Responsive image
博碩士論文 etd-0109118-181737 詳細資訊
Title page for etd-0109118-181737
論文名稱
Title
小分子烷烴燃料及生質柴油替代化學動力學機理:改良與驗證
Refinements of chemical kinetic mechanisms for C2-C3 hydrocarbon fuels and a C9 biodiesel surrogate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-18
繳交日期
Date of Submission
2018-02-09
關鍵字
Keywords
乙烯、生質柴油替代分子、乙炔、化學動力學機理、熱裂解、計算流體力學、負溫度係數、多環芳香烴、丙烷氧化反應
Polycyclic Aromatic Hydrocarbon (PAH), Ethylene, Pyrolysis, Acetylene, Kinetic mechanism, Biodiesel surrogate, Propane oxidation, CFD, Negative-temperature-coefficient
統計
Statistics
本論文已被瀏覽 5686 次,被下載 11
The thesis/dissertation has been browsed 5686 times, has been downloaded 11 times.
中文摘要
本研究的目標在於深入瞭解熱裂解及氧化過程中的化學反應,為了能更恰當的解釋其中的化學反應,本研究中提出了三個延伸發展的化學動力學機理。
在第一個研究中,我們提出一個乙炔(C2H2)及乙烯(C2H4)熱裂解的化學反應機理(含456個化學分子及2045個反應式),用以模擬在柱塞流式反應槽中,常壓及不同反應溫度條件下(1073–1323K),多環芳香烴之生成情形。本研究所分析的多環芳香烴分子(截至四環的芳香烴分子),已由美國環境保護局歸類為對人體與環境有害的化合物,它們的化學式分別為:萘(C10H8)、苊烯(C12H8)、芴(C13H10)、菲(C14H10)、蒽(C14H10)、熒蒽(C16H10)和芘(C16H10)。此外,透過產物生成比率分析,我們得以解釋乙炔及乙烯與多環芳香烴於熱裂解中之相互關係。更重要的,此乙炔-乙烯-多環芳香烴機理可以做為大分子烴類燃料機理組成的基礎。
在第二個研究中,為了預測丙烷在非预混燃燒中所產生之烴類及芳香烴化合物(由質譜儀量測),我們提出了一個的丙烷–多環芳香烴化學反應機理。透過一連串反應機理的簡化程序,我們得到了一個包含76個化學分子及324個化學反應式的機理。並且,簡化過程中,此反應機理的預測能力被保持在合理的範圍內。反應速度常數在開發機理的過程中並無任何人為的修改。於此前提下,快速壓縮機中所量測之點火延遲時間及對衝火焰中所量測的產物分佈驗證中都獲得良好的一致性。除此之外,結合丙烷–多環芳香烴化學反應機理與二維計算流體力學模型之非预混燃燒得以預測實驗所量測之烴類及芳香烴產物,直至含碳數為12之多環芳香烴。再者,經由反應路徑分析,丙烷在燃燒過程中的分解與芳香烴產物之相互關係得以解析。
在第三個研究中,為了更精確的預測生質柴油在低溫燃燒的特性(溫度<1000K),我們改善了一個中等尺寸的生質柴油替代機理(辛酸甲酯∕乙醇)。在低溫燃燒反應中,我們分析了三個辛酸甲酯過氧自由基主要的單分子反應路徑:氧分子與氧化氫自由基脫離反應與異構化反應,以及兩個辛酸氫過氧甲酯自由基主要的單分子反應路徑:β斷裂反應與內分子置換。在這些被分析的反應中,我們更新了這些反應的反應速度常數。接著,我們以攪拌式噴射反應器實驗在完全燃燒、平均滯留時間為700毫秒、10大氣壓以及辛酸甲酯∕乙醇摩爾比率為90∕10之條件下,所量測的辛酸甲酯及乙醇之消耗率驗證此改良的化學反應機理。我們觀察到了,此改善的機理在冷燄區(600–800K)有著良好的預測表現。此外,透過反映路徑的分析,高溫與低溫燃燒關鍵的區別得以解析。
Abstract
Toward the goals of understanding the chemistry involving in pyrolysis and oxidation. Three chemical kinetic mechanisms have been developed and refined to better represent these characteristics.
The first mechanism newly refined describes the detailed pyrolysis of acetylene and ethylene with 456 species and 2045 reactions that are proposed to predict experimentally measured formation of polycyclic aromatic hydrocarbons (PAHs) at different temperatures (1073-1323 K) in a tubular flow reactor at atmospheric pressure. These PAH species, which are up to 4 rings, have been classified by the United States Environmental Protection Agency (USEPA) as the carcinogenic and mutagenic compounds to human health. The chemical formulas include naphthalene (C10H8), acenaphthylene (C12H8), fluorene (C13H10), phenanthrene (C14H10), anthracene (C14H10), fluoranthene (C16H10) and pyrene (C16H10). In addition, rate of production analysis is applied to interpret the correlation between C2 unsaturated hydrocarbons and PAH compounds involving in the pyrolysis of acetylene (C2H2) and ethylene (C2H4). In addition, this newly proposed C2H2-C2H4-PAH mechanism can be used as a base model to constitute kinetic mechanisms for large hydrocarbon fuel oxidation.
The second mechanism is a newly derived skeletal model for propane-PAH oxidation. The study is driven by the need to develop a skeletal mechanism to predict the mass-spectrometrically measured hydrocarbons and aromatic hydrocarbons in a nonpremixed coflowing propane/air flame. Via a mechanism reduction process, a skeletal propane-PAH mechanism (76 species and 324 reactions) is generated with reasonable accuracy. Without empirical adjustment of rate constants in elementary reactions, the propane-PAH mechanism is validated against experimental ignition delay times in a rapid compression machine and species profiles in opposed flow diffusion flames. For the first time, the propane-PAH mechanism incorporated into a 2-D CFD model of coflowing flame is able to predict the experimentally measured centerline mole fractions of 22 hydrocarbons and aromatic compounds up to C12 species. Furthermore, reaction pathway analysis is produced to disclose the correlation between the decomposition of propane and the formation of the measured compounds.
The third study is to refine an existing detailed mechanism of a medium-sized biodiesel surrogate (methyl octanoate/ethanol) in terms of the prediction for low-temperature combustion (T < 1000 K). Three primary unimolecular reaction pathways of methyl octanoate peroxy radicals, including (1) dissociation, (2) isomerization and (3) hydroperoxy elimination, and two primary unimolecular reaction pathways of hydroperoxy methyl octanoate radicals, including (4) β-scission and (5) intramolecular substitution are investigated and updated with the newly estimated rate constants. The refined mechanism is validated against the experimentally measured oxidation rate of methyl octanoate and ethanol with methyl octanoate/ethanol 90/10 mol % fuel mixture in a jet-stirred reactor at 10 atm, mean residence time of 700 ms, and ϕ = 1. For the first time, the previously measured oxidation rates of methyl octanoate are well predicted by the kinetic modeling under the cool flame regime (600-800 K). Moreover, the reaction pathway analysis reveals the differences between high and low temperature oxidation.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract vi
Table of Contents viii
List of Figures x
List of Tables xv
Nomenclature xvii
1 Introduction 1
1.1 PAH formation in pyrolysis of acetylene and ethylene 1
1.2 PAH formation in oxidation of propane 5
1.3 Medium-size biodiesel surrogate mechanism studies 8
2 Methodology 10
2.1 PAH formation in pyrolysis of acetylene and ethylene 10
2.1.1 Mechanism construction 10
2.1.2 PAH formation within different temperatures 10
2.2 PAH formation in oxidation of propane 12
2.2.1 Mechanism construction 12
2.2.2 Mechanism reduction 12
2.2.3 Ignition delay times 15
2.2.4 Species concentration profiles 16
2.2.5 2-D non-premixed coflowing flame 17
2.3 Medium-size biodiesel surrogate mechanism studies 19
2.3.1 Rate coefficients replacement and newly added reactions 19
2.3.2 Rate of consumption 30
3 Results and Discussion 31
3.1 PAH formation in pyrolysis of acetylene and ethylene 31
3.2 PAH formation in oxidation of propane 48
3.2.1 Mechanism construction and reduction 48
3.2.2 Ignition delay times 48
3.2.3 Species concentration profiles 49
3.2.4 2-D co-flow flame 51
3.3 Medium-size biodiesel surrogate mechanism studies 59
4 Conclusion 65
4.1 PAH formation in pyrolysis of acetylene and ethylene 65
4.2 PAH formation in oxidation of propane 66
4.3 Medium-size biodiesel surrogate mechanism studies 67
5 References 68
Appendix S1
Acetylene/ethylene mechanism S1
Propane-PAH mechanism S39
參考文獻 References
[1] J.A. Raub, M. Mathieu-Nolf, N.B. Hampson, S.R. Thom, Carbon monoxide poisoning—a public health perspective, Toxicology 145 (2000) 1-14.
[2] T.-M. Chen, W.G. Kuschner, J. Gokhale, S. Shofer, Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects, The American journal of the medical sciences 333 (2007) 249-256.
[3] T.-M. Chen, W.G. Kuschner, J. Gokhale, S. Shofer, Outdoor air pollution: ozone health effects, The American journal of the medical sciences 333 (2007) 244-248.
[4] U. Satish, M.J. Mendell, K. Shekhar, T. Hotchi, D. Sullivan, S. Streufert, W.J. Fisk, Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance, Environ. Health Perspect. 120 (2012) 1671.
[5] T.J. Grahame, R.B. Schlesinger, Health effects of airborne particulate matter: do we know enough to consider regulating specific particle types or sources, Inhalation toxicology 19 (2007) 457-481.
[6] C.A. Pope III, M. Ezzati, D.W. Dockery, Fine-particulate air pollution and life expectancy in the United States, New England Journal of Medicine 360 (2009) 376-386.
[7] T.C. Bond, S.J. Doherty, D. Fahey, P. Forster, T. Berntsen, B. DeAngelo, M. Flanner, S. Ghan, B. Kärcher, D. Koch, Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Research: Atmospheres 118 (2013) 5380-5552.
[8] J.A. Sarnat, K.W. Brown, J. Schwartz, B.A. Coull, P. Koutrakis, Ambient gas concentrations and personal particulate matter exposures: implications for studying the health effects of particles, Epidemiology 16 (2005) 385-395.
[9] R. Afroz, M.N. Hassan, N.A. Ibrahim, Review of air pollution and health impacts in Malaysia, Environ. Res. 92 (2003) 71-77.
[10] H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways, Prog. Energy Combust. Sci. 26 (2000) 565-608.
[11] G. Blanquart, P. Pepiot-Desjardins, H. Pitsch, Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame 156 (2009) 588-607.
[12] U.S.E.P. Agency, Health assessment document for diesel engine exhaust, National Center for Environmental Assessment (2002).
[13] D. Murphy, R. Carroll, J. Klonowski, Analysis of products of high-temperature pyrolysis of various hydrocarbons, Carbon 35 (1997) 1819-1823.
[14] Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa, J. Pauwels, P. Desgroux, Molecular species adsorbed on soot particles issued from low sooting methane and acetylene laminar flames: A laser-based experiment, Proc. Combust. Inst. 31 (2007) 841-849.
[15] K. Norinaga, O. Deutschmann, Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons, Ind. Eng. Chem. Res. 46 (2007) 3547-3557.
[16] N. Sánchez, A. Callejas, A. Millera, R. Bilbao, M. Alzueta, Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures, Energy 43 (2012) 30-36.
[17] N.E. Sánchez, A. Callejas, A.n. Millera, R. Bilbao, M.U. Alzueta, Polycyclic aromatic hydrocarbon (PAH) and soot formation in the pyrolysis of acetylene and ethylene: effect of the reaction temperature, Energy Fuels 26 (2012) 4823-4829.
[18] N.E. Sánchez, Á. Millera, R. Bilbao, M.U. Alzueta, Polycyclic aromatic hydrocarbons (PAH), soot and light gases formed in the pyrolysis of acetylene at different temperatures: Effect of fuel concentration, J. Anal. Appl. Pyrolysis 103 (2013) 126-133.
[19] N.E. Sánchez, J. Salafranca, A. Callejas, Á. Millera, R. Bilbao, M.U. Alzueta, Quantification of polycyclic aromatic hydrocarbons (PAHs) found in gas and particle phases from pyrolytic processes using gas chromatography–mass spectrometry (GC–MS), Fuel 107 (2013) 246-253.
[20] H. Wang, M. Frenklach, A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combust. Flame 110 (1997) 173-221.
[21] N.M. Marinov, W.J. Pitz, C.K. Westbrook, A.M. Vincitore, M.J. Castaldi, S.M. Senkan, C.F. Melius, Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame, Combust. Flame 114 (1998) 192-213.
[22] J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame 121 (2000) 122-136.
[23] H. Richter, S. Granata, W.H. Green, J.B. Howard, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proc. Combust. Inst. 30 (2005) 1397-1405.
[24] C.V. Naik, K.V. Puduppakkam, A. Modak, E. Meeks, Y.L. Wang, Q. Feng, T.T. Tsotsis, Detailed chemical kinetic mechanism for surrogates of alternative jet fuels, Combust. Flame 158 (2011) 434-445.
[25] A. Raj, I.D.C. Prada, A.A. Amer, S.H. Chung, A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons, Combust. Flame 159 (2012) 500-515.
[26] Y. Wang, A. Raj, S.H. Chung, A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames, Combust. Flame 160 (2013) 1667-1676.
[27] S. Park, Y. Wang, S.H. Chung, S.M. Sarathy, Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels, Combust. Flame 178 (2017) 46-60.
[28] N.A. Slavinskaya, U. Riedel, S.B. Dworkin, M.J. Thomson, Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames, Combust. Flame 159 (2012) 979-995.
[29] V. Chernov, M.J. Thomson, S.B. Dworkin, N.A. Slavinskaya, U. Riedel, Soot formation with C 1 and C 2 fuels using an improved chemical mechanism for PAH growth, Combust. Flame 161 (2014) 592-601.
[30] T. Bensabath, H. Monnier, P.-A. Glaude, Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions, J. Anal. Appl. Pyrolysis 122 (2016) 342-354.
[31] M. Cathonnet, Chemical kinetic modeling of combustion from 1969 to 2019, Combust. Sci. Technol. 98 (1994) 265-279.
[32] J.M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci. 29 (2003) 599-634.
[33] E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. Kelley, C. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energy Combust. Sci. 38 (2012) 468-501.
[34] C.S. McEnally, L.D. Pfefferle, Comparison of non-fuel hydrocarbon concentrations measured in coflowing nonpremixed flames fueled with small hydrocarbons, Combust. Flame 117 (1999) 362-372.
[35] A. Sinha, M. Thomson, The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures, Combust. Flame 136 (2004) 548-556.
[36] S. Gallagher, H. Curran, W. Metcalfe, D. Healy, J. Simmie, G. Bourque, A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime, Combust. Flame 153 (2008) 316-333.
[37] C.J. Jachimowski, Chemical kinetic reaction mechanism for the combustion of propane, Combust. Flame 55 (1984) 213-224.
[38] C.K. Westbrook, W.J. Pitz, A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and propene, Combust. Sci. Technol. 37 (1984) 117-152.
[39] P. Dagaut, M. Cathonnet, J.C. Boettner, Kinetic modeling of propane oxidation and pyrolysis, Int. J. Chem. Kinet. 24 (1992) 813-837.
[40] K. Leung, R. Lindstedt, Detailed kinetic modeling of C 1—C 3 alkane diffusion flames, Combust. Flame 102 (1995) 129-160.
[41] C. Sung, B. Li, H. Wang, C. Law. Structure and sooting limits in counterflow methane/air and propane/air diffusion flames from 1 to 5 atmospheres. In: editor^editors. Symposium (International) on Combustion; 1998: Elsevier. p. 1523-1529.
[42] Z. Qin, V.V. Lissianski, H. Yang, W.C. Gardiner, S.G. Davis, H. Wang, Combustion chemistry of propane: a case study of detailed reaction mechanism optimization, Proc. Combust. Inst. 28 (2000) 1663-1669.
[43] M.V. Petrova, F.A. Williams, A small detailed chemical-kinetic mechanism for hydrocarbon combustion, Combust. Flame 144 (2006) 526-544.
[44] E.L. Petersen, D.M. Kalitan, S. Simmons, G. Bourque, H.J. Curran, J.M. Simmie, Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling, Proc. Combust. Inst. 31 (2007) 447-454.
[45] P. Gokulakrishnan, C.C. Fuller, M.S. Klassen, R.G. Joklik, Y.N. Kochar, S.N. Vaden, T.C. Lieuwen, J.M. Seitzman, Experiments and modeling of propane combustion with vitiation, Combust. Flame 161 (2014) 2038-2053.
[46] E. Ranzi, C. Cavallotti, A. Cuoci, A. Frassoldati, M. Pelucchi, T. Faravelli, New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes, Combust. Flame 162 (2015) 1679-1691.
[47] S.S. Merchant, C.F. Goldsmith, A.G. Vandeputte, M.P. Burke, S.J. Klippenstein, W.H. Green, Understanding low-temperature first-stage ignition delay: Propane, Combust. Flame 162 (2015) 3658-3673.
[48] T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy Combust. Sci. 35 (2009) 192-215.
[49] M. Petrova, F. Williams, Reduced chemistry for autoignition of C3 hydrocarbons in air, Combust. Sci. Technol. 179 (2007) 961-986.
[50] J.C. Prince, F.A. Williams, Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane, Combust. Flame 159 (2012) 2336-2344.
[51] J. Gong, S. Zhang, Y. Cheng, Z. Huang, C. Tang, J. Zhang, A comparative study of n-propanol, propanal, acetone, and propane combustion in laminar flames, Proc. Combust. Inst. 35 (2015) 795-801.
[52] X. Gou, W. Sun, Z. Chen, Y. Ju, A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms, Combust. Flame 157 (2010) 1111-1121.
[53] W. Sun, Z. Chen, X. Gou, Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame 157 (2010) 1298-1307.
[54] J.C. Prince, C. Treviño, F.A. Williams, A reduced reaction mechanism for the combustion of n-butane, Combust. Flame 175 (2017) 27-33.
[55] K.C. Lin, C.-T. Chiu, A compact skeletal mechanism of propane towards applications from NTC-affected ignition predictions to CFD-modeled diffusion flames: Comparisons with experiments, Fuel 203 (2017) 102-112.
[56] G. Knothe, J. Krahl, J. Van Gerpen, The biodiesel handbook, Elsevier2015.
[57] C.K. Westbrook, W.J. Pitz, P.R. Westmoreland, F.L. Dryer, M. Chaos, P. Osswald, K. Kohse-Hoeinghaus, T.A. Cool, J. Wang, B. Yang, N. Hansen, T. Kasper, A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames, Proc. Combust. Inst. 32 (2009) 221-228.
[58] S. Dooley, H.J. Curran, J.M. Simmie, Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate, Combust. Flame 153 (2008) 2-32.
[59] G. Dayma, S. Gaïl, P. Dagaut, Experimental and kinetic modeling study of the oxidation of methyl hexanoate, Energy Fuels 22 (2008) 1469-1479.
[60] H. Tao, K.C. Lin, Kinetic barriers, rate constants and branching ratios for unimolecular reactions of methyl octanoate peroxy radicals: A computational study of a mid-sized biodiesel fuel surrogate, Combust. Flame 180 (2017) 148-157.
[61] B. Rotavera, E.L. Petersen, Ignition behavior of pure and blended methyl octanoate, n-nonane, and methylcyclohexane, Proc. Combust. Inst. 34 (2013) 435-442.
[62] S.M. Sarathy, M.J. Thomson, W.J. Pitz, T. Lu, An experimental and kinetic modeling study of methyl decanoate combustion, Proc. Combust. Inst. 33 (2011) 399-405.
[63] C. Togbé, J.-B. May-Carle, G. Dayma, P. Dagaut, Chemical Kinetic Study of the Oxidation of a Biodiesel− Bioethanol Surrogate Fuel: Methyl Octanoate− Ethanol Mixtures, J. Phys. Chem. A 114 (2009) 3896-3908.
[64] O. Herbinet, W.J. Pitz, C.K. Westbrook, Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate, Combust. Flame 154 (2008) 507-528.
[65] R. Kee, F. Rupley, J. Miller, M. Coltrin, J. Grcar, E. Meeks, Theory manual CHEMKIN Release 4.0.1, Reaction Design, San Diego, CA, 2004.
[66] R. Kee, F. Rupley, J. Miller, M. Coltrin, J. Grcar, E. Meeks, H. Moffat, A. Lutz, G. Dixon-Lewis, M. Smooke, CHEMKIN Release 4.1, Reaction Design, San Diego, CA, 2006.
[67] K.C. Lin, C.-T. Chiu, H. Tao, Y.-C. Liao, Formation of unsaturated hydrocarbons, carbonyl compounds and PAHs in a non-premixed methane/air flame doped with methyl butanoate: CFD modeling and comparison with experimental data, Fuel 182 (2016) 487-493.
[68] P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame 154 (2008) 67-81.
[69] T. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (2005) 1333-1341.
[70] T. Lu, C.K. Law, J. Chen. Development of non-stiff reduced mechanisms for direct numerical simulations. In: editor^editors. 46th AIAA Aerospace Sciences Meeting and Exhibit including The New Horizons Forum and Aerospace Exposition, Reno, NV, USA; 2008. p.
[71] ANSYS FLUENT 16.1,ANSYS Inc, USA, 2015.
[72] CHEMKIN-CFD, Reaction Design, Inc., San Diego, CA 92121, USA, 2010.
[73] H. Wang, R.D. Reitz, M. Yao, B. Yang, Q. Jiao, L. Qiu, Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction, Combust. Flame 160 (2013) 504-519.
[74] B.W. Weber, W.J. Pitz, M. Mehl, E.J. Silke, A.C. Davis, C.-J. Sung, Experiments and modeling of the autoignition of methylcyclohexane at high pressure, Combust. Flame 161 (2014) 1972-1983.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code