Responsive image
博碩士論文 etd-0111108-122118 詳細資訊
Title page for etd-0111108-122118
論文名稱
Title
低溫複晶矽薄膜電晶體於交流偏壓下之劣化特性研究
Investigation on Degradation Effect of Low-Temperature Poly-Si TFT under Dynamic Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-12-26
繳交日期
Date of Submission
2008-01-11
關鍵字
Keywords
複晶矽薄膜電晶體、交流偏壓、劣化特性
degradation, poly-si, polysilicon, Poly-Si TFT, ac stress
統計
Statistics
本論文已被瀏覽 5737 次,被下載 1872
The thesis/dissertation has been browsed 5737 times, has been downloaded 1872 times.
中文摘要
在這篇論文中,我們研究低溫複晶矽薄膜電晶體(LTPS TFTs)在經過電性交流偏壓後的劣化特性與機制。從實驗結果顯示出N型電晶體與P型電晶體在不同交流偏壓頻率的操作之下,所造成的劣化特性與機制是不同的。
在P型複晶矽薄膜電晶體中,我們觀察到臨限電壓在經由電性交流偏壓後造成的劣化是與測試頻率有緊要的關係。在低頻操作時,臨限電壓造成的劣化是比在高頻時還要嚴重的。元件在經過電性測試後的劣化主要來自於元件本身的自我加熱(Self-heating)而加速了負偏壓溫度之不穩定性(Negative Bias Temperature Instability)。而且,當環境溫度越來越大時,元件劣化(如臨限電壓偏移的程度與S.S 劣化)的速度會被加速。因此,我們認為臨限電壓的劣化機制是由晶界(Grain Boundary)和絕緣層與多晶矽的界面(Interface)的Si-H鍵產生斷鍵而造成的。
在N型複晶矽薄膜電晶體中,不同的交流偏壓頻率之下所造成的劣化特性歸因於溫度效應以及熱載子效應。在低頻操作之下,臨限電壓向右劣化以及遷移率會提高的現象首先在100秒的電性測試後被發現到。我們認為此時的溫度效應帶來的影響大於缺陷的產生效應帶來的影響。然而,臨限電壓反方向向左移動以及遷移率會降低的現象在500秒的電性測試後被發現。我們認為此時缺陷的產生帶來的影響大於溫度效應帶來的影響。在高頻操作之下,由於電晶體開關次數多使得在汲極端產生缺陷的效應使得電流以及遷移率皆下降。
Abstract
In this research, the degradation effect of the low temperature polycrystalline silicon TFTs (LTPS TFTs) under dynamic stress was investigated. The experiment results revealed that the degenerate behaviors of n- and p-type poly-Si were different.
In p-channel TFT, it was observed that the degradation of threshold-voltage (Vth) was closely associated with the stress frequency of ac stress. The degradation was more serious at low-frequency stress than that at high-frequency stress. The degradation of electrical characteristics of device is mainly dominated by the self-heating enhanced negative bias temperature instability effect. Moreover, the increased temperature around the environment could make the degradation of characteristics more serious, such as Vth shift (fixed charge), degraded S.S (dangling bonds). We suggest that the generation of deep states originated from bond broken at both of grain-boundary and interface state was explained the degradation mechanism of threshold-voltage.
In n-channel TFT, the degradation characteristics may be attributed to both of the temperature effect and the hot carrier effect under the different stress frequency. At low-frequency stress, Vth shift (positively) and mobility are increased after 100 seconds stress because of the temperature effect. However, Vth shift (negatively) and mobility are decreased after 500 seconds stress because of the effect of the state creation near the drain regime. At high-frequency stress, the times of the switch is numerous, and result in the on-state current decreased because of the trap state generated.
目次 Table of Contents
Contents
Chinese Abstract i
English Abstract iii
Acknowledgement v
Contents vii
Figure Captions ix
Chapter 1.Introduction 1
1-1. Introduction of the Polycrystalline Silicon Thin-Film Transistor 1
1-2. Introduction of Defects in poly-Si TFTs 4
1-3. Introduction of Negative Bias Temperature Instability 5
1-4. Introduction of Seto’s model 9
1-5. Motivation and Organization of This Thesis 13
Reference 15
Chapter 2.Fabrication and characterization 21
2-1. Device Fabrication 21
2-1-1.Technology of ELA Crystallization 21
2-1-2.Fabrication Processes of LTPS Poly-Si Device 22
2-2. Basic characterization of the LTPS TFT 23
2-2-1.The I-V transfer characteristics in poly-Si TFT 23
2-2-2.The C-V transfer characteristics in poly-Si TFT 25
Reference 27
Chapter 3.Instruments and parameter extraction 28
3-1. Instruments and measurement setup 28
3-1-1.Instruments 28
3-1-2.Set up instruments for I-V and C-V 29
3-2. Methods of Device Parameter Extraction 29
3-2-1. Determination of the threshold voltage 29
3-2-2. Determination of the field-effect mobility 31
3-2-3. Determination of on/off current ratio 31
3-2-4. Determination of the subthreshold swing 32
3-2-5. Determination of the trap density 32
Reference 35
Chapter 4.Results and Discussion 36
4-1. The Degradation of P-channel TFT under pulse 36
4-1-1.The pulse effects 36
4-1-2.The temperature effects 37
4-1-3.Capacitance measurement with variable frequency 39
---determination of the degradation mechanism and regions.
4-2. The Degradation of N-channel TFT under pulse 42
4-2-1. Introduction of the degradation characteristics 42
4-2-2. The effects of low-frequency ac stress 43
4-2-3. The effects of high-frequency ac stress 46
Reference 47
Chapter 5. Conclusion 50
Figures 52
參考文獻 References
Reference
[4.1] Shinichiro Hashimoto, Koji Kitajima, Yukiharu Uraoka, Takashi Fuyuki, and Yukihiro Morita, ” Thermal Degradation Under Pulse Operation in Low-Temperature p-Channel Poly-Si Thin-Film Transistors,” From IEEE Trans. Electron Devices., vol.54,NO.2, FEBRUARY(2007).
[4.2] Satoshi INOUE, Hiroyuki OHSHIMA and Tatsuya SHIMODA, “Analysis of Degradation Phenomenon Caused by Self-Heating in Low-Temperature-Processed Polycrystalline Silicon Thin Film Transistors,” From Jpn. J. Appl. Phys. Vol. 41 (2002) pp.6313-6319, Part 1, No. 11A, November 2002.
[4.3] T.-J. King, M. G. Hack, and I.-W. Wu, “Effective density-of-states distributions for accurate modeling of polycrystalline-silicon thin-film transistors,” J. Appl. Phys.,vol. 75,no. 2,pp. 908-913,Jan. 1994.
[4.4] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, and N. Economou, “Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” From IEEE Trans. Electron Devices, vol. 39, no.3, pp. 598-606, Mar. 1992.
[4.5] Chih-Yang Chen, Jam-Wem Lee, Shen-De Wang, Ming-Shan Shieh, Po-Hao Lee, Wei-Cheng Chen, Hsiao-Yi Lin, Kuan-Lin Yeh, and Tan-Fu Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” From IEEE Trans. Electron Devices, vol. 53, no. 12, December 2006.
[4.6] K. C. Moon, J.-H. Lee, and M.-K. Han, “The Study of Hot-Carrier Stress on Poly-Si TFT Employing C-V Measurement,” IEEE Trans. Electron Devices, vol. 52, no. 4(2005)
[4.7] S. C. Huang, Y. H. Kao, Y. H. Tai , “Study on electrical degradation of p-type low-temperature polycrystalline silicon thin film transistors with C-V measurement analysis. ” Thin Solid Films, 2006 – Elsevier.
[4.8] Shinichiro HASHIMOTO, Yukiharu URAOKA, Takashi FUYUKI and Yukihiro MORITA,”Analysis of Thermal Distribution in Low-Temperature Polycrystalline Silicon p-Channel Thin Film Transistors,” From Jpn. J. Appl. Phys. Vol. 45, No. 1A, 2006, pp. 7-12.
[4.9] C. W. Chen, T. C. Chang, P. T. Liu, H. Y. Lu, T. M. Tsai, C. F. Weng, C. W. Hu, and T. Y. Tseng, “Electrical Degradation of N-channel Poly-Si TFT under AC Stress,” From Electrochemical and Solid-State Letters, 8(9) H69-H71 (2005)
[4.10] Y. Toyota, T. Shiba, and M. Ohkura, “ Mechanism of Device Degradation under AC Stress in Low-Temperature Polycrystalline Silicon TFTs,” From IEEE (2002)
[4.11] Kazushige Takechi, Mitsuru Nakata, Hiroshi Kanoh, Shigeyoshi Otsuki, and Setsuo Kaneko, “ dependence of Self-Heating Effects on Operation Conditions and Device Structures for Polycrystalline Silicon TFTs,” From IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL 53, NO. 2, FEBRUARY 2006.
[4.12] Yoshiaki Toyota, Takeo Shiba, Senior Member,IEEE, and Makoto Ohkura, Member, IEEE, ” Effects of the Timing of AC Stress on Device Degradation Produced by Trap States in Low-Temperature Polycrystalline-Silicon TFTs,” From IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52,NO. 8, AUGUST 2005.
[4.13] Satoshi Inoue and Hiroyuki Ohshima,” New Degradation Phenomenon in Wide Channel poly-Si TFTs Fabricated by Low Temperature Process,” From IEEE (1996).
[4.14] Takashi fuyuki, Koji Kitajima, Hiroshi Yano, Tomoaki Hatayama, Yukiharu Uraoka, Shinichiro Hashimoto, Yukihiro Morita,”Thermal degradation of low temperature poly-Si TFT” From Thin Solid Films 487 (2005) 216-220.
[4.15] Ya-Hsiang Tai, Shih Che Huang, and Hao Lin Chiu,”Degradation of Capacitance-Voltage Characteristics Induced by Self-Heating Effect in Poly-Si TFTs.” From Electrochem. Solid-State Lett. , Volume 9, Issue 6, pp. G208-G210 (2006)
[4.16] Chih-Yang Chen, Jam-Wem Lee, Ming-Wen Ma, Wi-Cheng Chen, Hsiao-Yi Lin, Kuan-Lin Yeh, Shen-De Wang, and Tan-Fu Lei, ” Bias Temperature Instabilities for Low-Temperature Polycrystalline Silicon Complementary Thin-Film Transistors.” From J. Electrochem. Soc. , Volume 154, Issue 8, pp. H704-H707 (2007)
[4.17] Yamauchi, N. Hajjar, J. –J.J. Reif, R.,”Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” From IEEE Trans. Electron. Devices, vol. 38, no. 1, p. 55, 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code