Responsive image
博碩士論文 etd-0111101-150516 詳細資訊
Title page for etd-0111101-150516
論文名稱
Title
以植入槽孔方式增加矩形微帶天線操作頻寬的設計
BANDWIDTH-ENHANCEMENT DESIGNS OF SLOT-LOADED RECTANGULAR MICROSTRIP ANTENNAS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-01-10
繳交日期
Date of Submission
2001-01-11
關鍵字
Keywords
雙頻帶操作、寬頻帶操作、矩形微帶天線、微帶天線、植入槽孔金屬片、增加頻寬
BROADBAND OPERATION, BANDWIDTH ENHANCEMENT, RECTANGULAR MICROSTRIP ANTENNAS, DUAL-FREQUENCY OPERATION, MICROSTRIP ANTENNAS, SLOT-LOADED PATCH
統計
Statistics
本論文已被瀏覽 5693 次,被下載 4847
The thesis/dissertation has been browsed 5693 times, has been downloaded 4847 times.
中文摘要
本論文的內容為針對植基於薄介質基板上的矩形微帶天線的金屬面上蝕刻植入的槽孔,以增加其阻抗頻寬之特性作分析與探討。主要的設計研究方法是先依預定的天線設計規格或預期可獲得的天線特性目標產生天線的設計概念,由此得到一個天線的設計雛形。而後將此一設計雛形以 IE3DTM模擬軟體分析其特性趨勢後,再將其與實際製作後的量測結果比較,並依此修正天線的設計,得到最後符合設計規格或預期特性的最佳化結果。其中由平行極化的雙頻微帶天線設計開始,利用在天線的金屬面上設計適當的植入槽孔形式,以有效改變整體天線元件的輸入阻抗特性,造成天線的雙共振作用,激發兩個具有相似輻射特性的相鄰模態。並經由對其天線特性的研究與了解後,進而再設計在天線金屬面上適當位置植入的干擾槽孔,拉近兩個激發模態的共振頻率,並使其合而為一較寬的操作頻帶,成功的設計出四種具有不同植入槽孔形式,可增加矩形微帶天線操作頻寬的天線設計。
Abstract
The bandwidth-enhancement characteristics of slot-loaded rectangular microstrip antennas constructed on a thin microwave substrate have been investigated in this dissertation. The primary design process about this topic is demonstrated. Firstly, a new antenna design idea is provided from pre-determined antenna design specifications or obtained antenna performances from the previous antenna design, which lead to a novel antenna configuration. From the results of the simulation software IE3DTM, the characteristics of this new antenna configuration are obtained and compared with the experimental results. The antenna configuration is also modified to achieve a final optimal design from the comparison results. The study of the single-feed dual-frequency rectangular microstrip antenna with a pair of bent slots is first presented. By embedding properly-designed slots on a rectangular microstrip patch, the impedance characteristics of this antenna design have been effectively changed to exhibit dual-resonant behavior, which result in the excitation of two adjacent resonant modes with similar radiation characteristics. Furthermore, the two resonant modes can be excited at frequencies very close to each other to form a wider operating bandwidth by embedding additional perturbation slots. Four successful antenna designs with different embedded-slot shapes for bandwidth enhancement have been implemented and discussed in this dissertation.
目次 Table of Contents
文 字 目 錄
頁次
文字目錄 i
圖形目錄 iv
表格目錄 xiii

第一章 序論 (Introduction) 1
1.1 概述 1
1.2 文獻導覽 2
1.3 內容提要 4

第二章 植入一對彎曲槽孔的雙頻操作矩形微帶天線設計
(Design of Dual-frequency Rectangular Microstrip Antennas with a Pair of Properly-Bent Narrow Slots) 5
2.1 概述 5
2.1.1 垂直極化雙頻微帶天線的設計 5
2.1.2 平行極化雙頻微帶天線的設計 6
2.2 設計概念 16
2.3 天線的設計 17
2.4 結果與討論 21

第三章 以植入一對刷形槽孔增加矩形微帶天線操作頻寬的設計
(Bandwidth-Enhancement Design for Rectangular Microstrip Antennas with a Pair of Toothbrush-Shaped Slots) 32
3.1 概述 32
3.2 設計概念 35
3.3 探針饋入的天線設計 36
3.3.1 天線結構 36
3.3.2 分析與討論 36
3.4 微帶線嵌入饋入式的天線設計 48
3.4.1 天線結構 48
3.4.2 結果與討論 48
3.5 微帶線直接饋入式的天線設計 55
3.5.1 天線結構 55
3.5.2 結果與討論 56
3.6 三種饋入方式的天線特性比較 63

第四章 植入一對直角槽孔與一個近似U形槽孔以增加矩形微帶天線操作頻寬的設計
(Bandwidth-Enhancement Design for Rectangular Microstrip Antennas with a Pair of Right-Angle Slots and a Modified U Slot) 65
4.1 研究動機 65
4.2 天線設計 69
4.3 結果與討論 72

第五章 植入一對雙彎曲槽孔與一個附加的彎曲槽孔以增加矩形微帶天線操作頻寬的設計
(Bandwidth-Enhancement Design for Rectangular Microstrip Antennas with a Pair of Double-Bent Slots and an Additional Bent Slot) 82
5.1 設計概念 82
5.2 天線設計 83
5.3 結果與討論 87

第六章 植入一對雙彎曲槽孔以增加矩形微帶天線操作頻寬的設計
(Bandwidth-Enhancement Design for Rectangular Microstrip Antennas with a Pair of Double-Bent Slots) 92
6.1 設計概念 92
6.2 天線設計 92
6.3 分析與討論 95

第七章 結論 (Conclusions) 103

參考文獻 (References) 104


圖 形 目 錄
頁次
圖2.1.1 垂直極化雙頻操作矩形微帶天線的幾何結構圖. 9
圖2.1.2 在天線金屬微片與接地金屬面之間植入一個可調長度的短路同軸微帶作為電抗負載的雙頻操作矩形微帶天線的幾何結構圖. 10
圖2.1.3 在天線金屬微片的邊緣嵌入一固定寬度的微帶線作為電抗負載的雙頻操作矩形微帶天線的幾何結構圖 11
圖2.1.4 植入短路棒或槽孔的雙頻操作矩形微帶天線的幾何結構圖 12
圖2.1.5 典型的植入短路棒的雙頻操作微帶天線(矩形)的幾何結構圖 13
圖2.1.6 植入變容二極體的雙頻操作矩形微帶天線的幾何結構圖 14
圖2.1.7 在靠近天線金屬微片的輻射邊植入一對狹窄槽孔的雙頻操作矩形微帶天線的幾何結構圖 15
圖2.3.1 具有一對彎曲槽孔的雙頻操作矩形微帶天線的幾何結構圖 19
圖2.3.2 使用IE3DTM模擬軟體分析所得到的植入一對彎曲槽孔的矩形微帶天線的雙共振模態所激發的金屬微片表面電流分佈:(a)受到微擾的矩形TM10基模態的金屬片表面電流分佈;(b)TMd0模態的金屬片表面電流分佈;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,a = 30o,ls = 19 mm,dL = dw = ws = 1 mm,xp = 0.7 mm 20
圖2.4.1 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在不同彎曲角(a)時,操作雙頻的返回損失頻率響應圖:(a)彎曲角為15度;(b)彎曲角為20度;(c)彎曲角為25度;(d)彎曲角為30度;天線設計參數如表2.4.1所示 24
圖2.4.2 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在不同彎曲角時的操作雙頻及頻率比;天線設計參數如表2.4.1所示 25
圖2.4.3 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在不同彎曲角時操作雙頻的最大天線增益;天線設計參數如表2.4.1所示 26
圖2.4.4 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在彎曲角為15度且直槽段長度為19 mm時,兩共振模態的輻射場型圖:(a) TM10模態;(b) TMd0模態;其餘天線參數如表2.4.1所示 27
圖2.4.5 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在彎曲角為30度且直槽段長度為19 mm時,兩共振模態的輻射場型圖:(a) TM10模態;(b) TMd0模態;其餘天線參數如表2.4.1所示 28
圖2.4.6 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在彎曲角為30度時,不同直槽段長度(ls)的操作雙頻返回損失頻率響應圖:(a)直槽段長度為19 mm時;(b)直槽段長度為10 mm時;其餘天線參數如表2.4.1所示 29
圖2.4.7 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在彎曲角為30度時,不同直槽段長度(ls)的操作雙頻最大天線增益;其餘天線參數如表2.4.1所示 30
圖2.4.8 植入一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得在彎曲角為30度且直槽段長度為10 mm時,兩共振模態的輻射場型圖:(a) TM10模態;(b) TMd0模態;其餘天線參數如表2.4.1所示 31
圖3.3.1 以單一50W同軸探針饋入之具有一對刷形槽孔的矩形微帶天線的幾何結構圖 40
圖3.3.2 使用IE3DTM模擬軟體分析所得到的植入一對刷形槽孔的矩形微帶天線的雙共振模態所激發的金屬微片表面電流分佈:(a)受到微擾的矩形TM10基模態的金屬片表面電流分佈;(b)TMd0模態的金屬片表面電流分佈;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,其餘天線設計參數如圖3.3.1所示 41
圖3.3.3 探針饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)天線一的設計;(b) 天線二的設計;(c)天線三的設計;(d)天線四的設計;天線設計參數如表3.3.1所示 42
圖3.3.4 探針饋入式之具有一對刷形槽孔的矩形微帶天線,其天線四的設計於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1773 MHz;(b)TMd0模態,共振頻率為1824 MHz;天線設計參數如表3.3.1所示 43
圖3.3.5 探針饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;(d)天線四的設計;天線設計參數如表3.3.1所示 44
圖3.3.6 探針饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)三對突伸槽孔的間距為2 mm,且長度分別為9、8.5及8 mm的設計;(b)五對突伸槽孔的間距為0.5 mm,且長度分別為9、8.5、8、7.5及7 mm的設計;(c)七對突伸槽孔的間距為0 mm,且長度配置的階梯式斜率與(b)相同;其餘天線參數與表3.3.1所示相同 45
圖3.3.7 探針饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖;(a)三對突伸槽孔的間距為2 mm,且長度分別為9、8.5及8 mm的設計;(b)五對突伸槽孔的間距為0.5 mm,且長度分別為9、8.5、8、7.5及7 mm的設計;(c)七對突伸槽孔的間距為0 mm,且長度配置的階梯式斜率與(b)相同;其餘天線參數與表3.3.1所示相同 46
圖3.3.8 以單一50W同軸探針饋入之具有一對刷形槽孔的矩形微帶天線的幾何結構圖 47
圖3.4.1 以微帶線嵌入饋入之具有一對刷形槽孔的矩形微帶天線的幾何結構圖 51
圖3.4.2 微帶線嵌入饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;天線設計參數如表3.4.1所示 52
圖3.4.3 微帶線嵌入饋入式之具有一對刷形槽孔的矩形微帶天線,其天線一的設計於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1664 MHz;(b)TMd0模態,共振頻率為1703 MHz;天線設計參數如表3.4.1所示 53
圖3.4.4 微帶線嵌入饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;天線設計參數如表3.4.1所示 54
圖3.5.1 以微帶線直接饋入之具有一對刷形槽孔的矩形微帶天線的幾何結構圖 58
圖3.5.2 採用不同的微帶線直接饋入網路設計之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)饋入網路採用單截式阻抗轉換器的天線一設計;(b)饋入網路採用二截式阻抗轉換器的天線二設計;天線設計參數如表3.5.1所示 59
圖3.5.3 採用單截式阻抗轉換器設計微帶線直接饋入網路之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1838 MHz;(b)TMd0模態,共振頻率為1872 MHz;天線參數如表3.5.1所示 60
圖3.5.4 採用二截式阻抗轉換器設計微帶線直接饋入網路之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1752 MHz;(b)TMd0模態,共振頻率為1805 MHz;天線參數如表3.5.1所示 61
圖3.5.5 採用不同的微帶線直接饋入網路設計之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)饋入網路採用單截式阻抗轉換器的天線一設計;(b)饋入網路採用二截式阻抗轉換器的天線二設計;天線設計參數如表3.5.1所示 62
圖4.1.1 以單一50W同軸探針饋入之具有一對直角槽孔的矩形微帶天線的幾何結構圖 66
圖4.1.2 探針饋入式之具有一對直角槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)長直槽段長度(l2)為19 mm,饋入位置(xp)為2.7 mm的設計;(b) l2 = 25 mm,xp = 2.7 mm的設計;(c) l2 = 30 mm,xp = 2.7 mm的設計;(d) l2= 35 mm,xp = 8.2 mm的設計;其餘天線參數如圖4.1.1中所示 67
圖4.1.3 具有一對直角槽孔的矩形微帶天線,於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1574 MHz;(b)TMd0模態,共振頻率為3273 MHz;l2 = 19 mm,xp = 2.7 mm,其餘天線參數如圖4.1.1中所示 68
圖4.2.1 以單一50W同軸探針饋入之具有一對直角槽孔以及一個近似U形槽孔的矩形微帶天線的幾何結構圖 70
圖4.2.2 使用IE3DTM模擬軟體分析所得到的植入一對直角槽孔以及一個近似U形槽孔的矩形微帶天線的雙共振模態所激發的金屬微片表面電流分佈:(a)TM10模態;(b)TMd0模態; er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,l1 = 10.4 mm,l2 = 33.5 mm,l3 = 11.5 mm,l4 = 6 mm,l5 = 0.5 mm,xp = 2.9 mm,ws = 1 mm 71
圖4.3.1 探針饋入式之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;天線設計參數如表4.3.1中所示 75
圖4.3.2 具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,其天線三的設計實例於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1844 MHz;(b)TMd0模態,共振頻率為1900 MHz;天線設計參數如表4.3.2所示 76
圖4.3.3 探針饋入式之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;天線設計參數如表4.3.1中所示 77
圖4.3.4 探針饋入式之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)天線三的設計;(b)天線四的設計;(c)天線五的設計;天線設計參數如表4.3.2中所示 78
圖4.3.5 探針饋入式之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)天線三的設計;(b)天線四的設計;(c)天線五的設計;天線設計參數如表4.3.2中所示 79
圖4.3.6 製作於 RO3003TM 介質基板上的探針饋入式之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,量測所得的返回損失頻率響應圖;er = 3.0,h = 1.524 mm,L = 37.3 mm,W = 24.87 mm,l1 = 10.4 mm,l2 = 33.9 mm,l3 = 11 mm,l4 = 7 mm,l5 = 8 mm,xp = -9.4 mm,ws = 0.5 mm,接地微波基板的長寬尺寸分別為60及50 mm,其餘天線參數與圖4.2.1所示相同 80
圖4.3.7 製作於 RO3003TM 介質基板上的探針饋入式之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,量測所得最大天線增益的頻率響應圖;天線參數與圖4.3.6中所示相同 81
圖5.2.1 以單一50W同軸探針饋入之具有一對雙彎曲槽孔以及一個附加彎曲槽孔的矩形微帶天線的幾何結構圖 85
圖5.2.2 使用IE3DTM模擬軟體分析所得到的植入一對雙彎曲槽孔以及一個附加彎曲槽孔的矩形微帶天線的雙共振模態所激發的金屬微片表面電流分佈:(a) TM10模態的金屬片表面電流分佈;(b)TMd0模態的金屬片表面電流分佈;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,l1 = 0.7 mm,l2 = 0.5 mm,lt = 5 mm,xp = -0.2 mm,其餘天線參數如圖5.2.1中所示 86
圖5.3.1 探針饋入之具有一對雙彎曲槽孔以及一個附加彎曲槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;(d)天線四的設計;天線設計參數如表5.3.1中所示 89
圖5.3.2 探針饋入之具有一對雙彎曲槽孔以及一個附加彎曲槽孔的矩形微帶天線,其天線三的設計實例於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)TM10模態,共振頻率為1812 MHz;(b)TMd0模態,共振頻率為1874 MHz;天線設計參數如表5.3.1所示 90
圖5.3.3 探針饋入之具有一對雙彎曲槽孔以及一個附加彎曲槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)天線一的設計;(b)天線二的設計;(c)天線三的設計;(d)天線四的設計;天線設計參數如表5.3.1中所示 91
圖6.2.1 以單一50W同軸探針饋入之具有一對雙彎曲槽孔的矩形微帶天線的幾何結構圖 94
圖6.3.1 使用IE3DTM模擬軟體分析所得到的植入一對雙彎曲槽孔的矩形微帶天線的雙共振模態所激發的金屬微片表面電流分佈:(a)第一個共振模態的金屬片表面電流分佈;(b)第二個共振模態的金屬片表面電流分佈;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,a = 17o,b = 75o,l1 = 7 mm,l2 = 0.7 mm,ws = 2 mm,xp = 0 mm,其餘天線設計參數示於圖6.2.1中 99
圖6.3.2 探針饋入式之具有一對雙彎曲槽孔的矩形微帶天線,於實際製作後量測所得的返回損失頻率響應圖:(a)天線六的設計;(b)天線七的設計;(c)天線八的設計;(d)天線九的設計;天線設計參數如表6.3.2中所示 100
圖6.3.3 探針饋入式之具有一對雙彎曲槽孔的矩形微帶天線,其天線六的設計實例於實際製作後量測所得在兩共振模態共振頻率的輻射場型圖:(a)第一個共振模態,共振頻率為1826 MHz;(b)第二個共振模態,共振頻率為1886 MHz;天線設計參數如表6.3.2所示 101
圖6.3.4 探針饋入式之具有一對雙彎曲槽孔的矩形微帶天線,於實際製作後量測所得最大天線增益的頻率響應圖:(a)天線六的設計;(b)天線七的設計;(c)天線八的設計;(d)天線九的設計;天線設計參數如表6.3.2中所示 102






表 格 目 錄
頁次
表2.4.1 探針饋入之具有一對彎曲槽孔的矩形微帶天線,於實際製作後量測所得的操作雙頻特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,ls = 19 mm,dL = dw = ws = 1 mm,接地微波基板的長寬尺寸分別為60及50 mm 21
表3.3.1 探針饋入式之具有一對不同設計參數的刷形槽孔的矩形微帶天線,於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,接地微波基板的長寬尺寸分別為60及50 mm,其餘天線參數示於圖3.3.1中 38
表3.4.1 微帶線嵌入饋入式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,Wf = 3 mm,g = 1 mm,接地微波基板的長寬尺寸分別為60及50 mm,其餘天線參數如圖3.4.1中所示 50
表3.5.1 採用不同的微帶線直接饋入網路設計之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,接地微波基板的長寬尺寸分別為150及60 mm,其餘天線參數如圖3.5.1中所示 57
表3.6.1 採用不同饋入方式之具有一對刷形槽孔的矩形微帶天線,於實際製作後量測所得各項天線特性的比較 64
表4.3.1 具有一對不同長度設計的直角槽孔及一個近似U形槽孔的矩形微帶天線,於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,接地微波基板的長寬尺寸分別為60及50 mm,其餘天線參數如圖4.2.1所示 72
表4.3.2 能同時達成增加操作頻寬及使頻寬內的天線增益差小於3dB之具有一對直角槽孔及一個近似U形槽孔的矩形微帶天線,於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,l3 = 11.5 mm,l4 = 6 mm,l5 = 0.5 mm,接地微波基板的長寬尺寸分別為60及50 mm,其餘天線參數如圖4.2.1所示 73
表5.3.1 以單一50W同軸探針饋入之具有一對雙彎曲槽孔以及一個附加彎曲槽孔的矩形微帶天線,於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,接地微波基板的長寬尺寸分別為60及50 mm,其餘天線參數如圖5.2.1中所示 88
表6.3.1 具有一對雙彎曲槽孔的矩形微帶天線於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,ws = 1 mm,接地微波基板的長寬尺寸分別為60及50mm,其餘天線參數示於圖6.2.1中 98
表6.3.2 具有一對雙彎曲槽孔的矩形微帶天線於實際製作後量測所得的頻寬特性;er = 4.4,h = 1.6 mm,L = 37.3 mm,W = 24.87 mm,ws = 2 mm,接地微波基板的長寬尺寸分別為60及50mm,其餘天線參數示於圖6.2.1中 98



參考文獻 References
參 考 文 獻
(References)

[1] G. A. Deschamps, "Microstrip microwave antenna," presented at the Third USAF Symposium on Antennas, 1953.
[2] H. Gutton and G. Baissinot, "Flat aerial for ultra high frequencies," French patent no. 703 113, 1955.
[3]S. A. Long and M. D. Walton, "A dual-frequency stacked circular-disk antenna," IEEE Trans. Antennas Propagat., vol. 27, pp. 270-273, March 1979.
[4]J. S. Dahele, K. F. Lee, and D. P. Wong, "Dual frequency stacked annular-ring microstrip antenna," IEEE Trans. Antennas Propagat., vol. 35, pp. 1281-1285, Nov. 1987.
[5]R. Garg and K. V. S. Rao, "Dual-frequency microstrip antenna," Electron. Lett., vol. 19, pp. 357-358, May 12, 1983.
[6]F. Croq and D. Pozar, "Multifrequency operation of microstrip antennas using aperture coupled parallel resonators," IEEE Trans. Antennas Propagat., vol. 40, pp. 1367-1374, Nov. 1992.
[7]C. Salvador, L. Borselli, A. Falciani, and S. Maci, "A dual frequency planar antenna at S and X bands," Electron. Lett., vol. 31, pp. 1706-1707, Sep. 28, 1995.
[8]K. L. Wong and C. M. Chang, "Experimental study of a two-element dual-frequency microstrip array," Microwave Opt. Technol. Lett., vol. 15, pp. 67-68, June 5, 1997.
[9]J. S. Chen and K. L. Wong, "A single-layer dual-frequency rectangular microstrip patch antenna using a single probe feed," Microwave Opt. Technol. Lett., vol. 11, pp. 83-84, Feb. 5, 1996.
[10]Y. M. M. Antar, A. I. Ittipiboon, and A. K. Bhattachatyya, "A dual-frequency antenna using a single patch and an inclined slot," Microwave Opt. Technol. Lett., vol. 8, pp. 309-310, April 20, 1995.
[11]Y. Murakami, W. Chujo, I. Chiba, and M. Frujise, "Dual slot coupled microstrip antenna for dual frequency operation," Electron. Lett., vol. 29, pp. 1906-1907, Oct. 28, 1993.
[12]M. Deepukumar, J. George, C. K. Aanandan, P. Mohanan, and K. G. Nair, "Broadband dual frequency microstrip antenna," Electron. Lett., vol. 32, pp. 1531-1532, Aug. 15, 1996.
[13]W. F. Richards, S. E. Davidson, and S. A. Long, "Dual-band reactively loaded microstrip antenna," IEEE Trans. Antennas Propagat., vol. 33, pp. 556-561, May 1985.
[14]S. E. Davidson, S. A. Long, and W. F. Richards, "Dual-band microstrip antennas with monolithic reactive loading," Electron. Lett., vol. 21, pp. 936-937, Sep. 26, 1985.
[15]S. S. Zhong and Y. T. Lo, "Single-element rectangular microstrip antenna for dual-frequency operation," Electron. Lett., vol. 19, pp. 298-300, April 14, 1983.
[16]B. F. Wang and Y. T. Lo, "Microstrip antennas for dual-frequency operation," IEEE Trans. Antennas Propagat., vol. 32, pp. 938-943, Sep. 1984.
[17]D. H. Schaubert, F. G. Ferrar, A. Sindoris, and S. T. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. Antennas Propagat., vol. 29, pp. 118-123, Jan. 1981.
[18]K. L. Wong and W. S. Chen, "Compact microstrip antenna with dual-frequency operation," Electron. Lett., vol. 33, pp. 646-647, April 10, 1997.
[19]C. L. Tang, H. T. Chen, and K. L. Wong, "Small circular microstrip antenna with dual-frequency operation," Electron. Lett., vol. 33, pp. 1112-1113, June 19, 1997.
[20]S. C. Pan and K. L. Wong, "Dual-frequency triangular microstrip antenna with a shorting pin," IEEE Trans. Antennas Propagat., vol. 45, pp. 1889-1891, Dec. 1997.
[21]R. B. Waterhouse and N. V. Shuley, "Dual frequency microstrip rectangular patches," Electron. Lett., vol. 28, pp. 606-607, March 26, 1992.
[22]S. Maci, G. Biffi Gentili, and G. Avitabile, "Single-layer dual-frequency patch antenna," Electron. Lett., vol. 29, pp. 1441-1443, Aug. 5, 1993.
[23]M. L. Yazidi, M. Himdi, and J. P. Daniel, "Aperture coupled microstrip antenna for dual frequency operation," Electron. Lett., vol. 29, pp. 1506-1508, Aug. 19, 1993.
[24]S. Maci, G. Biffi Gentili, P. Piazzesi, and C. Salvador, "Dual-band slot-loaded patch antenna," IEE Proc. H, vol. 142, pp. 225-232, June 1995.
[25]K. L. Wong and K. P. Yang, "Small dual-frequency microstrip antenna with cross slot," Electron. Lett., vol. 33, pp. 1916-1917, Nov. 6, 1997.
[26]K. L. Wong and K. P. Yang, "Compact dual-frequency microstrip antenna with a pair of bent slots," Electron. Lett., vol. 34, pp. 225-226, Feb. 5, 1998.
[27]K. P. Yang and K. L. Wong, "Inclined-slot-coupled compact dual-frequency microstrip antenna with cross-slot," Electron. Lett., vol. 34, pp. 321-322, Feb. 19, 1998.
[28]K. L. Wong and S. T. Fang, "Reduced-size circular microstrip antenna with dual-frequency operation," Microwave Opt. Technol. Lett., vol. 18, pp. 54-56, May 1998.
[29]C. K. Wu, K. L. Wong, and W. S. Chen, "Slot-coupled meandered microstrip antenna for compact dual-frequency operation," Electron. Lett., vol. 34, pp. 1047-1048, May 28, 1998.
[30]J. H. Lu and K. L. Wong, "Slot-loaded, meandered rectangular microstrip antenna with compact dual-frequency operation," Electron. Lett., vol. 34, pp. 1048-1050, May 28, 1998.
[31]K. L. Wong and J. Y. Sze, "Dual-frequency slotted rectangular microstrip antenna," Electron. Lett., vol. 34, pp. 1368-1370, July 9, 1998.
[32]K. L. Wong and K. B. Hsieh, "Dual-frequency circular microstrip antenna with a pair of arc-shaped slots," Microwave Opt. Technol. Lett., vol. 19, pp. 410-412, Dec. 20, 1998.
[33]J. H. Lu and K. L. Wong, "Single-feed dual-frequency equilateral-triangular microstrip antenna with a pair of spur lines," Electron. Lett., vol. 34, pp. 1171-1173, June 11, 1998.
[34]K. L. Wong, S. T. Fang, and J. H. Lu, "Dual-frequency equilateral-triangular microstrip antenna with a slit," Microwave Opt. Technol. Lett., vol. 19, pp. 348-350, Dec. 5, 1998.
[35]K. L. Wong, M. C. Pan, and W. H. Hsu, "Single-feed dual-frequency triangular microstrip antenna with a V-shaped slot," Microwave Opt. Technol. Lett., vol. 20, pp. 133-134, Jan. 20, 1999.
[36]J. H. Lu and K. L. Wong, "Dual-frequency rectangular microstrip antenna with embedded spur lines and integrated reactive loading," Microwave Opt. Technol. Lett., vol. 21, pp. 272-275, May 20, 1999.
[37]J. Y. Jan and K. L. Wong, "Single-feed dual-frequency circular microstrip antenna with an open-ring slot," Microwave Opt. Technol. Lett., vol. 22, pp. 157-160, Aug. 5, 1999.
[38]J. H. Lu and K. L. Wong, "Compact dual-frequency circular microstrip antenna with an offset circular slot," Microwave Opt. Technol. Lett., vol. 22, pp. 254-256, Aug. 20, 1999.
[39]K. B. Hsieh and K. L. Wong, "Inset-microstrip-line-fed dual-frequency circular microstrip antenna and its application to a two-element dual-frequency microstrip array," IEE Proc.-Microw. Antennas Propagat., vol. 147, pp. 359-361, Oct. 20, 1999.
[40]S. T. Fang and K. L. Wong, "A dual-frequency equilateral-triangular microstrip antenna with a pair of narrow slots," Microwave Opt. Technol. Lett., vol. 23, pp. 82-84, Oct. 20, 1999.
[41]K. F. Lee, K. Y. Ho, and J. S. Dahele, "Circular-disk microstrip antenna with an air gap," IEEE Trans. Antennas Propagat., vol. 32, pp. 880-884, 1984.
[42]E. Chang, S. A. Long, and W. F. Richards, "An experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propagat., vol. 34, pp. 767-772, June 1986.
[43]T. Huynh and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., vol. 31, pp. 1310-1312, Aug. 3, 1995.
[44]K. F. Lee, K. M. Luk, K. F. Tong, Y. L. Yung, and T. Huynh, "Experimental study of a two-element array of U-slot patches," Electron. Lett., vol. 32, pp. 418-420, Feb. 29, 1996.
[45]K. M. Luk, K. F. Lee, and W. L. Tam, "Circular U-slot patch with dielectric superstrate," Electron. Lett., vol. 33, pp. 1001-1002, June 5, 1997.
[46]K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, "Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna," IEE Proc. H, vol. 144, pp. 354-358, Oct. 1997.
[47]K. M. Luk, Y. W. Lee, K. F. Tong, and K. F. Lee, "Experimental studies of circular patches with slots," IEE Proc. H, vol. 144, pp. 421-424, Dec. 1997.
[48]K. L. Wong and W. S. Hsu, "Broadband triangular microstrip antenna with U-shaped slot," Electron. Lett., vol. 33, pp. 2085-2087, Dec. 4, 1997.
[49]C. L. Mak, K. M. Luk, and K. F. Lee, "Proximity-coupled U-slot patch antenna," Electron. Lett., vol. 34, pp. 715-716, April 16, 1998.
[50]Y. L. Chow, K. M. Luk, K. F. Lee, Y. X. Guo, and Z. N. Chen, "Further broadbanding of the U-slot patch antennas with a third resonator of different structures," APMC Int. Symp. Dig., vol. 2, pp. 1035-1038, 1998.
[51]M. Clenet and L. Shafai, "Multiple resonance and polarization of U-slot patch antenna," Electron. Lett., vol. 35, pp. 101-103, Jan. 21, 1999.
[52]P. S. Hall, "Probe compensation in thick microstrip patches," Electron. Lett., vol. 23, pp. 606-607, May 21, 1987.
[53]K. M. Luk, C. L. Mak, Y. L. Chow, and K. F. Lee, "Broadband microstrip patch antenna," Electron. Lett., vol. 34, pp. 1442-1443, July 23, 1998.
[54]Y. X. Guo, K. M. Luk, K. F. Lee, and Y. L. Chow, "Double U-slot rectangular patch antenna," Electron. Lett., vol. 34, pp. 1805-1806, Sep. 17, 1998.
[55]K. M. Luk, Y. X. Guo, K. F. Lee, and Y. L. Chow, "L-probe proximity fed U-slot patch antenna," Electron. Lett., vol. 34, pp. 1806-1807, Sep. 17, 1998.
[56]C. L. Mak, K. M. Luk, K. F. Tong, Y. L. Chow, and K. F. Lee, "A novel broadband rectangular microstrip antenna," APMC Int. Symp. Dig., vol. 2, pp. 1031-1033, 1998.
[57]Y. X. Guo, K. M. Luk, K. F. Lee, and Y. L. Chow, "A U-slot patch antenna with an L-shaped probe," APMC Int. Symp. Dig., vol. 3, pp. 1317-1319, 1998.
[58]C. L. Mak, K. M. Luk, and K. F. Lee, "Wideband L-strip fed microstrip antenna," AP-S Int. Symp. Dig., vol. 2, pp. 1216-1219, 1999.
[59]C. Prior and P. S. Hall, "Microstrip disk antenna with short circuit annular ring," Electron. Lett., vol. 21, pp. 719-721, Aug. 15, 1985.
[60]K. L. Wong and Y. F. Lin, "Small broadband rectangular microstrip antenna with chip-resistor loading," Electron. Lett., vol. 33, pp. 1593-1594, Sep. 11, 1997.
[61]K. L. Wong and Y. F. Lin, "Microstrip-line-fed compact broadband circular microstrip antenna with chip-resistor loading," Microwave Opt. Technol. Lett., vol. 17, pp. 53-55, Jan. 1998.
[62]Y. F. Lin and K. L. Wong, "Compact broadband triangular microstrip antenna with an inset microstrip-line feed," Microwave Opt. Technol. Lett., vol. 17, pp. 169-170, Feb. 20, 1998.
[63]J. H. Lu, C. L. Tang, and K. L. Wong, "Slot-coupled compact broadband circular microstrip antenna with chip-resistor and chip-capacitor loadings," Microwave Opt. Technol. Lett., vol. 18, pp. 345-349, Aug. 5, 1998.
[64]N. Fayyaz and S. Safavi-Naeini, "Bandwidth enhancement of a rectangular patch antenna by integrated reactive loading," IEEE AP-S Int. Symp. Dig., vol. 2, pp. 1100-1103, 1998.
[65]K. L. Wong and J. Y. Jan, "Broadband circular microstrip antenna with embedded reactive loading," Electron. Lett., vol. 34, pp. 1804-1805, Sep. 17, 1998.
[66]H. F. Pues and A. R. V. D. Capelle, "An impedance-matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas Propagat., vol. 37, pp. 1345-1354, Nov. 1989.
[67]P. S. Hall, C. Wood, and C. Garrett, "Wide bandwidth microstrip antennas for circuit integration," Electron. Lett., vol. 15, pp. 458-460, 1979.
[68]R. Q. Lee, K. F. Lee, and J. Bobinchak, "Characteristics of a two-layer electromagnetically coupled rectangular patch antenna," Electron. Lett., vol. 23, pp. 1070-1072, Sep. 24, 1987.
[69]R. Q. Lee and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propagat., vol. 38, pp. 1298-1302, Aug. 1990.
[70]S. Egashira and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propagat., vol. 44, pp. 1533-1534, Nov. 1996.
[71]K. M. Luk, K. F. Lee, and Y. L. Chow, "Proximity-coupled stacked circular-disk microstrip antenna with slots," Electron. Lett., vol. 34, pp. 419-420, March 5, 1998.
[72]E. Nishiyama, S. Egashira, and M. Aikawa, "Analysis of stacked microstrip antenna with high gain using FDTD method," APMC Int. Symp. Dig., vol. 2, pp. 1019-1022, 1998.
[73]P. S. Bhatnagar, J. P. Daniel, K. Mahdjoubi, and C. Terret, "Experimental study on stacked triangular microstrip antennas," Electron. Lett., vol. 22, pp. 864-865, July 31, 1986.
[74]C. Wood, "Improved bandwidth of microstrip antennas using parasitic elements," IEE Proc. H, vol. 127, pp. 231-234, 1980.
[75]G. Kumar and K. C. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," IEEE Trans. Antennas Propagat., vol. 32, pp. 1375-1379, Dec. 1984.
[76]G. Kumar and K. C. Gupta, "Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas," IEEE Trans. Antennas Propagat., vol. 33, pp. 173-178, Feb. 1985.
[77]G. Kumar and K. C. Gupta, "Directly coupled multiple resonator wide-band microstrip antennas," IEEE Trans. Antennas Propagat., vol. 33, pp. 588-593, June 1985.
[78]C. K. Aanandan and K. G. Nair, "Compact broadband microstrip antenna," Electron. Lett., vol. 22, pp. 1064-1065, Sep. 25, 1986.
[79]K. P. Ray and G. Kumer, "Multi-frequency and broadband hybrid-coupled circular microstrip antennas," Electron. Lett., vol. 33, pp. 437-438, March 13, 1997.
[80]S. T. Fang, K. L. Wong, and T. W. Chiou, "Bandwidth enhancement of inset-microstrip-line-fed equilateral-triangular microstrip antenna," Electron. Lett., vol. 34, pp. 2184-2186, Nov. 12, 1998.
[81]J. Y. Sze and K. L. Wong, "Broadband rectangular microstrip antenna with pair of toothbrush-shaped slots," Electron. Lett., vol. 34, pp. 2186-2187, Nov. 12, 1998.
[82]J. Y. Sze and K. L. Wong, "Single-layer single-patch broadband rectangular microstrip antenna," Microwave Opt. Technol. Lett., vol. 22, pp. 234-236, Aug. 20, 1999.
[83]D. M. Pozar, "Microstrip antenna aperture-coupled to a microstripline," Electron. Lett., vol. 21, pp. 49-50, Jan. 1985.
[84]D. M. Pozar and B. Kaufman, "Increasing the bandwidth of a microstrip antenna by proximity coupling," Electron. Lett., vol. 23, pp. 368-369, 1987.
[85]D. M. Pozar and R. W. Jackson, "An aperture coupled microstrip antenna with a proximity feed on a perpendicular substrate," IEEE Trans. Antennas Propagat., vol. 35, pp. 728-731, June 1987.
[86]J. F. Zurcher, "The SSFIP: A global concept for high-performance broadband planar antennas," Electron. Lett., vol. 24, pp. 1433-1435, Nov. 10, 1988.
[87]F. Croq and A. Papiernik, "Large bandwidth aperture-coupled microstrip antenna," Electron. Lett., vol. 26, pp. 1293-1294, Aug. 2, 1990.
[88]D. M. Pozar and S. D. Targonski, "Improved coupling for aperture coupled microstrip antennas," Electron. Lett., vol. 27, pp. 1129-1131, June 20, 1991.
[89]F. Croq and D. M. Pozar, "Millimeter wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Trans. Antennas Propagat., vol. 39, pp. 1770-1776, Dec. 1991.
[90]S. D. Targonski and D. M. Pozar, "Design of wide-band circularly polarized aperture coupled microstrip antennas," IEEE Trans. Antennas Propagat., vol. 41, pp. 214-220, Feb. 1993.
[91]F. E. Gardiol and J. F. Zurcher, "Broadband patch antennas-A SSFIP update," 1996 IEEE AP-S Int. Symp. Dig., pp. 2-5.
[92]S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "An aperture coupled stacked patch antenna with 50% bandwidth," 1996 IEEE AP-S Int. Symp. Dig., pp. 18-22.
[93]S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Trans. Antennas Propagat., vol. 46, pp. 1245-1251, Sep. 1998.
[94]Y. L. Chow and K. H. Shiu, "A theory on the broadbanding of a patch antenna," 1997 APMC Int. Symp. Dig., pp. 245-248.
[95]Y. T. Lo and S. W. Lee, Eds., Antenna Handbook. London: Peter Peregrinus Ltd., 1989, vol. 2, Chap. 10.
[96]M. L. Oberhart, Y. T. Lo, and R. Q. H. Lee, "New simple feed network for an array module of four microstrip elements," Electron. Lett., vol. 23, pp. 436-437, April 23, 1987.
[97]J. Huang, "The finite ground plane effect on the microstrip antenna radiation patterns," IEEE Trans. Antennas Propagat., vol. 31, pp. 649-653, July 1983.
[98]D. M. Pozar and D. H. Schaubert, Eds., Microstrip Antennas, pp.157-166. New York IEEE PRESS, Inc., 1995.
[99]P. Bhartia, K. V. S. Rao, and R. S. Yomar, Millimeter-wave Microstrip and Printed Circuit Antennas, p. 104. Norwood, MA: Artech House, 1991.
[100] J. R. James and P. S. Hall, Eds., Handbook of Microstrip Antennas. London: Peter Peregrinus Ltd., 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code