,因此,本電脫水系統確實具技術及經濟可行性,並可供後續實廠 (場) 參考及應用。
Abstract
The objective of this study was to develop a novel pilot-scale sludge electrodewatering (EDW) system using recessed plate filter press with no filter cloth and evaluate its performance on sewage dewatering. In this EDW device, a perforated stainless steel sheet was used as the electrodes and filter. An experimental design using the L9 orthogonal arrays based on the Taguchi Method was employed using the following factors of three levels: (1) mechanical dewatering time, (2) time of pseudo-secondary dewatering by compressed air, (3) electrodewatering time, and (4) intermittent change of applied electric field strength. The goal was to yield the optimal operating conditions to obtain sludge cakes of the lowest moisture content and the lowest extra energy consumption separately. Tests A and B were carried out by using the optimal operating conditions determined by the Taguchi Method representing the sludge cakes having the lowest moisture content and the lowest extra energy consumption, respectively. The magnitudes of moisture content and extra energy consumption associated with the sludge cakes obtained were given as follows: (1) 65.13% and 154.89 kWh/ton for Test A; and (2) 70.98% and 83.97 kWh/ton for Test B. Evidently, EDW is capable of lowering the moisture content of dewatered sludge. A further study on sludge disposal cost taking into account of the extra energy expenditure showed that it yielded a cost saving of 27-35% as a result of implanting EDW. In summary, the novel sludge electrodewatering system developed in this work is a viable technology with economic effectiveness.
目次 Table of Contents
論文審定書 i
聲明切結書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xiv
照片目錄 xvi
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容與架構 3
第二章 文獻回顧 5
2.1 污泥的來源、組成與其水分分布形式 5
2.2 生污泥之調理作用 10
2.3 污泥脫水技術 18
2.3.1 傳統污泥脫水 18
2.3.2 改良式污泥脫水 22
2.4 電動力法 24
2.4.1 電動力技術之原理 25
2.4.2 電滲透脫水 27
2.5 田口式實驗設計法 32
第三章 實驗材料、設備與方法 36
3.1 實驗材料與設備 36
3.1.1 實驗材料 36
3.1.2 實驗設備 37
3.2 研究方法 40
3.2.1 都市下水污泥來源 40
3.2.2 污泥化學調理 41
3.2.3 電動力輔助凹板式壓濾脫水設備 42
3.2.4 田口式實驗設計 43
3.2.4.1 品質特性與控制因子的選擇 43
3.2.4.2 實驗參數設定 45
3.2.4.3 L9直交表實驗結果分析 53
3.2.5 其他試驗及分析方法 54
第四章 結果與討論 56
4.1 脫水試驗用下水污泥之基本性質 56
4.2 污泥化學調理 57
4.3 電脫水系統用之電極材料可行性評估 60
4.4 操作參數及處理效能探討 63
4.4.1 不同操作條件對脫水效率之影響 63
4.4.1.1 總濾液通量及累積濾液量遞減率變化情形 63
4.4.1.2 擬二次加壓脫水操作對電脫水濾液量之影響 68
4.4.2 污泥脫水產出濾液之品質探討 70
4.4.2.1 脫水試驗之濾液pH值變化情形 70
4.4.2.2 脫水試驗之濾液導電度變化情形 73
4.4.2.3 脫水試驗之濾液溫度變化情形 75
4.4.2.4 脫水試驗之電流密度變化情形 78
4.4.2.5 脫水試驗其進料與出料之回收率 81
4.5 田口試驗結果與正規分析求得最佳操作條件 82
4.5.1 最終污泥餅含水率S/N 比值 83
4.5.2 電動力能耗之S/N比值 86
4.6 最佳操作條件驗證試驗 (Test A及Test B) 89
4.7 可行性評估 99
第五章 結論與建議 105
5.1 結論 105
5.2 建議 106
參考文獻 108
附錄 123
附錄1 控制組脫水試驗組別條件設定一覽表 123
附錄2 控制組脫水試驗之污泥餅含水率 123
碩士在學期間發表之學術論文 124
參考文獻 References
Bajgai, T.R., G.V. Raghavan, F. Hashinaga, and M.O. Ngadi, “Electrohydrodynamic drying — A concise overview,” Drying Technology, Vol. 24, pp. 905-910 (2006).
Bala-Subramanian, S., S. Yan, R.D. Tyagi, and R.Y. Surampalli, “Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering,” Water Research, Vol. 44, pp. 2253-2266 (2010).
Banerjee, S., “Dewatering fibrous sludge with soy protein,” Process Biochemistry, Vol. 49, pp. 120-123 (2014).
Bertanza, G., M. Papa, M. Canato, M.C. Collivignarelli, and R. Pedrazzani, “How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies,” Journal of Environmental Management, Vol. 137, pp. 86-92 (2014).
Bertolini, L., L. Coppola, M. Gastaldi, and E. Redaelli, “Electroosmotic transport in porous construction materials and dehumidification of masonry,” Construction and Building Materials, Vol. 23, pp. 254-263 (2009).
Böhm, N. and W.M. Kulicke, “Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins,” Colloid and Polymer Science, Vol. 275, pp. 73-81 (1997).
Citeau, M., J. Olivier, A. Mahmoud, J. Vaxelaire, O. Larue, and E. Vorobiev, “Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis,” Water Research, Vol. 46, pp. 4405-4416 (2012).
Cobbledick, J., A. Nguyen, and D.R. Latulippe, “Demonstration of FBRM as process analytical technology tool for dewatering processes via CST correlation,” Water Research, Vol. 58, pp. 132-140 (2014).
Colin, F. and S. Gazbar, “Distribution of water in sludges in relation to their mechanical dewatering,” Water Research, Vol. 29, pp. 2000-2005 (1995).
Curvers, D., K.C. Maes, H. Saveyn, B. De-Baets, S. Miller, and P. Van-Der-Meeren, “Modelling the electro-osmotically enhanced pressure dewatering of activated sludge,” Chemical Engineering Science, Vol. 62, pp. 2267-2276 (2007).
Electrokinetic Limited, “Dewatering of Sewage Sludge,” http://www.electrokinetic.co.uk/sewagesludge.htm, England (2015).
Fan, L., M. Zhou, J. Wang, X. Li, and C. Ma, “Dewatering performance of sewage sludge during the thermal compression process,” Advanced Materials Research, Vol. 878, pp. 657-662 (2014).
Feng, G., W. Tan, N. Zhong, and L. Liu, “Effects of thermal treatment on physical and expression dewatering characteristics of municipal sludge,” Chemical Engineering Journal, Vol. 247, pp. 223-230 (2014a).
Feng, J., Y.L. Wang, and X.Y. Ji, “Dynamic changes in the characteristics and components of activated sludge and filtrate during the pressurized electro-osmotic dewatering process,” Separation and Purification Technology, Vol. 134, pp. 1-11 (2014b).
FILMAC SRL, “Filtering phases for a membrane plate filter press,” http://www.filmac-filter.com/en/filtering_process.php, (2014).
Franceschini, O., “Dewatering of sludge by freezing,” Master Thesis, Department of Civil and Mining Engineering, Lulea University of Technology, Lulea, Sweden, pp. 7-9 (2010).
Glendinning, S., J. Lamont-Black, and C.J. Jones, “Treatment of sewage sludge using electrokinetic geosynthetics,” Journal of Hazardous Materials, Vol. 139, pp. 491-499 (2007).
Govoreanu, R., “Activated sludge flocculation dynamics: On-line measurement methodology and modelling,” Doctorate Dissertation, Department of Biological Sciences Ghent University, Belgium pp. 31-32 (2004).
Guo, W.Q., S.S. Yang, W.S. Xiang, X.J. Wang, and N.Q. Ren, “Minimization of excess sludge production by in-situ activated sludge treatment processes — A comprehensive review,” Biotechnology Advances, Vol. 31, pp. 1386-1396 (2013).
Harrison, E.Z., S.R. Oakes, M. Hysell, and A. Hay, “Organic chemicals in sewage sludges,” Science of the Total Environment, Vol. 367, pp. 481-497 (2006).
Hong, J., J. Hong, M. Otaki, and O. Jolliet, “Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan,” Waste Management, Vol. 29, pp. 696-703 (2009).
Jean, D.S., C.P. Chu, and D.J. Lee, “Freeze/thaw treatment of oily sludge from petroleum refinery plant,” Separation Science and Technology, Vol. 36, pp. 2733-2746 (2001).
Jumah, R., S. Al-Asheh, F. Banat, and K. Al-Zoubi, “Electroosmotic dewatering of tomato paste suspension under AC electric field,” Drying Technology, Vol. 23, pp. 1465-1475 (2005).
Kim, J., C. Park, T.H. Kim, M. Lee, S. Kim, S.W. Kim, and J. Lee, “Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge,” Journal of Bioscience and Bioengineering, Vol. 95, pp. 271-275 (2003).
Kondoh, S. and M. Hiraoka, “Commercialization of pressurized electroosmotic dehydrator (PED),” Water Science and Technology, Vol. 22, pp. 259-268 (1990).
Kovalick, W.W., “Innovative ground-water remediation technologies: Publications and conference proceedings 1990-1996,” U.S. Environmental Protection Agency Technology Innovation Office, Washington, D.C., U.S.A. (1996).
Krishnamurthy, S. and T. Viraraghavan, “Chemical conditioning for dewatering municipal wastewater sludges,” Energy Sources, Vol. 27, pp. 113-122 (2005).
Larue, O. and E. Vorobiev, “Sedimentation and water electrolysis effects in electrofiltration of kaolin suspension,” AIChE Journal, Vol. 50, pp. 3120-3133 (2004).
Larue, O., R.J. Wakeman, E.S. Tarleton, and E. Vorobiev, “Pressure electroosmotic dewatering with continuous removal of electrolysis products,” Chemical Engineering Science, Vol. 61, pp. 4732-4740 (2006).
Lee, D.J., “Measurement of bound water in waste activated sludge: use of the centrifugal settling method,” Journal of Chemical Technology and Biotechnology, Vol. 61, pp. 139-144 (1994).
Lee, J.E., “Thermal dewatering (TDW) to reduce the water content of sludge,” Drying Technology, Vol. 24, pp. 225-232 (2006).
Lee, J.E., J.K. Lee, and H.K. Choi, “Filter press for electrodewatering of waterworks sludge,” Drying Technology, Vol. 25, pp. 1649-1657 (2007).
Li, B. and Y.Y. Yan, “Solid desiccant dehumidification techniques inspired from natural electroosmosis phenomena,” Journal of Bionic Engineering, Vol. 8, pp. 90-97 (2011).
Li, B., Q.Y. Lin, and Y.Y. Yan, “Development of solid desiccant dehumidification using electro-osmosis regeneration method for HVAC application,” Building and Environment, Vol. 48, pp. 128-134 (2012).
Liu, Y. and H.H.P. Fang, “Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge,” Environmental Science and Technology, Vol. 33, pp. 237-273 (2003).
Liu, H., J. Yang, Y. Shi, Y. Li, S. He, C. Yang, and H. Yao, “Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders,” Chemosphere, Vol. 88, pp. 235-239 (2012).
Mahmoud, A., A. Fernandez, T.M. Chituchi, and P. Arlabosse, “Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: Analysis of the influence of the operating conditions using the response surface methodology,” Chemosphere, Vol. 72, pp. 1765-1773 (2008).
Mahmoud, A., J. Olivier, J. Vaxelaire, and A.F.A. Hoadley, “Electrical field: A historical review of its application and contributions in wastewater sludge dewatering,” Water Research, Vol. 44, pp. 2381-2407 (2010).
Mahmoud, A., J. Olivier, J. Vaxelaire, and A.F.A. Hoadley, “Electro-dewatering of wastewater sludge: Influence of the operating conditions and their interactions effects,” Water Research, Vol. 45, pp. 2795-2810 (2011).
Mahmoud, A., J. Olivier, J. Vaxelaire, and A.F.A. Hoadley, “Advances in mechanical dewatering of wastewater sludge treatment,” In: Wastewater Reuse and Management, Sharma, S.K. and R. Sanghi (Eds), Springer, Dordrecht, The Netherlands, pp. 253-303 (2013).
Mok, C.K., “Design and Modelling of Electroosmotic Dewatering,” Doctorate Dissertation, Newcastle University, Newcastle upon Tyne, England (2006).
Moody, G. M., “Pre-treatment chemicals,” Filtration and Separation, Vol. 32, pp. 329-336 (1995).
Mowla, D., H.N. Tran, and D. Grant-Allen, “A review of the properties of biosludge and its relevance to enhanced dewatering processes,” Biomass and Bioenergy, Vol. 58, pp. 365-378 (2013).
Navab-Daneshmand, T., R. Beton, R.J. Hill, R. Gehr, and D. Frigon, “Inactivation mechanisms of bacterial pathogen indicators during electro-dewatering of activated sludge biosolids,” Water Research, Vol. 46, pp. 3999-4008 (2012).
Neyens, E. and J. Baeyens, “A review of thermal sludge pre-treatment processes to improve dewaterability,” Journal of Hazardous Materials, Vol. 98, pp. 51-67 (2003a).
Neyens, E. and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, Vol. 98, pp. 33-50 (2003b).
Ng, S.K., A. Plunkett, V. Stojceska, P. Ainsworth, J. Lamont-Black, J. Hall, C. White, S. Glendenning, and D. Russell, “Electro-kinetic technology as a low-cost method for dewatering food by-product,” Drying Technology, Vol. 29, pp. 1721-1728 (2011).
Niu, M., W. Zhang, D. Wang, Y. Chen, and R. Chen, “Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants,” Bioresource Technology, Vol. 144, pp. 337-343 (2013).
Parker, P.J., A.G. Collins, and J.P. Dempsey, “Effects of freezing rate, solids content, and curing time on freeze/thaw conditioning of water treatment residuals,” Environmental Science and Technology, Vol. 32, pp. 383-387 (1998).
Peeters, B., R. Dewil, L. Vernimmen, B. Van-Den-Bogaert, and I.Y. Smets, “Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations,” Water Research, Vol. 47, pp. 3600-3609 (2013).
Pilli, S., P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, and R.Y. Surampalli, “Ultrasonic pretreatment of sludge: A review,” Ultrasonics Sonochemistry, Vol. 18, pp. 1-18 (2011).
Qi, Y., K.B. Thapa, and A.F.A. Hoadley, “Application of filtration aids for improving sludge dewatering properties — A review,” Chemical Engineering Journal, Vol. 171, pp. 373-384 (2011).
Richard, J.W., “Separation technologies for sludge dewatering,” Journal of Hazardous Materials, Vol. 144, pp. 614-619 (2007).
Ruiz-Hernando, M., G. Martinez-Elorza, J. Labanda, and J. Llorens, “Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments,” Chemical Engineering Journal, Vol. 230, pp. 102-110 (2013).
Saveyn, H., S. Meerseman, O. Thas, and P. Van-Der-Meeren, “Influence of polyelectrolyte characteristics on pressure-driven activated sludge dewatering,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 262, pp. 40-51 (2005).
Saveyn, H., P. Van-Der-Meeren, G. Pauwels, and R. Timmerman, “Bench-and pilot-scale sludge electrodewatering in a diaphragm filter press,” Water Science and Technology, Vol. 54, pp. 53-60 (2006).
Smollen, M. and A. Kafaar, “Electroosmotically enhanced sludge dewatering — Pilot-plant study,” Water Science and Technology, Vol. 30, pp. 159-168 (1994).
Smythe, M.C. and R.J. Wakeman, “The use of acoustic fields as a filtration and dewatering aid,” Ultrasonics, Vol. 38, pp. 657-661 (2000).
Sommers, L.E., D.W. Nelson, and K.J. Yost, “Variable nature of chemical composition of sewage sludges,” Journal of Environmental Quality, Vol. 5, pp. 303-306 (1976).
Sparks, P., “Solid-liquid filtration: understanding filter presses and belt filters,” Filtration and Separation, Vol. 49, pp. 20-24 (2012).
Tanaka, T., K. Fujihara, M.S. Jami, and M. Iwata, “Constant-current electroosmotic dewatering of superabsorbent hydrogel,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 440, pp. 116-121 (2014).
Thapa, K.B., Y. Qi, S.A. Clayton, and A.F.A. Hoadley, “Lignite aided dewatering of digested sewage sludge,” Water Research, Vol. 43, pp. 623-634 (2009).
Tian, Y., J. Zhang, D. Wu, Z. Li, and Y. Cui, “Distribution variation of a metabolic uncoupler, 2, 6-dichlorophenol (2, 6-DCP) in long-term sludge culture and their effects on sludge reduction and biological inhibition,” Water Research, Vol. 47, pp. 279-288 (2013).
Tuan, P. A., V. Jurate, and S. Mika, “Electro-Dewatering of Sludge Under Pressure and Non-Pressure Conditions,” Environmental Technology, Vol. 29, No. 10, pp. 1075-1084 (2008).
Tuan, P.A., and M. Sillanpää, “Migration of ions and organic matter during electro-dewatering of anaerobic sludge,” Journal of Hazardous Materials, Vol. 173, pp. 54-61 (2010).
Tuan, P.A., S. Mika, and I. Pirjo, “Sewage sludge electro-dewatering treatment — A review,” Drying Technology, Vol. 30, pp. 691-706 (2012).
Tuncal, T., “Improving thermal dewatering characteristics of mechanically dewatered sludge: Response surface analysis of combined lime-heat treatment,” Water Environment Research, Vol. 83, pp. 405-410 (2011).
Vaxelaire, J. and P. Cézac, “Moisture distribution in activated sludges: A review,” Water Research, Vol. 38, pp. 2215-2230 (2004).
Vesilind, P.A., S. Wallinmaa, and C.J. Martel, “Freeze-thaw sludge conditioning and double layer compression,” Canadian Journal of Civil Engineering, Vol. 18, pp.1078-1083 (1991).
Vesilind, P. A., “The role of water in sludge dewatering,” Water Environment Research, Vol. 66, pp. 4-11 (1994).
Wang, W., Y. Luo, and W. Qiao, “Possible solutions for sludge dewatering in China,” Frontiers of Environmental Science and Engineering in China, Vol. 4, pp. 102-109 (2010).
Wang, L., L. Zhang, and A. Li, “Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: Influence of operating conditions and the process energetics,” Water Research, Vol. 65, pp. 85-97 (2014).
Weber, K. and W. Stahl, “Improvement of filtration kinetics by pressure electrofiltration,” Separation and Purification Technology, Vol. 26, pp. 69-80 (2002).
Wakeman, R., “Filter media: Testing for liquid filtration,” Filtration and Separation, Vol. 44, pp. 32-34 (2007).
Xu, G.R., J.L. Zou, and G.B. Li, “Stabilization of heavy metals in sludge ceramsite,” Water Research, Vol. 44, pp. 2930-2938 (2010).
Yan, D. and A. Gupta, “Chapter 14 – Solid Liquid Separation – Filtration,” Mineral Processing Design and Operation, pp. 438-493 (2006).
Yang, G.C.C., M.C. Chen, and C.F. Yeh, “Dewatering of a biological industrial sludge by electrokinetics-assisted filter press,” Separation and Purification Technology, Vol. 79, pp. 177-182 (2011a).
Yang, G.C.C., M.C. Chen, and C.L. Tsai, “Electrodewatering of Biological Sludges Using a Pilot-Scale Filter Press,” Book of Abstracts, The 4th IWA-ASPIRE Conference and Exhibition, pp. 299, Tokyo, Japan (2011b).
Yang, G.C.C. and Y.I. Chang, “Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil,” Separation and Purification Technology, Vol. 79, pp. 278-284 (2011).
Yang, G.C.C. and C.F. Yeh, “Enhanced nano-Fe3O4/S2O82- oxidation of trichloroethylene in a clayey soil by electrokinetics,” Separation and Purification Technology, Vol. 79, pp. 264-271 (2011).
Yang, G.C.C., Y.H. Chiu, and C.L. Wang, “Integration of electrokinetic process and nano-Fe3O4/S2O82- processfor remediation of phthalates in river sediment,” The13th Symposiun on Electrokinetic Remediation (EREM 2014), Book of Abstracts, p.103, September 7-10, Malaga, Spain (2014).
Yu, G.H., P.J. He, L.M. Shao, and P.P. He, “Stratification structure of sludge flocs with implications to dewaterability,” Environmental Science and Technology, Vol. 42, pp. 7944-7949 (2008).
Yu, X., S. Zhang, H. Xu, L. Zheng, X. Lu, and D. Ma, “Influence of filter cloth on the cathode on the electroosmotic dewatering of activated sludge,” Chinese Journal of Chemical Engineering, Vol. 18, pp. 562-568 (2010).
Yuan, H.P., X.B. Cheng, S.P. Chen, N.W. Zhu, and Z.Y. Zhou, “New sludge pretreatment method to improve dewaterability of waste activated sludge,” Bioresource Technology, Vol. 102, pp. 5659-5664 (2011).
Zhai, L.F., M. Sun, W. Song, and G. Wang, “An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process,” Bioresource Technology, Vol. 121, pp. 161-168 (2012).
Zhang, H., J. Yang, W. Yu, S. Luo, L. Peng, X. Shen, Y. Shi, S. Zhang, J. Song, N. Ye, Y. Li, C. Yang, and S. Liang, “Mechanism of red mud combined with Fenton’s reagent in sewage sludge conditioning,” Water Research, Vol. 59, pp. 239-247 (2014a).
Zhang, W., P. Xiao, Y. Liu, S. Xu, F. Xiao, D. Wang, and C.W. Chow, “Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability,” Separation and Purification Technology, Vol. 132, pp. 430-437 (2014b).
Zhang, B.G., L. Li, Z.T. Zhang, Y.B. Zong, and Y.F. Fang, “Experimental study on sludge drying rate and energy consumption,” Drying Technology and Equipment, Vol. 5, pp. 220-224 (2007).
Zhao, Y.Q., and D.H. Bache, “Polymer impact on filter blinding during alum sludge filtration,” Water Research, Vol. 36, pp. 3691-3698 (2002).
Zhou, J., Z. Liu, P. She, and F. Ding, “Water removal from sludge in a horizontal electric field,” Drying Technology, Vol. 19, pp. 627-638 (2001).
行政院內政部營建署下水道工程處,「下水污泥減量與循環永續利用」,http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=17530&Itemid=54,台北市(2014)。
行政院內政部營建署下水道工程處,「全國污水下水道用戶接管普及率及整體污水處理率統計表」,台灣(2014)。
行政院環境保護署,「污泥處理現況檢討及因應策略」,http://waste.epa.gov.tw/prog/NewsZone/MainDownload.asp?DownloadType=Handbook_zone,台灣(2014)。
謝主信,「石化污泥熱解特性與衍生液態燃料之研究」,碩士學位論文,輔英科技大學環境工程與科學系,高雄市 (2008)。
朱敬平,「污泥的減量與脫水」,中興工程季刊,第90期,第29-36頁 (2006)。
朱敬平,「有機污泥資源化技術發展與應用」,中華製漿造紙技術協會,第4頁 (2005)。
朱敬平,「污泥膠羽結構、脫水性、水份分布與熱分解特性之研究」,碩士學位論文,國立台灣大學化學工程學研究所,台北市 (1999)。
朱敬平,「污泥中間處理技術(污泥濃縮、調理、脫水)」,廢水污泥減量減容技術講習會 (高雄場) ,高雄市 (2004)。
王瑞森,「新式污泥調理技術之研究」,碩士學位論文,國立台灣科技大學化學工程系,台北市 (2003)。
直友科技有限公司,「廢水處理藥劑」,http://www.summit-chem.com/product/product.php?lang=cn&class2=68,台北市 (2014)。
許惠如,「利用稻殼酸水解液生產生物絮凝劑-Schizophyllan glucan 之研究」,博士學位論文,國立中央大學化學工程與材料工程所,桃園縣 (2011)。
經濟部工業局,「廢水污泥減量技術手冊」,台北市 (2005)。
邱俊祥,「廢棄活性污泥超音波水解能源化效益之探討」,碩士學位論文,朝陽科技大學環境工程與管理系,台中市 (2009)。
李輝煌,「田口方法-品質設計的原理與實務」,國立圖書有限公司,台北市 (2011)。
張崇豪,「應用田口方法於擈翼之研究」,碩士學位論文,國立成功大學航空太空工程研究所,台南市 (2010)。
陳旻聰,「利用電動力輔助板框式壓濾脫水系統處理不同生物污泥之研究」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。
蔡佳伶,「板框壓濾電脫水系統對於不同生物污泥脫水效能及其中之鄰苯二甲酸酯類流布研究」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2013)。
楊金鐘,「具有電極之濾板組及使用該濾板組之壓濾機」,中華民國發明專利,專利號碼: I392538 (2013)。
張信堃、莊順興、李岳翰及黃春財,「微生物燃料電池產電效能之研究-以活性污泥水解產物為基質」,下水道與水環境再生研討會,台北市 (2011)。
歐陽嶠暉,下水道工程學,長松出版社,第五版,第475-502頁,台北市 (2008)。
環保署,「一般廢棄物(垃圾)水分測定法–間接測定法」,行政院環境保護署環境檢驗所,NIEA R213.21C,http://www.niea.gov.tw/niea/REFUSE/R21321C.htm,2014年8月查詢 (2014a)。
環保署,「水中濁度檢測方法–濁度計法」,行政院環境保護署環境檢驗所,NIEA W219.52C,http://www.niea.gov.tw/niea/WATER/W21952C.htm,2014年8月查詢 (2014b)。
環保署,「水中氫離子濃度指數(pH值)測定方法–電極法」,行政院環境保護署環境檢驗所,NIEA W424.52A,http://www.niea.gov.tw/niea/WATER/W42452A.htm,2014年8月查詢 (2014c)。
環保署,「水中導電度測定方法–導電度計法」,行政院環境保護署環境檢驗所,NIEA W203.51B,http://www.niea.gov.tw/niea/WATER/W20351B.htm,2014年8月查詢 (2014d)。
環保署,「水中總溶解固體及懸浮固體檢測方法─103~105℃乾燥」,行政院環境保護署環境檢驗所,NIEA W210.58A,http://www.niea.gov.tw/analysis/method/methodfile.asp?mt_niea=W210.58A,2014年8月查詢 (2014e)。
環保署,「污泥廢棄物中總固體、固定性及揮發性固體含量檢測方法」,行政院環境保護署環境檢驗所,NIEA R212.01C,http://www.niea.gov.tw/niea/REFUSE/R21201C.htm,2014年8月查詢 (2014f)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code