Responsive image
博碩士論文 etd-0111118-130110 詳細資訊
Title page for etd-0111118-130110
論文名稱
Title
可快速定量檢測肝癌/大腸癌/攝護腺癌多重腫瘤標幟之微型彎曲平板波生物感測器研發
Development of Flexural Plate-wave Based Micro Biosensors for Rapid Detection of Liver/Colorectal/Prostate Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-26
繳交日期
Date of Submission
2018-02-11
關鍵字
Keywords
感測線性度、偵測極限、自我組裝單分子層、插入損耗、彎曲平板波、攝護腺特異抗原、癌胚胎抗原、甲型胎兒蛋白
insertion loss, detection limit, sensing linearity, self-assembled monolayers, alpha-fetoprotein, carcinoembryonic antigen, prostatic specific antigen, flexural plate-wave
統計
Statistics
本論文已被瀏覽 5640 次,被下載 3
The thesis/dissertation has been browsed 5640 times, has been downloaded 3 times.
中文摘要
根據我國衛生福利部國民健康署(Health Promotion Administration, Ministry of Health and Welfare, Taiwan)105年度資料統計,癌症為全國十大死因排名第一名,其中肝癌、大腸癌與攝護腺癌分別高居全民第二、第三與第七名。癌症初期通常不會有明顯症狀,患者通常是出現狀況才去大醫院檢查,因而錯失治療的黃金時間。在臨床醫學上,肝癌、大腸癌與攝護腺癌分別是藉由甲型胎兒蛋白(Alpha-fetoprotein, AFP)、癌胚胎抗原(Carcinoembryonic antigen, CEA)與攝護腺特異抗原(Prostatic Specific Antigen, PSA)來進行篩檢,並配合進一步的檢查來確診與分期。傳統檢測儀器雖具有高精準度與高感靈敏度之優點,但因檢測費用高、檢測時間長且儀器體積大及售價高,並不適合用於居家即時照護;本論文運用微機電技術與自我組裝單分子層(Self-Assembled Monolayers, SAMs)技術,開發可同時檢測人體血清中微量AFP/CEA/PSA濃度之微型彎曲平板波(Flexural Plate-wave, FPW)生物感測器,可應用於肝癌/大腸癌/攝護腺癌之初期快速檢驗。
傳統FPW感測器具有高質量感測靈敏度及低操作頻率等優點,但因其平板聲波能量容易散失故具有高插入損耗(Insertion Loss, IL < -50 dB),另外因矽薄板厚度不易精確控制,導致元件良率不高(< 10%)及限縮其應用。為了改善上述兩大問題,本論文從元件結構設計及蝕刻製程的面向,提出許多創新的概念並透過實驗結果找出最佳化的設計及製程;包括探討扇形及圓形指叉式電極(Interdigital Transducers, IDTs)相較於傳統FPW元件對IL特性之影響,以及加入創新型矽溝槽反射閘極(Reflective Grating Structure, RGS)設計,改善FPW之高IL缺點,都會於本論文中探討及分析。另外,一般FPW感測器為了可運用於液態測量,需將矽薄板蝕刻至約20 μm之厚度以使其聲波之波速低於液體中之聲速,造成矽薄板厚度難以控制甚至導致FPW元件良率低;為了精準控制薄板厚度於±3 μm並改善製程良率,本論文運用兩階段(60/27°C)濕式蝕刻來進行矽薄板之製作。除了大幅改善傳統FPW元件IL及製程良率兩大缺點外,本論文運用SAMs技術分別將AFP/CEA/PSA等不同抗體鍵結於FPW感測區,以完成癌抗原FPW生物感測器之開發。
根據量測結果顯示,在沒有任何RGS結構及最佳化IDT對數下,本論文所設計之聚焦式扇形或圓形IDT具有較佳之波能量傳遞特性,可將FPW元件之IL從傳統平行式IDT之-53~-57 dB提升至-45~-48 dB之間;若是再導入矽溝槽RGS結構,可進一步改善FPW之IL至-37~-42 dB之間,這項特性對未來FPW之應用相當重要。另外,透過兩階段(60/27°C)濕式蝕刻技術,FPW元件製程良率可從平均小於10%大幅提升至高於60%,且矽薄板厚度可控制於20 ± 3 μm。最後,在五種不同AFP/CEA/PSA癌抗原濃度測試下,皆具有極低之生物偵測極限(5 ng/mL)、高感測線性度(0.955~0.981)與短反應時間(<10 min)等特性,未來若再結合全血過濾及訊號讀取IC等技術,對各種癌症初期檢測之居家照護產品開發有相當大的助益。
Abstract
According to the 2016 annual report of the Health Promotion Administration, Ministry of Health and Welfare, Taiwan, cancer is ranked first in the top ten causes of death, with liver cancer, colorectal cancer and prostate cancer as the second, third and seventh most common cause of cancer death. Since cancer symptoms often do not present themselves until the disease has progressed past the initial stage, patients with cancers are often diagnosed late, which makes any follow-up treatment less likely to succeed. If early detection is achieved, the chance for successful treatment will be greatly increased. Notably, alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and prostatic specific antigen (PSA) are used as tumor markers for liver cancer, colorectal cancer and prostate cancer, respectively, along with further tests to confirm diagnosis, determine stage, and carry out after-treatment process. Although conventional cancer detection technologies have the advantages of high precision and high sensitivity, they are not adequate for real-time care due to high cost, long detecting time, expensive cost and large size. We present a flexural plate-wave (FPW) biosensor which was fabricated using self-assembled monolayers (SAMs) for simultaneous detection of AFP, CEA, and PSA in human serum, which can be applied to early detection of liver cancer, colorectal cancer, and prostate cancer.
Although conventional FPW sensors have the advantages of high sensing sensitivity and low operating frequency, they suffer from high insertion loss (IL <- 50 dB) because their acoustic energy is easily dissipated. In addition, poor precise control of the thickness of silicon plates results in low yield (<10%) and limited applications. To overcome these problems, we propose several innovative concepts of component structure design and silicon plate etching process, and present the optimal design and process, including comparing the influences of fan-shaped and circular interdigital transducers (IDTs) with that of conventional parallel IDTs on the measured insertion loss, as well as adding an innovative reflective grating structure (RGS) design to reduce insertion loss. In addition, for liquid measurement, the silicon plate of conventional FPW sensors needs to be etched to a thickness of about 20 μm so that its sound speed is lower than that in liquid, which makes it difficult to control the thickness of silicon plate and even leads to low yield rate. To precisely control the thickness within ± 3 μm and enhance the yield rate, we propose two-step low-temperature (60/27°C) anisotropic silicon etching process to fabricate silicon plate. Besides reducing insertion loss and improving yield rate, we used SAMs technology to immobilize AFP/CEA/PSA onto the sensing area of FPW, so the proposed biosensor is a novel FPW-based cancer antigen biosensor.
The measurement results reveal that the proposed focal fan-shaped or circular IDTs transfer wave energy more efficiently even without any RGS or optimized IDTs pairs, and can reduce the insertion loss from between -53 dB and -57 dB to between -45 dB and -48 dB. With silicon-grooved RGS, the insertion loss can be further reduced to between -37 dB and -42 dB, which is important for future FPW applications. Moreover, using the proposed two-step low-temperature (60/27°C) anisotropic wet etching process, the yield rate can be significantly increased from less than 10% to above 60% in average, and the thickness of silicon plate can be controlled within 20 ± 3 μm. Finally, the developed FPW-based biosensor for AFP/CEA/PSA detection has a very low detection limit (5 ng/mL), high sensing linearity (0.955-0.981) and short reaction time (<10 min) under five different AFP/CEA/PSA concentrations. If combined with whole-blood filtration and IC technology, the biosensor will certainly contribute to development of home health products for early detection of cancers.
目次 Table of Contents
論文審定書 i
誌謝 iii
中文摘要 v
Abstract vii
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Biosensors 4
1.2.1 Optical Biosensors 5
1.2.2 Gravimetric Biosensors 6
1.2.3 Electrochemical Biosensors 7
1.2.4 Thermal Biosensors 8
1.3 Point of Care Testing 9
1.4 Overview of Dissertation 10
Chapter 2 Applications of Acoustic Wave Devices 12
2.1 Introduction 12
2.2 Quartz Crystal Microbalance 14
2.3 Acoustic Plate Mode Sensors 15
2.4 Surface Acoustic Wave Sensors 16
2.5 Flexural Plate-wave Sensors 17
Chapter 3 Theory Description and Layout Design 23
3.1 Interdigital Transducers 23
3.2 Piezoelectric Constitutive Equations 24
3.3 Theoretical Characteristics of the FPW Device 25
3.4 Layout Specification of the Proposed FPW Device 27
Chapter 4 Fabrication and Experiment 35
4.1 Fabrication of the FPW Device 35
4.2 Immobilization of the cystamine SAM/glutaraldehyde layers in the backside cavity of FPW device 41
4.3 Dip Coating of the Antibody/BSA/Antigen in the Backside Cavity 42
Chapter 5 Measurement Results and Discussion 44
5.1 SEM and XRD Analysis of the Piezoelectric ZnO Film 44
5.2 Structural Inspection and Fabrication Yield Investigation 46
5.3 Characterization of the Proposed FPW Devices 50
5.3.1 Characterization of the Proposed FPW Devices without RGS 51
5.3.2 Characterization of the Proposed FPW Devices with Al-electrode RGS 58
5.3.3 Characterization of the Proposed FPW Devices with Silicon-grooved RGS 66
5.4 Characterization of the Proposed FPW-based Biosensors 79
5.4.1 Mass-sensitivity 79
5.4.2 FT-IR analysis of cystamine SAMs/glutaraldehyde molecules 81
5.4.3 Sensing linearity and detection limits 82
5.5 Microsystem for FPW-based Biosensors Detection 85
5.5.1 Packaging of the FPW Chip on the PCB 85
5.5.2 FPW Readout System Prototype 86
Chapter 6 Conclusions and Future Works 89
6.1 Conclusions 89
6.2 Future Works 90
References 92
Personal Publication 105
參考文獻 References
[1] R. Agius, T. Nadulski, and M. Moore, “Validation of LUCIO®-Direct-ELISA kits for the detection of drugs of abuse in urine: Application to the new German driving licenses re-granting guidelines,” Forensic Sci. Int. 215, 38-45 (2012).
[2] Y. S. Sun, “Optical biosensors for label-free detection of biomolecular interactions,” Instrum. Sci. Technol. 42, 109-127 (2014).
[3] B. D. Backer, B. Debrus, P. Lebrun, L. Theunis, N. Dubois, L. Decock, A. Verstraete, P. Hubert, and C. Charlier, “Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material,” J. Chromatogr. B 877, 4115-4124 (2009).
[4] A. Zgair, J. C. M. Wong, A. Sabri, P. M. Fischer, D. A. Barrett, C. S. Constantinescu, and P. Gershkovich, “Development of a simple and sensitive HPLC–UV method for the simultaneous determination of cannabidiol and ∆9-tetrahydrocannabinol in rat plasma,” J. Pharm. Biomed. Anal. 114, 145-151 (2015).
[5] Y. H. Caplan, “Abbott phencyclidine and barbiturates abused drug assays: Valuation and comparison ofADx FPIA, TDx FPIA, EMIT, and GC/MS methods,” J. Forensic Sci. 34, 289-292 (1989).
[6] S. Y. Kim, J. Y. Kim, W. Kwon, M. K. In, Y. E. Kim, and K. J. Paeng, “Method development for simultaneous determination of amphetamine type stimulants and cannabinoids in urine using GC-MS,” Microchem. J. 110, 326-333 (2013).
[7] L. Geiser, S. Cherkaoui, and J. L. Veuthey, “Simultaneous analysis of some amphetamine derivatives in urine by nonaqueous capillary capillary electrophoresis coupled to electrospary ionization mass spectrometry,” J. Chromatogr. A 895, 111-121 (2000).
[8] C. L. Morgan, D. J. Newman, and C. P. Price, “Immunosensors: technology and opportunities in laboratory medicine [Review],” Clin. Chem. 42(2), 193-209 (1996).
[9] I. Y. Huang, C. Y. Lin, and E. C. Wu, "Effects of glutaraldehyde cross-linking layer on QCM based α-fetoprotein biosensor with cystamine self-assembly monolayer," J. Micro/Nanolith. MEMS MOEMS. 9(2), 023008-1~7 (2010).
[10] Y. Li, K.-S. Moon, and C. P. Wong, “Electrical property of anisotropically conductive adhesive joints modified by self-assembled monolayer (SAM),” Proc. IEEE Electronic Components and Technology Conf., 1968-1974, Las Vegas, NV (2004).
[11] I. Y. Huang, M. C. Lee, Y. W. Chang, and R. S. Huang, “Development and characterization of FPW based allergy biosensor,” Proc. IEEE International Symposium on Industrial Electronics (ISIE), 2736-2740, Vigo, Span (2007).
[12] I. Y. Huang, M. C. Lee, and Y. W. Chang, “Development of a novel flexural plate wave biosensor for immunoglobulin-E detection by using SAM and MEMS technologies,” Proc. The 5th IEEE Conference on Sensors, 70-73, Daegu, Korea (2006).
[13] X. Su, F. T. Chew, and S. F. Y. Li, “Piezoelectric quartz crystal based label-free analysis for allergy disease,” Biosens. Bioelectron. 15(11-12), 629-639 (2000).
[14] J. C. Pyun, H. Beutel, J. U. Meyer, and H. H. Ruf, “Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer,” Biosens. Bioelectron. 13(7-8), 839-845 (1998).
[15] Q. Y. Cai, J. Park, D. Heldsinger, M. D. Hsieh, and W. T. Zellers, “Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors,” Sens. Act. B 62(2), 121-130 (2000).
[16] D. S. Ballantine Jr., R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Wohltjec, Acoustic Wave Sensors: Theory, Design, and Physicochemical Application, Academic Press, New York (1997).
[17] P. Luginbuhl, S. D. Collins, G. A. Racine, M. A. Gr´etillat, N. F. de Rooij, K. G. Brooks, and N. Setter, “Microfabricated Lamb wave device based on PZT sol–gel thin film for mechanical transport of solid particles and liquids,” J. Microelectromech. Syst. 6(4), 337-346 (1997).
[18] A. W. Wang, R. Kiwan, R. M. White, and R. L. Ceriani, “A silicon-based ultrasonic immunoassay for detection of breast cancer antigens,” Sens. Act. B 49(1-2), 13-21 (1998).
[19] I. Y. Huang and M. C. Lee, “Development of a FPW allergy biosensor for human detection by MEMS and cystamine–based SAM technologies,” Sens. Act. B 132(1), 340-348 (2008).
[20] I. Y. Huang, M. C. Lee, C. H. Hsu, C. C. Wang, “Development of a flexural plate-wave (FPW) immunoglobulin-E allergy bio-sensing microsystem,” Sens. Act. B 162(1), 184-193 (2012).
[21] D. S. Ballantine Jr., R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Wohltjec, Acoustic Wave Sensors: Theory, Design, and Physicochemical Application, Academic Press, Salt Lake, Utah, USA, 36-134 (1996).
[22] D. W. Galipeau, P. R. Story, K. A. Vetelino, R. D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Mater. Struct. 6, 658-667 (1997).
[23] J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, Microsensors MEMS and Smart Devices; John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, pp. 309-313 (2001).
[24] M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics. 36, 7-14 (1998).
[25] M. E. Motamedi, and R. M. White, Acoustic Sensor in Semiconductor Sensor; John Wiley & Sons, Inc.: New York, USA, 381-383 (1994).
[26] M. I. Rocha-Gaso, C. M. Iborra, A. M. Baides, and A. A. Vives, “Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens,” Sensors, 9, 5740-5769 (2009).
[27] I. Y. Huang, and M. C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sens. Actuators B 132, 340-348 (2008).
[28] T. Wink, S. J. Van Zuilen, A. Bult, and W. P. van Bennekom, “Self-assembled monolayers for biosensors,” Analyst 122(4), 43-50 (1997).
[29] Y. Li, K.-S. Moon, and C. P Wong, “Formation of self assembled monolayer (SAM) on metal surfaces for high performance anisotropically conductive adhesives,” Proc. IEEE 9th International Symposium on advanced packaged materials, 139-144, Atlanta, Georgia U.S.A. (2004).
[30] F. Pariente, C. L. Rosa, F. Galan, L. Hernandez, and E. Lorenzo, “Enzyme support systems for biosensor application based on gold-coated nylon meshes,” Biosens. Bioelectron. 11(11), 1115-1128 (1996).
[31] D. Rhinow and N. A. Hampp, “Forming microstructured alkanethiol self-Assembled monolayers on gold by laser ablation,” IEEE Trans. NanoBiosci. 5(3), 188-192 (2006).
[32] B. D. Malhotra, R. Singhal, A. Chaubey, S. K. Sharma, and A. Kumar, “Recent trends in biosensors,” Curr. Appl. Phys. 5, 92-97 (2005).
[33] B. D. Malhotra, R. Singhal, A. Chaubey, S. K. Sharma, and A. Kumar, “Recent trends in biosensors,” Curr. Appl. Phys. 5, 92-97 (2005).
[34] S. D. Souza, “Microbial biosensors,” Biosens. Bioelectron. 16(6), 337-53 (2001).
[35] A. P. F. Turner, I. Karube and G. S. Wilson (Eds.), Biosensors: Fundamentals and Applications, Mir Publishers, Moscow (1992).
[36] S. D’Souza, “Immobilized enzymes in bioprocess,” Curr. Sci. 77, 69-79 (1999).
[37] M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515-28 (2002).
[38] R. Vargas-Bernal, G. Herrera-Pérez and E. Rodríguez-Miranda, Pesticides - Advances in Chemical and Botanical Pesticidesl: Chapter 14, InTech, Croatia (2012).
[39] I. Voiculescu, A. N. Nordin, “Acoustic wave based MEMS devices for biosensing applications,” Biosens. Bioelectron. 33, 1-9 (2012).
[40] E. B. Setterington and E. C. Alocilja, “Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens,” Biosens. 2, 15-31 (2012).
[41] R. Syam, K. J. Davis, M. D. Pratheesh, R. Anoopraj and B. S. joseph, “Biosensors: A Novel Approach for Pathogen Detection,” VETSCAN. 7(1), 14-18 (2012).
[42] L. Wang, M. S. David, X. Yong, and Q. Lin, “A MEMS thermal biosensor for metabolic monitoring applications,” J. Mircoelectromech. Sys. 17(2), 318-327 (2008).
[43] G. J. Kost, “Knowledge optimization theory and application to point-of-care testing,” Stud. Health Technol. Inform. 62, 189-190 (1999).
[44] J. Rickert, W. Göpel, G. L. Hayward, B. A. Cavic, and M. Thompson, “Biosensors based on acoustic wave devices,” Sensors 5, 105–139 (2001).
[45] T. Kogai and H. Yatsuda, “3F-3 Liquid sensor using SAW and SH-SAW on quartz,” IEEE Ultrason. Symp. 552-555 (2006).
[46] A. Janshoff, H. J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors–an alternative to optical biosensors?,” Angew. Chem. Int. Ed. 39, 4005-4082 (2000).
[47] J. C. Andle and J. F. Vetelino, “Acoustic wave biosensors,” Sens. Act. A 44, 167-176 (1994).
[48] K. Länge, B. E. Rapp, and M. Rapp “Surface acoustic wave biosensors: a review,” Anal. Bioanal.Chem. 391(5), 1509-1519 (2008).
[49] T. M. Gronewold, “Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges,” Anal. Chim. Act. 603, 119-128 (2007).
[50] J. P. Smith and V. Hinson-Smith, “Commercial SAW sensors move beyond military and security applications,” Anal. Chem. 78, 3505-3507 (2006).
[51] H. Wohltjen and R. Dessy, “Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description.” Anal. Chem. 51, 1458-1464 (1979).
[52] H. Wohltjen and R. Dessy, “Surface acoustic wave probes for chemical analysis. II. Gas chromatography detector.” Anal. Chem. 51, 1465-1470 (1979).
[53] H. Wohltjen and R. Dessy, “Surface acoustic wave probes for chemical analysis. III. Thermomechanical polymer analyzer. Anal. Chem. 51, 1470-1475 (1979).
[54] J. E. Roederer and G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals.” Anal.Chem. 55, 2333-2336 (1983).
[55] G. S. Calabrese, H. Wohltjen, and M. K. Roy, “Surface acoustic wave devices as chemical sensors in liquids. Evidence disputing the importance of Rayleigh wave propagation.” Anal. Chem. 59, 833-837 (1987).
[56] C. A. Flory and R. L. Baer, “Surface transverse wave mode analysis and coupling to interdigital transducers. “ IEEE Ultrason. Symp. 313-318 (1987).
[57] T. Moriizumi, Y. Unno, and S. Shiokawa, “New sensor in liquid using leaky SAW.” IEEE Ultrason. Symp. 579-582 (1987).
[58] J. C. Andle, J. F. Vetelino, M. W. Lade, and D. J. McAllister, “An acoustic plate mode device for biosensing applications.” Proc. Transducers 91 Int. Conf. Solid-State Sens. Actuators, 483-485, San Francisco, USA (1991).
[59] J. W. Grate and G. C. Frye, “Acoustic wave sensors,” Sens. Update 2(1), 37-83 (1996).
[60] J. C. Andle, J. T. Weaver, J. F. Vetelino, and D. J. McAllister, “Selective acoustic plate mode DNA sensor.” Sens. Act. B 24, 129-133 (1995).
[61] F. Bender, F. Meimeth, R. Dahing, M. Grunze, and F. Josse, “Mechanisms of interaction in acoustic plate mode immunosensors.” Sens. Act. B 40, 105-110 (1997).
[62] R. Dahint, F. Bender and F. Morhard, “Operation of acoustic plate mode immunosensors in complex biological media.” Anal. Chem. 71, 3150-3156 (1999).
[63] J. C. Pyun, J. C. H. Beutel, J. U. Meyer, and H. H. Ruf, “Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer.” Biosens. Bioelectron. 13, 839-845 (1998).
[64] G. Z. Sauerbrey, “Use of quartz crystal vibrator for weighting thin films on a microbalance,” Z. Phys. 155, 206-222 (1959).
[65] G. Marrazza, “Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review,” Biosens. 4, 301-317 (2014).
[66] J. C. Andle, J. F. Vetelino, and M. W. Lade, “McAllister, D.J. An acoustic plate mode device for biosensing applications,” Proc. Transducers 91 Int. Conf. Solid-State Sens. Act., San Francisco, USA (1991).
[67] L. Mai, V.S. Pham, G. Yoon, ZnO-based film bulk acoustic resonator devices on a specially designed Bragg reflector, Appl. Phys. A 95, 667-671 (2009).
[68] J. W. Grate, J. M. Stephen, and M. W. Richard, “Acoustic wave microsensors.” Anal. Chem. 65, 940A-848A (1993).
[69] V. Ferrari and R. Lucklum, Overview of acoustic-wave microsensors: In Piezoelectric Transducers and Applications, Springer: Berlin, Heidelberg, Germany (2008).
[70] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Society 17, 411 (1885).
[71] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett. 7, 314-316 (1965).
[72] A. Pohl, “A review of wireless SAW sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(2), 317-332 (2000).
[73] S. Krishnamurthy, M. Z. Atashbar, and B. J. Bazuin, “Burst transceiver unit for wireless passive SAW sensing system,” IEEE Trans. Instrum. Meas. 58(10), 3476-3753 (2009).
[74] Y. S. Shmaliy, O. Shmaliy, and O. Ibarra-Manzano, “Drift errors in passive remote wireless SAW sensing with multiple DPM,” IEEE Sens. J. 9(7), 741-781 (2009).
[75] N. Y. Kozlovski, D. C. Malocha, and A. R. Weeks, “A 915 MHz SAW sensor correlator system,” IEEE Sens. J. 11(12), 3426-3432 (2011).
[76] C. Wen, C. Zhu, Y. Ju, H. Xu, and Y. Qiu, “A novel dual track SAW gas sensor using three-IDT and two-MSC,” IEEE Sens. J. 9(12), 2010-2015 (2009).
[77] A. K. Mensah-Brown, M. J. Wenzel, F. J. Josse, and E.E. Yaz, “Near real-time monitoring of organophosphate pesticides in the aqueous-phase using SH-SAW sensors including estimation-based signal analysis,” IEEE Sens. J. 9(12), 1817-1824 (2009).
[78] B. J. Meulendyk, M. C. Wheeler, and M. Pereira da Cunha, “Hydrogen fluoride gas detection mechanism on quartz using SAW sensors,” IEEE Sens. J. 11(9), 1768-1775 (2011).
[79] V. S. Chivukula, D. Ciplys, R. Rimeika, M. S. Shur, J. Yang, and R. Gaska, “Impact of photocapacitance on phase response of GaN/Sapphire SAW UV sensor,” IEEE Sens. J. 10(4), 883-887 (2010).
[80] A. Kawalec and M. Pasternak, “A new high-frequency surface acoustic wave sensor for humidity measurement”, IEEE Trans. Instrum. Meas. 57(9), 2019-2023 (2008).
[81] A. Z. Sadek, C. O. Baker, D. A. Powell, W. Wlodarski, R. Kaner, and K. Kalantar-zadeh, “Polyaniline nanofiber based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response,” IEEE Sens. J. 7(2), 213-218 (2007).
[82] B. Drafts, “Acoustic wave technology sensors,” IEEE Trans. Microw. Theory Tech. 49(4), 795-802 (2001).
[83] V. Ferrari and R. Lucklum, Overview of acoustic-wave microsensors: In Piezoelectric Transducers and Applications, Springer: Berlin, Heidelberg, Germany (2008).
[84] D. S. Ballantine Jr. and H. Wohltjen, “Surface acoustic wave devices for chemical analysis,” Anal. Chem. 61(11), 704-715 (1989).
[85] A. A. Venema, Transduction and propagation of surface acoustic waves in three-layered media with an electrically conductive substrate, Ph.D. Thesis, Delft University of Technology, Netherlands (1980).
[86] M. J. Vellekoop, G. W. Lubking, P. M. Sarro, and A. Venema, “Integrate-circuit-compatible design and technology of acoustic-wave-based microsensors,” Sens. Act. A 44, 249-263 (1994).
[87] R. M. White, P. J. Wicher, S. W. Wenzel, and E. T. Zellers, “Plate-mode ultrasonic oscillator sensors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 34, 162-171 (1987).
[88] J. W. Lan, I. Y. Huang, Y. C. Lin, C. Y. Lin, J. L. Chen, and C. H. Hsieh “Development of an FPW Biosensor with Low Insertion Loss and High Fabrication Yield for Detection of Carcinoembryonic Antigen,” Sensors 16, 01729 (2016).
[89] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys.Lett. 7, 314-316 (1965).
[90] J. W. Grate, J. M. Stephen, and M. W. Richard, “Acoustic wave microsensors,” Anal. Chem. 65, 940A-848A (1993).
[91] C. Y. Lin, I. Y. Huang, and J. W. Lan, “Improvement of insertion loss and quality factor of flexural plate-wave based alpha-fetoprotein biosensor using groove-type reflective grating structures,” J. Micro/Nanolithogr. MEMS MOEMS 12, 013017 (2013).
[92] T. Wink, S. J. Van Zuilen, A. Bult, and W. P. Van Bennkom, “Self-assembled monolayers for biosensors,” Analyst 122, 43-50 (1997).
[93] I. Y. Huang, M. C. Lee, and C. C. Wang, “Development of a flexural plate-wave (FPW) immunoglobulin-E allergy bio-sensing microsystem,” Sens. Actuators B, 162, 184-193 (2012).
[94] D. S. Ballantine Jr., R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Wohltjec, Acoustic Wave Sensors: Theory, Design, and Physicochemical Application; Academic Press: Salt Lake, Utah, USA, 111-145 (1996).
[95] P. Luginbuhl, S. D. Collins, G. A. Racine, M. A. Gretillat, N. F. De Rooij, K. G. Brooks, and N. “Setter, Microfabricated Lamb wave device based on PZT sol–gel thin film for mechanical transport of solid particles and liquids,” J. Microelectromech. Syst. 6, 337-346 (1997).
[96] D. S. Ballantine Jr., R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Wohltjec, Acoustic Wave Sensors: Theory, Design, and Physicochemical Application; Academic Press: Salt Lake, Utah, USA, 36-149 and 331-395 (1996).
[97] K. R. S. Sankaranarayanan, and V. R. Bhethanabotla, “Design of Efficient Focused Surface Acoustic Wave Devices for Potential Microfluidic Applications,” J. Appl. Phys. 103, 064518 (2007).
[98] M. Quirk, and j. Serda, Semiconductor Manufacturing Technology; Prentice-Hall, Inc.: Upper Saddle River, New Jersey, USA, 150-152 (2000).
[99] J. W. Lan, C. H. Hsieh, I. Y. Huang, Y. C. Lin, T. Y. Tsai and C. C. Wang, “Highly Sensitive FPW-Based Microsystem for Rapid Detection of Tetrahydrocannabinol in Human Urine,” Sensors 17(12), 2760 (2017).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code