Responsive image
博碩士論文 etd-0112110-173809 詳細資訊
Title page for etd-0112110-173809
論文名稱
Title
環境因子對浴用海綿(Spongia ceylonensis)幼生選擇及發育之影響
Effects of environmental factors on larval choice and development of a bath sponge (Spongia ceylonensis)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-12-18
繳交日期
Date of Submission
2010-01-12
關鍵字
Keywords
浴用海綿、幼生、發育、光、溫度、鹽度、酸鹼值、矽酸鹽
development, larvae, bath sponge, light, temperature, salinity, pH, silica
統計
Statistics
本論文已被瀏覽 5694 次,被下載 9
The thesis/dissertation has been browsed 5694 times, has been downloaded 9 times.
中文摘要
海綿幼生在入添過程中,除了本身的游泳行為,也受外在環境因子的影響。本研究以澎湖潮間帶的海綿為研究材料,探討環境因子(光、溫度、鹽度、酸鹼值和矽酸鹽)對海綿幼生選擇和發育的影響,內容包括:(1)物種鑑定;(2)幼生之生長發育觀察;(3)幼生對環境因子的選擇反應;(4)環境因子對幼生發育的影響。以形態特徵和粒線體COI(cytochrome c oxidase subunit I)分子序列鑑定本種海綿為Spongia ceylonensis物種;幼生屬胎生卵營性,為外型橢圓的實質幼生,體長約500 μm,游泳速度3.9 ± 0.6 sec/cm;自然光(3500 - 6500 lux)環境下,浮游期約5-6時。由垂直分布實驗結果得知,幼生呈負趨光性,偏好於暗處著苗變態,全亮組的幼生變態時間較短,與全暗、上暗下亮和上亮下暗各處理組有顯著差異(p < 0.0001);海綿幼生對單一光源(太陽白晝光、無紫外光日光燈、紫外光A、B、C)不同亮度(3-11000 lux)皆偏好低亮度區域;混合光源(太陽白晝光、無紫外光之白晝光、紫外光A、B、C)相同亮度(220 ± 10 lux)的偏好選擇實驗發現,幼生無顯著的偏好選擇(p > 0.05),整體而言,幼生對於光源種類無偏好選擇,對亮和暗具有選擇性;海綿幼生對環境梯度(酸鹼值:pH 6.5 – 9.0;溫度:20 – 40℃;矽酸鹽:0.5 – 20.5 mg/L)在全亮和全暗的處理下皆無明顯的偏好選擇(p > 0.05);幼生發育部分實驗顯示,低鹽度(5、15、25 psu)與高鹽度(45 psu)會影響幼生之發育,導致組織萎縮形成滾球或死亡,不同酸鹼值處理下(pH 7.0、7.5、8.0、8.2、8.5、9.0),pH 8.0和8.2組之發育較佳,而矽酸鹽各處理組(SiO2 0、2.5、5.0、7.5、10.0 mg/L)對海綿幼生發育無顯著影響(p > 0.05)。
Abstract
Larval recruitment is influenced by intrinsic biological traits (e.g. swimming behavior) and environmental factors. In this study, I examined the effects of environmental factors (e.g. light, temperature, salinity and pH) on the development of an intertidal keratose sponge from Peng-hu. The experiments included species identification, the observation of larval development, effects of environmental factors on larval choice and development. Based on morphological characters and the mitochondrial COI (cytochrome c oxidase subunit I) gene, the sponge is identified as Spongia ceylonensis which is viviparous. Sponge larva is a typical lecithotrophic, tufted parenchymella, about 500 μm long and ovoid in shape. The mean swimming speed was 3.9 ± 0.6 sec/cm. Under natural light condition (3500 – 6500 lux), planktonic stage was 5-6 hours. In the vertical dark/light choice experiments, larvae exhibited a negative phototaxis with larvae distributed in dark areas in all treatments except the light-treated group. A significant shorter time period for metamorphosis in the light-treated group than all other groups (all dark, upper-half dark and lower-half dark) (p < 0.0001) had been observed. Under various light gradients of single light source, i.e. fluorescent, non-UV, UVA, UVB or UVC light, larvae preferred in the darkest area. Under various light sources (fluorescent, non-UV, UVA, UVB and UVC lights) with the same intensity (220 ± 10 lux), there was no significant differences (p > 0.05) in the distribution of larvae. In all, larvae had strong dark preference and no preference on different light sources. Under various environmental gradients of each experimental factor (i.e. pH 6.5 – 9.0; temperature: 20 – 40℃; silica: 0.5 – 20.5 mg/L) in all light or all dark conditions, larvae showed no significant preference (p > 0.05). In salinities of 5, 15, 25 and 45 psu, some larvae had abnormal development as ball formation or dead. At pH 8.0 and 8.2, sponge juveniles developed better than the groups of pH 7.0、7.5、8.5 and 9.0. In addition, there was no significant difference in larval development (p > 0.05) under various silica concentrations (i.e. SiO2 0、2.5、5.0、7.5、10.0 mg/L).
目次 Table of Contents
謝辭.............................................................................................................................................i
中文摘要....................................................................................................................................ii
英文摘要...................................................................................................................................iii
目錄............................................................................................................................................v
表目錄.......................................................................................................................................vi
圖目錄......................................................................................................................................vii
附錄目錄.................................................................................................................................viii
前言............................................................................................................................................1
材料與方法................................................................................................................................4
結果..........................................................................................................................................11
討論..........................................................................................................................................19
參考文獻..................................................................................................................................24
表..............................................................................................................................................34
圖..............................................................................................................................................41
參考文獻 References
林紋如 2009 黑皮海綿(Terpios hoshinota)在綠島及蘭嶼的分布與生長。國立中山大學海洋生物研究所碩士論文,94頁。
周桂如 2005 台灣產海綿 Negombata corticata抗癌成份之研究。國立中山大學海洋資源研究所碩士論文,146頁。
陳勇輝 1988 澳洲球形海綿(Cinachyrella australiensis (Carter)1886)芽體與成體型態之研究。國立中山大學海洋生物研究所碩士論文。
梁忠凱 2005 黑色軟海綿(Halichondria okadai)幼體型態之變化。國立中山大學海洋生物研究所碩士論文,42頁。
鍾逸甫 2002 黑色軟海綿的生殖及生態研究。國立中山大學海洋生物研究所碩士論文,65頁。.
Amano, S. 1986. Larval release in response to a light signal by the intertidal sponge Halichondria panicea. The Biological Bulletin 171: 371-378.
Amano, S. 1988. Morning release of larvae controlled by the light in an intertidal sponge, Callyspongia ramosa. The Biological Bulletin.175: 181-184.
Asha, P.S. and Muthiah, P. 2005. Effects of temperature, salinity and pH on larval growth, survival and development of the sea cucumber Holothuria spinifera Theel. Aquaculture 250: 823-829.
Ayling, A.L. 1980 Patterns of sexuality, asexual reproduction and recruitment in some subtidal marine demospongiae. The Biological Bulletin 158: 271-282.
Baird, A.H., Babcock, R.C. and Mundy, C.P. 2003. Habitat selection by larvae influences the depth distribution of six common coral species. Marine Ecology Progress Series 252: 289-293.
Bergquist, P.R. 1978. Sponges. Hutchinson and Company, London. pp. 268.
Bergquist, P.R. 1980. A revision of the supraspecific classification of the orders Dictyoceratida, Dendroceratida and Verongida (class Demospongiae). New Zealand Journal of Zoology 7: 443-503.
Bergquist, P.R. and Sinclair, M.E. 1968. The morphology and behaviour of larvae of some intertidal sponges. New Zealand Journal of Marine and Freshwater Research 2: 426-437.
Blanquer, A., Uriz, M.J.and Pascual, M. 2005. Polymorphic microsatellite loci isolated from the marine sponge Scopalina lophyropoda (Demospongiae: Halichondrida). Molecular Ecology Notes 5: 466-468.
Blanquer, A., Uriz, M.J. and Caujap′e-Castells, J. 2009. Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Marine Ecology Progress Series. In press.
Borchiellini C., Chombard, C., Lafay, B. and Boury-Esnault, N. 2000. Molecular systematics of sponges (Porifera). Hydrobiologia 420: 15-27.
Boury-Esnault, N. 2002. Order Chondrosida Boury-Esnault and Lop&#232;s, 1985. Family Chondrillidae Gray, 1872. In: Hooper, J.N.A. and Soest, R.W.M. van (eds). Systema Porifera: a guide to the classification of Sponges. Kluwer Academic &#8260; Plenum Pub., New York, pp. 291-297
Caley, M.J., Carr, M.H., Hixon, M.A., Hughes, T.P., Jones, G.P., and Menge, B.A. 1996. Recruitment and the local dynamics of open marine populations. Annual Review of Ecology and Systematics 27: 477-500.
Cebrian, E. and Uriz, M.J. 2007. Contrasting effects of heavy metals and hydrocarbons on larval settlement and juvenile survival in sponges. Aquatic Toxicology 81: 137-143.
Chen, J.Y., Huang, D.Y. and Li, C.W. 1999. An early Cambrian craniate-like chordate. Nature 402: 518-522.
Chen, Y.H., Chen, C.P. and Chang, K.S. 1997. Budding cycle and bud morphology of the Globe-shaped sponge Cinachyra australiensis (Carter 1886). Zoological Studies 36: 194-200.
Chen, Y.H. and Mok, H.K.. 1993. First record of the poecilosclerid sponge, Rhaphidophlus schoenus (De Laubenfels, 1936) from Taiwan (Poecilosclerida: Clathridae). Bulletin of the Institute of Zoology, Academia Sinica 32: 278-280.
Cook, S. de C. and Bergquist, P.R. 2002. Family Spongiidae Gray, 1867. In: Hooper, J.N.A. and Soest, R.W.M. van (eds). Systema Porifera: a guide to the classification of sponges. Kluwer Academic &#8260; Plenum Pub., New York, pp. 1051-1060.
Duran, S., Pascual, M., Estoup, A. and Turon, X. 2004. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology 13: 511-522.
Ereskovsky, A.V., Konjukov, P. and Willenz, P. 2007. Experimental Metamorphosis of Halisarca dujardini Larvae (Demospongiae, Halisarcida): Evidence of Flagellated Cell Totipotentiality. Journal of Morphology 268: 529-536.
Erpenbeck, D. and Soest R.W.M. van. 2002. Family Halichondriidae Gray, 1867. In: Hooper, J.N.A. and Soest, R.W.M. van (eds). Systema Porifera: a guide to the classification of sponges. Kluwer Academic &#8260; Plenum Pub., New York, pp. 787-816.
Erpenbeck, D. and W&#246;rheide, G. 2007. On the molecular phylogeny of sponges (Porifera). Zootaxa 1668: 107-126.
Ettinger-Epstein P., Whalan, S., Battershill, C.N. and de Nys, R. 2008. A hierarchy of settlement cues influences larval behaviour in a coral reef sponge. Marine Ecology Progress Series 365: 103-113.
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Fr&#248;hlich, H. and Barthel, D. 1997. Silica uptake of the marine sponge Halichondria panacea in Kiel Bight. Marine Biology 128: 115-125.
Gleason, D.F. and Wellington, G.M. 1993. Ultraviolet radiation and coral bleaching. Nature 365: 836-838.
Gleason, D.F. and Wellington, G.M. 1995. Variation in UV-B sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Marine Biololgy 123: 693-704.
Haeder, D.P., Kumar, H.D., Smith, R.C. and Worrest, R.C. 1998. Effects on aquatic ecosystems. Journal of Photochemistry and Photobiology 46: 53-68.
Hadfield, M.G. and Paul, V.J.. 2001. Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock, J.B. and Baker, B.J. (eds). Pp. 431–461 in Marine Chemical Ecology. CRC Marine Science Series, pp. 431-461.
Harrington, L., Fabricius, K., De’ath, G. and Negri, A. 2004. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85: 3428-3437
Heyward, A.J. and Negri, A.P. 1999. Natural inducers for coral larval metamorphosis. Coral Reefs 18: 273-279.
Head, R.M., Berntsson, K.M., Dahlstrom, M., Overbeke, K. and Thomason, J.C. 2004. Gregarious settlement in cypris larvae: the effects of cyprid age and assay duration. Biofouling 20: 123-128.
Hooper, J.N.A. 2000. ‘SPONGUIDE’. Guide to sponge collection and identification. http://www.qm.qld.gov.au/organisation/sections/SessileMarineInvertebrates/spong.pdf
Huang, S. and Hadfield, M.G. 2003. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Marine Ecology Progress Series 260: 161-172.
Huggett, M.J., Williamson, J.E., de Nys, R., Kjelleberg, S. and Steinberg. P.D. 2006. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149: 604-619.
Jacobs, D.K., Nakanishi, N., Yuan D., Camara A., Nichols S.A. and Hartenstein, V. 2007. Evolution of sensory structures in basal Metazoa. Integrative and Comparative Biology 47: 712-723.
Jury, C.P., Whitehead, R.F. and Szmant, A.M. 2009. Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology. In press 1-13.
Kayal, E. and Lavrov, D.V. 2008. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410:177-186.
Knowlton, A.L., Pierson, B.J., Talbot, S.L. and Highsmith, R.C. 2003. Isolation and characterization of microsatellite loci in the intertidal sponge Halichondria panicea. Molecular Ecology Notes 3: 560-562.
Kuffner, I.B. 2001. Effects of ultraviolet (UV) radiation on larval settlement of the reef coral Pocillopora damicornis. Marine Ecology Progress Series 217: 251-261.
Leys, S.P. and Degnan, B.M. 2001. Cytological basis of photoresponsive behavior in a sponge larva. The Biological Bulletin 201: 323-338.
Leys, S.P., Cronin, T.W., Degnan, B.M., and Marshall, J.N. 2002. Spectral sensitivity in a sponge larva. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 188: 199-202.
Li, C.W., Chen, J.Y. and Hua, T.E. 1998. Precambrian sponges with cellular structures. Science 279: 879-882.
Lindquist, N., Bolser, R. and Laing, K. 1997. Timing of larval release by two Caribbean demosponges. Marine Ecology Progress Series 155: 309-313.
Maldonado, M. 2004. Choanoflagellates, choanocytes, and animal multicellularity. Invertebrate Biology 123: 1-22.
Maldonado, M. 2006. The ecology of sponge larvae. Canadian Journal of Zoology 84: 175-194.
Maldonado, M., Dufort, M., McCarthy, D.A., and Young, C.M. 2003. The cellular basis of photobehavior in the tufted parenchymella larva of demosponges. Marine Biology 143: 427-441.
Maldonado, M. and Young, C.M. 1996. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Marine Ecology Progress Series 138: 169-180.
Maldonado, M. and Young, C.M. 1999. Effects of duration of larval life on postlarval stages of the demosponge Sigmadocia caerulea. Journal of experimental marine Biology and Ecology 232: 9-21.
Maldonado, M., George, S.B., Young, C.M. and Vaquerizo, I. 1997. Depth regulation in parenchymella larvae of a demosponge: relative roles of skeletogenesis, biochemical changes and behavior. Marine Ecology Progress Series 148: 115-124.
Maldonado, M., and Uriz, M.J. 1998. Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and postsettlement survival. Marine Ecology Progress Series 174: 141-150.
Mariani, S., Uriz, M.J. and Turon, X. 2005. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. Journal of Plankton Research 27: 249-262.
Mariani S., Uriz M.J., Turon X. and Alcoverro T. 2006. Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component. Oecologia 149: 174-184.
Mercurio, M., Corriero G., Scalera Liaci, L. and Gaino, E. 2000. Silica content and spicule size variations in Pellina Semitubulosa (Porifera: Demospongiae). Marine Biology 137: 87-92.
Meroz-Fine, E., Shefer, S. and Ilan, M. 2005. Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Marine Biology 147:243-250.
Metaxas, A. 2001. Behaviour in flow: perspectives on the distribution and dispersion of meroplanktonic larvae in the water column. Canadian Journal of Fisheries and Aquatic Sciences 58: 86-98.
Miller, R.J. and Etter, R.J. 2008. Shading facilitates sessile invertebrate dominance in the rocky subtidal Gulf of Maine. Ecology 89: 452-462.
O’Connor M.I., Bruno, J.F., Gaines, S.D., Halpern, B.S., Letser, S.E., Kinlan, B.P. and Weiss, J.M. 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences 104: 1266-1271.
Nagabhushanam R. and Thompson, M.F. 1997. Fouling organisms of the Indian Ocean: Biology and control technology. CRC Press, 548 pp.
Parker, L.M., Ross, P.M. and O'Connor, W.A. 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology 15: 2123-2136
Paul N.D. and Gwynn-Jones, D. 2003. Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology and Evolution 18: 48-55.
Pavans de Ceccatty, M. 1974a. Coordination in sponges. The foundations of integration. Integrative and Comparative Biology 14: 895-903.
Pavans de Ceccatty, M. 1974b. The origin of the integrative systems: a change in view derived from research on coelentrates and sponges. Perspectives in Biology and Medicine 17: 379-390.
Pavans de Ceccatty, M. 1989. Les &#233;ponges, &#224; l’aube des communications cellulaires. Pour la Science 142: 64-72.
Pawlik, J.R. 1992. Chemical ecology of the settlement of benthic marine-invertebrates. Oceanography and Marine Biology: An Annual Review 30: 273-335.
Pechenik, J.A. and Cerulli, T.R. 1991. Influence of delayed metamorphosis on survival, growth, and reproduction of the marine polychaete Capitella sp. Journal of Experimental Marine Biology and Ecology 151: 17-27.
Pechenik, J.A., Rittschof, D. and Schmidt, A.R. 1993. Influence of delayed metamorphosis on survival and growth of juvenile barnacles Balanus amphitrite. Marine Biology 115: 287-294.
Raimondi, P.T. 1991. Settlement behavior of Chthamalus anisopoma larvae largely determines the adult distribution. Oecologia 85: 349-360.
Reiswig, H.M. 1976. Natural gamete release and oviparity in Caribbean Demospongiae. In: Aspects of sponge biology. Harrison, H.W. and Cowden, R.R. (eds). Academic Press, New York, pp. 99-112.
Roller, R.A. and Stickle, W.B. 1994. Effects of adult salinity acclimation on larval survival and early development of Strongylocentrotus droebachiensis and S. pallidus (Echinodermata: Echinoidea). Canadian Journal of Zoology 72: 1931-1939.
Roughgarden, J., Gaines, S. and Possingham , H. 1988. Recruitment dynamics in complex life cycles. Science 241: 1460-1466.
Sch&#246;nberg, C.H.L. and Barthel, D. 1997. Inorganic skeleton of the demosponge Halichondria panacea. Seasonality in spicule production in the Baltic Sea. Marine Biology 130: 133-140.
Shen, Y.C., Chein, C.C., Hsieh, P.W. and Duh, C.Y. 1997. Bioactive constituents from marine sponge Aaptos aaptos. Journal of the Fisheries Society of Taiwan 24: 117-125.
Shen, Y.C., Lin, S.L., Duh, C.Y. and Huang, T.H. 1995. Bioactive Meroditerpenoids from a Formosan Marine Sponge Strongylophora durissima. Journal of the Fisheries Society of Taiwan 22: 365-374.
Simpson, T.L. 1980. Reproductive processes in sponges: a critical evaluation of current data and views. International Journal of Invertebrate Reproduction 2: 251-269.
Smith, N. 1994. Water, salt and heat balances of coastal lagoons. In Kjerfve, B. (ed.), Coastal Lagoon Processes. Elsevier Oceanographic Series 60. Elsevier, New York: 69-102.
Swanson, R.L., Williamson, J.E., de Nys, R., Kumar, N., Bucknall, M.P. and Steinberg, P.D. 2004. Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. The Biological Bulletin (Woods Hole) 206: 161-172.
Uriz, M.J., Maldonado, M., Turon, X. and Marti, R. 1998. How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Marine Ecology Progress Series 167: 137-148.
Uriz M.J., Turon X., and Mariani S. 2008. Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly ciliated parenchymellae. Marine Ecology 29: 280-297.
Vance, R.R. 1973. On reproductive strategies in marine benthic invertebrates. The American Naturalist 107: 339-352.
V&#225;zquez, E. and Young, C.M., 2000. Effects of low salinity on metamorphosis in estuarine colonial ascidians. Invertebrate Biology 119: 433-444.
Verran, J. and Boyd, R.D. 2001. The relationship between substratum surface roughness and organic soiling: a review. Biofouling 17: 59-71.
Watanabe, Y. 1978. The development of two species of Tetilla (demospongiae). Natural Sciences Report of the Ochanomizu University, Tokyo 29: 71-106.
Wellington, G.M. and Fitt, W.K. 2003. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Marine Biology 143: 1185-1192.
Whalan, S., de Nys R., Smith-Keune C., Evans, B.S., Battershill, C.N. and Jerry, D.R. 2008. Low genetic variability within and among populations of the brooding sponge Rhopaloeides odorabile on the central Great Barrier Reef. Aquatic Biology 3: 111-119.
Whalan, S., Ettinger-Epstein, P. and de Nys, R 2008. The effect of temperature on larval pre-settlement duration and metamorphosis for the sponge, Rhopaloeides odorabile. Coral Reefs 27: 783-786.
Whalan, S., Ettinger-Epstein, P., Battershill, C. and de Nys, R. 2008. Larval vertical migration and hierarchical selectivity of settlement in a brooding marine sponge. Marine Ecology Progress Series 368: 145-154.
Woollacott, R.M., Pechenik, J.A. and Imbalzano, K.M. 1989. Effects of the duration of larval swimming period on early colony development in Bugula stolonifera. Marine Biology 102: 57-63.
Young, C.M. 1995. Behaviour and locomotion during the dispersal phase of larval life. In: Ecology of marine invertebrate larvae. McEdward, L.R. (ed). CRC Press, Boca Raton, FL, pp. 249-277.
Young, A.M., and Hazlett, T.L. 1978. The effect of salinity and temperature on the larval development of Clibanarius vittatus (Bosc) (Crustacea: Decapoda: Diogenidae). Journal of Experimental Marine Biology and Ecology 34: 131-141.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code