Responsive image
博碩士論文 etd-0110114-123757 詳細資訊
Title page for etd-0110114-123757
論文名稱
Title
鋯基塊狀金屬玻璃之短程有序研究
Short-range order study on Zr based bulk metallic glass
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-08
繳交日期
Date of Submission
2014-02-10
關鍵字
Keywords
液滴相、熱力學計算法、玻璃形成能力、金屬玻璃、短程有序結構
short-range order structure, glass-forming ability, droplet-type phase, thermodynamic-computation approach, metallic glass
統計
Statistics
本論文已被瀏覽 5705 次,被下載 1166
The thesis/dissertation has been browsed 5705 times, has been downloaded 1166 times.
中文摘要
為了解決金屬玻璃的變形限制,最近幾年開發新的三元或四元合金系統在非晶態基地相內生成二次相,這些系統在非晶質基地相內有二次相顆粒或是奈米結晶、相分離區域和各種集群的短程有序結構。根據玻璃形成能力,可生成非晶/非晶、非晶/短程有序或是非晶/結晶的複合結構。研究新型複合結構或許能夠改善塊狀金屬玻璃的延展性,意即非晶/結晶或是非晶/短程有序的複合材料取代非晶/非晶複合材料。
根據熱力學計算法,本研究在Zr-Cu-Ni-Al相分離系統內提出一個Zr基新合金(Zr63.36Cu17.22Ni11.47Al7.95),並在不同冷卻速率下描述其微觀組織和晶體結構。依冷卻速率快至慢可得到完全非晶態結構、非晶態/短程有序與非晶態/結晶的複合結構,雖然實驗結果沒有如預期般產生相分離現象,但是意外形成短程有序結構液滴相與非晶態結構基地相的雙相複合結構。令人感興趣的是液滴相與非晶態基地相的平均組成只有實驗上的誤差值,表示凝固的過程中,沒有局部的初晶相成核成長發生,使得液滴相與非晶態基地相成份組成一樣。
為了解組成成分相同卻有不同的影像對比,使用XRD、EBSD與TEM分析是否為不同程度的有序結構所引起,結果得知液滴相中存在三種不同的短程有序結構,貢獻微弱的結晶訊號,與非晶態基地相有著結構上差異。最後使用熱處理方式了解液滴相和基地相與平衡相之間的關係,結果得知Cubic結構Zr2Ni(Al,Cu)-type相是一介穩態結晶相,在本研究的實驗溫度686 K下會發生相變態;高溫穩定相之一的Tetragonal結構Zr2Cu(Al,Ni)-type相,與Zr-Cu-Ni三元系合金800℃平衡相圖的結果相符合。
Abstract
To solve the problem of limited deformation in metallic glass, newly ternary or quaternary alloy systems have developed the second phase within an amorphous matrix in recent years. These alloy systems have second-phase particles or nanocrystals in a glassy matrix, phase-separated regions, and variations in short-range order by clustering. The second phase within an amorphous matrix can produce the amorphous/amorphous, amorphous/short-range order or amorphous/crystalline composite structure, depending on its glass-forming ability (GFA). Investigating the possibility for the design of a new type of composite structure (i.e., amorphous/crystalline or amorphous/short-range order composites instead of amorphous/amorphous composites) may be able to improve the ductility of BMG.
This study presents a newly designed Zr-based alloy (Zr63.36Cu17.22Ni11.47Al7.95) in Zr-Cu-Ni-Al phase separation system based on thermodynamic-computation approach, and describes its microstructure and crystal structure with different cooling rates. It can obtain completely amorphous structure, the amorphous/ short-range order and the amorphous/ crystalline composite structure by fast to slow cooling rate. Although the experimental result was no phase separation phenomenon as expected, but it was surprisingly that forming the dual phase composite structure with short-range order droplet phase and amorphous matrix phase. And it was interesting that the average compositions of the droplet-type phase and amorphous matrix phase were identical within experimental error. It means that no local primary nucleation and growth was occurring during solidification process, so that the compositions of droplet phase are the same as the compositions of matrix amorphous phase.
In order to understand the same chemical composition but have different image contrast, that we use XRD, EBSD and TEM analysis to understand whether they caused by different degrees ordered structure. The results show that there are three different short-range order structures in droplet-type phase. Therefore, it contributes to the weak crystallization signals and the structure is different from the amorphous matrix phase. Finally, we use the heat treatment in order to understand the relationship between the droplet phase, the matrix phase and equilibrium phase. The results show that the Zr2Ni(Al,Cu)-type phase of cubic structure is a metastable phase and it will occur phase transformation at 686 K in the present study. The Zr2Cu(Al,Ni)-type phase with high temperature stability match the result of phase equilibrium in the Zr-Cu-Ni System at 800℃.
目次 Table of Contents
論文審定書.......................................................................................................................... i
致謝.................................................................................................................................... ii
中文摘要............................................................................................................................ iii
英文摘要............................................................................................................................ iv
總目錄................................................................................................................................ vi
圖目錄.............................................................................................................................. viii
表目錄................................................................................................................................ xi
第一章 前言................................................01
第二章 文獻回顧..........................................03
2.1非晶質合金概述.......................................03
2.2非晶質合金之製造方法.............................03
2.3非晶質熱力學性質....................................04
2.3.1 玻璃轉換溫度Tg....................................04
2.3.2 過冷液相區ΔTx.....................................05
2.3.3 簡化玻璃溫度Trg...................................06
2.3.4 γ和γm指數...........................................06
2.3.5非晶質合金的成型能力............................07
2.4金屬玻璃相分離.........................................08
2.4.1相分離簡介.............................................08
2.4.2相分離熱力學條件...................................09
2.5雙相非晶質合金製備方式............................12
2.5.1旋鑄融煉法.............................................12
2.5.2固化成型法.............................................14
2.5.3機械合金法.............................................14
2.6平衡相圖...................................................15
2.6.1 Zr-Cu-Ni與Zr-Cu-Ni-Al合金平衡相圖..........16
2.7背向散射電子繞射簡介................................16
第三章 實驗步驟.............................................42
3.1合金試片配製.............................................42
3.2試片製備方式.............................................43
3.3熱分析量測................................................44
3.4 EPMA量測分析.........................................44
3.5 XRD量測分析............................................45
3.6 TEM量測分析............................................45
3.7 EBSD量測分析..........................................45
3.8硬度量測量測分析.......................................46
第四章 結果與討論...........................................51
4.1合金設計.....................................................51
4.2 EPMA分析結果...........................................51
4.3熱性質分析結果............................................53
4.4硬度分析結果...............................................54
4.5 XRD分析結果..............................................54
4.6 EBSD分析結果............................................56
4.7 TEM分析結果..............................................57
4.8熱處理.........................................................59
第五章 結論......................................................87
第六章 參考文獻 ...............................................89
參考文獻 References
1. W. Klement, R. H. Wilens, P. Duwez, Nature, vol.187, pp.869-874, 1960.
2. D. Turnbull, Contemp. Phys., vol.10, pp.473-477, 1969.
3. T. Masumoto and K. Suzuki (eds.), Japan Institute of Metals, Sendai, 1981.
4. F. E. Luborsky (ed.), Butterworth, London, 1983.
5. S. Steeb and H. Warlimont (eds.), Elsevier, Amsterdam, 1985.
6. A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Japan. J. Appl. Phys., 27, L2248-L2251, 1988.
7. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 30, pp.965-972, 1989.
8. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 31, pp.177-183, 1990.
9. A. Peker and W.L. Johnson, Appl. Phys. Lett., 63, pp.2342-2344, 1993.
10. A. Inoue and N. Nishiyama and T. Matsuda, Mater. Trans. Japan. Inst. Metals, 37, pp.181-184, 1996.
11. R. B. Schwarz and Y. He, Mater. Sci. Forum, 235-238, pp.231, 1997.
12. T. Zhang and A. Inoue, Mater. Trans. Japan. Inst. Metals, 39, p.1001, 1998.
13. T. Zhang and A. Inoue, Mater. Trans. Japan. Inst. Metals, 40, p.301, 1999.
14. A.A. Kündig, M. Ohnuma, D. H. Ping, T. Ohkubo, K. Hono, Acta Mater., 52, pp.2441, 2004.
15. Z. Bian, T. Zhang, W. Zhang, A. Inoue, Materials Transactions, vol. 44, issue 11, pp.2410-2413, 2003.
16. J. Gröbner, D. Mirkovic and R. chmid-Fetzer, Acta Materialia, 53, pp.3271-3280, 2005.
17. P.Y. Lee, S.T. Chung, C.K. Lin, W.T. Tsai and H.M. Lin, Materials Transactions, Vol. 48, 7, pp.1595-1599, 2007.
18. N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock and L. Schultz, Scripta Materialia vol.53, pp.271-274, 2005.
19. N. Mattern, U. Kühn, A. Gebert, A. Schöps, T. Gemming and L. Schultz, Materials Science and Engineering A 449–451, pp.207-210, 2007.
20. A. Concustell, N. Mattern, H. Wendrock, U. Kühn, A. Gebert, J. Eckert, A.L. Greer, J. Sort and M.D. Baro, Scripta Mater. 56, pp.85-88, 2007.
21. N. Mattern, J. of Non-Crystalline Solids, 353, pp.1723–1731.2007.
22. N. Mattern, T. Gemming, G. Goerigk and J. Eckert, Scripta Mater., 57, pp.29-32, 2007.
23. Q.S. Zhang, W. Zhang, G.Q. Xie, K.S. Nakayama, H. Kimura and A. Inoue, Journal of Alloys and Compounds, 431, pp.236-240, 2007.
24. J. Eckert, J. Das, S. Pauly and C. Duhamel, J. Mater. Res., 22, pp.285-301, 2007.
25. S. Pauly, J. Das, C. Duhamel and J. Eckert, Adv Eng Mater, 9, pp.487-491, 2007.
26. J. Das, S. Pauly, M. Boström, K. Durst, M. Göken and J. Eckert, J. of Alloys and Compounds, 483, pp.97-101, 2009.
27. S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, D.H. Kim and J. Eckert, Scripta Mater., 60, pp.431-434, 2009.
28. J. Das, S. Pauly, C. Duhamel, B.C. Wei and J. Eckert, J Mater Res., 22, pp. 326-333, 2007.
29. S. Pauly, J. Das, C. Duhamel and J. Eckert, Metallurgical and Materials Transactions A, Vol. 39, 8, pp.1868-1873, 2008.
30. S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern and J. Eckert, Acta Mater., 57, pp.5445-5453, 2009.
31. X.H. Du, J.C. Huang, K.C. Hsieh, J.S.C. Jang, and P.K. Liaw, Y.H. Lai and H.M. Chen, Appl. Phys. Lett. vol. 91, pp.131901 (1-3), 2007.
32. X.H. Du, J.C. Huang, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, H.M. Chen, H.S. Chou and Y.H. Lai, ADVANCED ENGINEERING MATERIALS, 11, 5, pp.387-391, 2009.
33. X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J.S.C. Jang, and P.K. Liaw, Intermetallics, 17, pp.607-613, 2009.
34. B.J. Park, H.J. Chang, D.H. Kim and W.T. Kim, Appl. Phys. Lett., 85, pp.6353-6355, 2004.
35. B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan and S. Bhattacharyya, Phys. Rev. Lett., 96, pp.245503, 2006.
36. H.J. Chang, W. Yook, E.S. Park, J.S. Kyeong and D.H. Kim, Acta Materialia, 58, pp.2483-2491, 2010.
37. J.H. Han, N. Mattern, D.H. Kim and J. Eckert, J. of Alloys and Compounds, 509S, pp.S42–S45, 2011.
38. J.H. Han, N. Mattern, B. Schwarz, S. Gorantla, T. Gemming and J. Eckert, Intermetallics, 20, pp.115-122, 2012.
39. D. Mirković, J. Gröbner and R. Schmid-Fetzer, Materials Science and Engineering A vol. 487, pp.456-467, 2008.
40. D. Mirković, J. Gröbner and R. Schmid-Fetzer, Acta Mater., 56, pp.5214–5222, 2008.
41. R. Dai, S.G. Zhang and J.G. Li, J. of Electronic Materials, Vol. 40, 12, pp.2458-2464, 2011.
42. I. Yamauchi, T. Irie and H. Sakaguchi, J. of Alloys and Compounds, 403, pp.211-216, 2005.
43. T. Kozieł, Z. Kędzierski, A. Zielińska-Lipiec and K. Ziewiec, Scripta Materialia, 54, pp.1991-1995, 2006.
44. E.S. Park, E.Y. Jeong, J.-K. Lee, J.C. Bae, A.R. Kwon, A. Gebert, L. Schultz, H.J. Chang and D.H. Kim, Scripta Mater., 56, pp.197-200, 2007.
45. 吳學陞著作,新興材料-塊狀非晶質金屬材料,工業材料,149期,pp.154-159,1999。
46. R.W. Cahn, P. Hassen and E.J. Kramer(ed), Materials Science and Technology, 9, New York, USA, 1991.
47. K.L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.
48. W. Paul and R.J. Temkin, Adv. Phys., pp.531, 1973.
49. B. Li, N. Nordstrom and E.J. Lavernia, Mater. Sci. Eng., A237, pp.207, 1997.
50. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., B94, pp.141, 2002.
51. P. S. Grant, Prog. Mater. Sci., 39, pp.497, 1995.
52. C.R. M. Afonso, C. Bolfarini, C.S. Kiminami, N.D. Bassim, M.J. Kaufman, M.F. Amateau, T.J. Eden and J.M. Galbraith, J. Non-Cryst. Solids, 284, pp.134, 2001.
53. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater., 47, pp.579, 1999.
54. Z.P. Xing, S.B. Kang and H.W. Kim, Metall. Mater. Trans., A33, pp.1521, 2002.
55. C.C. Koch, O.B. Kavin, C.G. Mckamey and J.O. Scarbrough, Appl. Phys. Lett., 43, pp.1017, 1983.
56. J. Lee, F. Zhou, K.H. Chung, N.J. Kim and E.J. Lavernia, Metall. Mater. Trans., A32, pp.3109, 2001.
57. M.S. El-Eskandarany and A. Inoue, Metall. Mater. Trans., A33, pp.135, 2002.
58. A. Sagel, H. Sieber, H.-J. Fecht and J.H. Perepezko, Acta Material, 46, pp.4233, 1998.
59. 莊裕仁著,機械月刊第二十六卷第四期,p.358, 1999.
60. Lawrence H. Van Vlack, Elements of Materials Science and Engineering, Addition Wesley, 1986.
61. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
62. L.J. Chang, Master Thesis, Kaohsiung, Taiwan, 2003.
63. H.S. Chen, etal., J. Chem. Phys., vol.48, pp.2560-2565, 1968.
64. M.H. Cohen and D. Turnbull, Nature, vol.203, pp.964-965, 1964.
65. D. Weaire, etal. , Nature, vol.203, pp.779-784, 1971.
66. J.H. Gibbs, etal., J. Chem. Phys., vol.28, pp.373-375, 1958.
67. M. Hansen, etal., in Constitution of Binary Alloys, McGrew-Hill, p.206, 1958.
68. M.H. Cohen, etal., J. Chem. Phys., vol.31, pp.1164-1168, 1959.
69. Z.P. Lu and C.T. Liu, Acta Mater., vol.50, pp.3501-3512, 2002.
70. Z.P. Lu and C.T. Liu, Intermetallics, 12, pp.1035-1043, 2004.
71. X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Lu, J. Appl. Phys., vol. 101, pp.086108, 2007.
72. X.H. Du and J.C. Huang, Chinese Phys. Lett., vol. 24, pp.1335-1338, 2007.
73. A. Inoue, Acta mate, 48, pp.279-306, 2000.
74. A. Inoue, Materials Science and Engineering Vol. 267, pp.171-183, 1999.
75. D.H. Kim, W.T. Kim, E.S. Park, N. Mattern and J. Eckert, Progress in Materials Science, 58, pp.1103-1172, 2013.
76. Hancock H. Theory of maxima and minima. Boston: MA: Ginn; 1917. p. 91.
77. Lupis CHP. Chemical thermodynamics of materials. New York: North-Holland, pp. 298-305, 1983.
78. Ratke L, Diefenbach S. Liquid immiscible alloys. Mat. Sci. Eng. R, 15(7–8), pp.263-347, 1995.
79. de Boer FR, Boom R, Mattens WCM, et al. Cohesion in Metals 1, Cohesion and Structure 1988 ISBN 0-444-87098-9.
80. H.J. Chang, W. Yook , E.S. Park, J.S. Kyeong and D.H. Kim, Acta Mater, 58, pp.2483-2491, 2010.
81. F.N. Rhines, Phase Diagrams in Metallurgy, McGraw-Hill Book Company, New York, pp.5-8, 1956.
82. V.N. Fedorov, M.V. Zakharov, V.I, Kucherov and G.S. Ivanova, Izv. Vyssh. Ucheb. Zaved. Tsv. Met., No. 5, pp. 74-77, 1968
83. J.L. Glimois, P. Forey, J. Feron and C. Becle, J. Less-Common Met., 78, pp.45-50, 1981.
84. L. Glimois, P Forey, and J.L. Feron, J. Less-Common Met., 113, pp.213-24, 1985.
85. P. Forey, J.L. Glimois and J.L. Feron, J. Less-Common Met., 124, pp.21-27, 1986.
86. 柳智華,“Zr-Cu-Ni三元系合金800 ℃之相圖測定”,國立中山大學材料科學研究所,碩士論文,2004.
87. 蔣偉仁,“鋯基非晶質合金及平衡相圖研究”,國立中山大學材料科學研究所,博士論文,2007.
88. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto, Mater. Trans. JIM, 34, pp.1234-1237, 1993.
89. T. Zhang and A. Inoue, Mater. Trans. JIM, 39, pp.1230-1237, 1998.
90. W. Chen, Y. Wang, J. Qiang and C. Dong, Acta Materialia, 51, pp.1899-1907, 2003.
91. A. Inoue, Mater. Trans. JIM, 36, pp.1420-1426, 1995.
92. T. Zhang, A. Inoue and T. Masumoto, Mater. Trans. JIM, 32, pp.1005-1010, 1991.
93. D.J. Prior, A. Boyle, F. Brenker, M.C. Cheadle and A. Day, American Mineralogist 84, pp.1741, 1999.
94. 陳志慶,"背向散射電子繞射技術的空間及角解析度之探討",國立成功大學材料科學與工程學系,博士論文,2012.
95. V. Randle, Microtexture Determination and Its Applications, London: Inst. Materials, pp.38-63, 1992.
96. 黃宏勝、林麗娟,工業材料雜誌,Vol. 201, pp.99, 2003.
97. R.P. Goehner and J.R. Michael, Journal of Research of the National Institute of Standards and Technology, 101, 3, pp.301-308, 1996.
98. V. Ya Markiv and V.V. Burnashova, Poroshk. Metall., 12, pp.53-58, 1970.
99. Y. Yokoyama, K. Fukaura and A. Inoue, Intermetallics, 10, pp.1113-1124, 2002.
100. Y. Hirotsu, T.G. Nieh, A. Hirata, T. Ohkubo and N. Tanaka, Phys. Rev. B, 73(1), pp.012205, 2006.
101. Z.P. Lu, H. Tan, Y. Li and S.C. Ng, Journal of Non-Crystalline Solids, 270, pp.103-114, 2000.
102. A. Inoue and T. Zhang, Mater. Trans. JIM, 37, pp.185-187, 1996
103. H. Zhang, X. Jing, G. Subhash, L.J. Kecskes and R.J. Dowding, Acta Mater., 53, pp.3849-3859, 2005.
104. L.A. Davis, C.P. Chou, L.E. Tanner and R. Ray, Scr. Metall., 10, 10, pp.937-940, 1976.
105. B.P. Kanungo, S.C. Glade, P.A. Kumar and K.M. Flores, Intermetallics, 12, pp.1073-1080, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code