Responsive image
博碩士論文 etd-0112111-194911 詳細資訊
Title page for etd-0112111-194911
論文名稱
Title
橫行六足機器人之步行與攀爬
Walking and Climbing of a Transversely Moving Hexapod Robot
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-11-10
繳交日期
Date of Submission
2011-01-12
關鍵字
Keywords
機器人、步態比較、攀爬
Gait comparison, Climbing, Hexapod, Robot
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
本文主要目的為模仿螃蟹橫行方式,測試機器人橫行步行與攀爬的可行性,以提供六足機器人橫向行走的移動方式。
  本研究參考真實螃蟹比例,製作出一含12個致動器之橫行六足機器人。使用順向與逆向運動學的方法設定足端點位置,並配合直線補間的方式達成水平跨步動作。在步行實驗中,使用三角步態、異相步態與對稱步態測試橫向直行動作,並觀測其負載現象。在攀爬實驗中,使用六足同步推進的方式,模仿螃蟹以不打滑的方式攀爬,並使用力回饋控制方式做實驗。
  步行實驗結果發現,擺盪式三角步態之負載較一般式三角步態穩定,而對稱步態的負載較異相步態穩定。在攀爬實驗中,橫行的方式可達成攀爬於斜坡、平地到斜坡、上坡到平地、垂直壁面與倒掛攀爬等地形。
本研究的機器人橫行方式,可運用在大部分六足機器人,而力回饋攀爬方式,在視線不佳的環境仍能繼續工作,達成任務,對於機器人在特殊環境或救援行動上,有很大的幫助。
Abstract
The purpose of this research is to imitate the motion of the crab, and to propose a new control strategy for hexapod robots. Referring to the proportion of a real crab, we construct a 12- actuator hexapod robot. Walking experiments are achieved by using a tripod gait, a metachronal gait and a paired metachronal gait. We observe the loading of actuators and compare the functionality of the gaits. A special feed-forward gait and the Zero Torque control strategy are added in the climbing experiment. A compressed rubber-wire carpet and wire dactyl claws are used to simulate the non-slip climbing condition. Our experiment results show that the loading condition of the pendulous tripod gait is better than conventional tripod gait, and the paired metachronal gait is better than metachronal gait. During climbing experiments, our robot walks on a vertical, an upside-down, and two transitional terrains.
目次 Table of Contents
目錄
目錄 I
圖目錄 III
表目錄 VI
摘要 VII
Abstract VIII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 4
1.3本文基本架構 5
第二章 簡化制動器之六足仿生蟹形機器人設計 7
2.1. 硬體設備 7
2.1.1致動器介紹 7
2.1.2致動器讀值測試 10
2.2. 形態設計 13
2.2.1 螃蟹形態 13
2.2.2 仿生機器蟹之形態設計 16
2.3 足部模組 19
2.3.1 致動器配置 19
2.3.3 足部馬達負載分析 23
2.3.4 理論值與實際值測試 25
2.4 基本理論 27
2.4.1 靜態穩定與步行相關名詞 27
2.4.2 六足機器人步態一般模型 29
2.5 本章小結 32
第三章 橫行步態控制 34
3.1 姿態設定 34
3.2 直線行走步態 35
3.2.1 三角步態 35
3.2.1.1 擺盪式三角步態 36
3.2.1.2 一般式三角步態 43
3.2.2 對稱步態與異相步態 46
3.3自轉步態 54
3.4本章小節 56
第四章 橫行攀爬實驗 58
4.1螃蟹攀爬足不打滑設計 59
4.2斜坡攀爬 60
4.2.1對稱步態爬坡測試 61
4.2.2六足同步支撐半擺盪爬坡 64
4.2.3六足同步支撐2 67
4.3 行走於坡度變化 69
4.3.1 正角度變化-β=30° 70
4.3.2 正角度變化-β=50° 72
4.3.3 負角度變化 74
4.4 垂直攀爬 76
4.4.1 控制流程與結果 78
4.5 倒掛攀爬 80
4.5.1 控制流程與結果 81
4.6本章小結 82
第五章 結論與建議 84
參考文獻 87
參考文獻 References
[1] IFR Statistical Department, “World robotics 2010, executive summary,” available on line at http://www.ifr.org/uploads/media/2010_Executive_Summary_rev_01.pdf, 2010(accessed 10/25/10).
[2] J. Pratt, “Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots,” Ph.D. Thesis, Dept. Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2000.
[3] C. Chevallereau et al., “Rabbit: a testbed for advanced control theory,” IEEE Control Systems Magazine, vol. 23, no. 5, pp. 57-79, 2003.
[4] Y. Sakagami et al., “The intelligent ASIMO: system overview and integration,” in IEEE International Conf. on Intelligent Robots and Systems, Lausanne, 2002, pp. 2478-2483.
[5] M. Kalakrishnan et al., “Fast, robust quadruped locomotion over challenging terrain,” in IEEE International Conf. on Robotics and Automation, Alaska, 2010, pp. 2665-2670.
[6] T. Rofer and M. Jungel, “Fast and robust edge-based localization in the Sony four-legged robot league,” Computer Science, vol. 3020, pp. 262-273, 2004.
[7] M. Fujita, “Digital creatures for future entertainment robotics,” in IEEE International Conf. on Robotics and Automation, San Francisco, 2000, pp. 801-806.
[8] K. Arikawa and S. Hirose, “Development of quadruped walking robot TITAN-VIII,” in IEEE International Conf. on Intelligent Robots and System, Osaka, 1996, pp. 208-214.
[9] J. A. Cobano et al., “Accurate tracking of legged robots on natural terrain,” Auton Robot, vol. 28, pp. 231-244, 2010.
[10] M. J. Spenko et al., “Biologically inspired climbing with a hexapedal robot,” Journal of Field Robotics, vol. 25, no. 4-5, pp. 223-242, 2008.
[11] K. A. Daltorio et al., “A body joint improves vertical to horizontal transitions of a wall-climbing robot,” in IEEE International Conf. Robotics and Automation, Pasadena, 2008, pp. 3046-3051.
[12] G. D. Wile et al., “Screenbot: walking inverted using distributed inward gripping,” in IEEE/RSJ International Conf. Intelligent Robots and Systems, Nice, 2008, pp. 1513-1518.
[13] B. Gamann et al., “Locomotion of Lauron III in rough terrain,” in IEEE/ASME International Conf. on Advanced Mechatronics, Como, 2001, pp. 959-964.
[14] U. Saranli et al., “Rhex: a simple and highly mobile hexapod robot,” International Journal of Robotics Research, vol. 20, no. 7, pp. 616-631, 2001.
[15] F. Delcomyn and M. E. Nelson, “Architectures for a biomimetic hexapod robot,” Robotics and Autonomous Systems, vol. 30, no. 1, pp. 5-15, 2000.
[16] G. M. Nelson and R. D. Quinn, “Posture control of a cockroach-like robot,” IEEE Control Systems Magazine, vol. 19, no. 2, pp. 9-14, 1999.
[17] G. M. Nelson and R. D. Quinn, “Posture control of a cockroach-like robot,” in IEEE International Conf. on Robotics and Automation, Belgium, 1998, pp. 157-162.
[18] S. Cordes et al., “Sensor components of the six-legged walking machine Lauron II,” in International Conf. on Advanced Robotics, Monterey, 1997, pp. 71-76.
[19] D. Wettergreen et al., “Behavior-based gait execution for the Dante II walking robot,” in IEEE International Conf. on Intelligent Robots and Systems, Pittsburgh, 1995, pp. 274-279.
[20] K. Berns et al., “Adaptive, neural control architecture for the walking machine Lauron,” in IEEE/RSJ International Conf. on Intelligent Robots and Systems, Munich, 1994, pp. 1172-1177.
[21] H. J. Weidemann et al., ”The sex-legged TUM walking robot,” in IEEE International Conf. onIntelligent Robots and Systems, Munich, 1994, pp. 1026-1033.
[22] R. B. McGhee et al., “An approach to the use of terrain-preview information in rough terrain locomotion by a hexapod walking machine,” International Journal of Robotics Research, vol. 3, no. 2, pp. 134-146, 1984.
[23] T. Ohnishi and T. Asakura, “Walking behavior of spider-robot with adaptation for environment information,” in SICE Annual Conf., Sapporo, 2004, pp. 1999-2003.
[24] J. Ayers, “Underwater walking,” Arthropod Structure & Development, vol. 33, pp. 347-360, 2004.
[25] A. G. Vidal-Gadea et al., “Skeletal adaptations for forwards and sideways walking in three species of decapod crustaceans,” Arthropod Structure & Development, vol. 37, pp. 95-108, 2008.
[26] T. S. Zhao et al., “Study on adaptability of a sea crab and its bionics mechanism model,” Mechanism and Machine Theory, vol. 34, pp. 1271-1280, 1999.
[27] R. J. Full and R. B. Weinstein, “Integrating the physiology, mechanics and behavior of rapid running ghost crabs: slow and steady doesn’t always win the race,” American Society of Zoologists, vol. 32, no. 3, pp. 382-395, 1992.
[28] J. N. Schreiner, “Adaptations by the locomotor systems of terrestrial and amphibious crabs walking freely on land and underwater,” M.S. Thesis, Dept. Biological Sciences, Louisiana State Univ., Louisiana, U.S., 2004.
[29] Z. Huang and T. S. Zhao, “The specific resistance of seacrab’s walking-legged system model,” in IEEE International Conf. on System, Man and Cybernetics, Vancouver, 1995, pp. 1735-1739.
[30] G. Wang et al., “Modeling and Simulation of multi-legged walking machine prototype,” in IEEE International Conf. on Measuring Technology and Mechatronics Automation, Zhangjiajie, 2009, pp. 251-254.
[31] L. Q. Wang et al., ”The research on on bionic crab-liked robot prototype,” in IEEE International Conf. on Mechatronics & Automation, Niagara Falls, 2005, pp. 2017-2021.
[32] M. Wang et al., “Dynamic Modelling and Optimized Energy Distribution of Amphibian Walking Robot,” in IEEE International Conf. on Mechatronics and Automation, Luoyang, 2006, pp. 634-638.
[33] 吳東育,”六足機器人形態因素對其運動穩定性之影響”,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2009。
[34] R. Blickhan and R. J. Full, “Locomotion energetics of the ghost crab,” Journal of Experimental Biology, vol. 130, pp. 155-174, 1987.
[35] 鄭清海與王美鳳,和螃蟹做朋友,台北縣:人人出版股份有限公司,2002,pp. 10-14。
[36] T. Naruse and K. L. N. Peter, “Scandarma Splendidum, a new species of three-climbing crab,” The Raffles Bulletin of Zoology, vol. 55, no. 2, pp. 337-341, 2007.
[37] 劉力維,”真「蟹形」自然與人工步態之討論與比較”,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2009。
[38] R. A. Brooks, “A robot that walks: emergent behavior from a carefully evolved network,” Neural Computation, vol.1, no. 2, pp. 253-262, 1989.
[39] A. Bowling, “Dynamic performance, mobility, and agility of multi-legged robots,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 128, no. 4, pp. 765-777, 2006.
[40] D. M. Dudek and R. J. Full, “Passive mechanical properties of legs from running insects,” Journal of Experimental Biology, vol. 209, pp. 1502-1515, 2006.
[41] R. Kurazume et al., “Feedforward and feedback dynamic trot gait control for quadruped walking vehicle,” Autonomous Robots, vol. 12, no. 2, pp. 157-172, 2002.
[42] R. B. McGhee and A. A. Frank, “On the stability properties of quadruped creeping gaits,” Mathematical Bioscience, vol. 3, pp. 331-351, 1968.
[43] 蔡崇宣,”仿生多足機器人足部故障之步態研究”,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2008。
[44] J. E. Clark, “Design, simulation, and stability of a hexapedal running robot,” Ph.D. dissertation, Dept. Mechanical Engineering, Stanford Univ., California, U.S., 2004.
[45] C. Holk, “What mechanisms coordinate leg movement in walking arthropods?,” Trends in Neurosciences, vol. 13, no. 1, pp. 15-21, 1990.
[46] M. H. Dickinson et al., “How animals move: an integrative view,” Science, vol. 288, no. 5463, pp. 100-106, 2000.
[47] 晉茂林,機器人學,台北市:五南圖書出版有限公司,1999,pp. 146-149。
[48] V. G. Loc et al., “Sensing and gait planning of quadruped walking and climbing robot for traversing in complex environment,” Robotics and Autonomous Systems, vol. 34, pp. 666-675, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.208.72
論文開放下載的時間是 校外不公開

Your IP address is 18.217.208.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code