Responsive image
博碩士論文 etd-0112112-030235 詳細資訊
Title page for etd-0112112-030235
論文名稱
Title
開發新穎奈米材料於製造白色發光元件與分析生物及環境樣品中硫醇分子
Development of novel nanomaterials for fabricating white-light emitting devices and assaying thiols in biological and environmental samples
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-06
繳交日期
Date of Submission
2012-01-12
關鍵字
Keywords
胺基酸硫醇、金奈米粒子、白光發光元件、合金量子點、含硫醇胜肽分子、植物螯合素
white-light emitting devices, alloyed quantum dots, gold nanoparticles, phytochelatins, aminothiols, thiol-containing peptides
統計
Statistics
本論文已被瀏覽 5696 次,被下載 2281
The thesis/dissertation has been browsed 5696 times, has been downloaded 2281 times.
中文摘要
本論文主要在開發新穎奈米材料包括半導體量子點及金奈米粒子等兩種奈米材料,應用於製造白色發光元件與分析生物及環境樣品中硫醇分子。簡單區分為兩個部分,第一部份為合金量子點的合成、光學特性探討、白光的生成以及發光元件的應用,第二部分為開發具功能化金奈米材料並結合奈米濃縮技術與毛細管電泳聚合物線上濃縮技術,建立具選擇性與極高靈敏度檢測硫醇分子的分析方法。
首先,我們藉由簡單且單一步驟的水相合成反應,比例調配過氯酸鎘與過氯酸鋅濃度,再加入反應試劑NaHSe,並利用3-mercaptopropionic acid當穩定試劑包覆在奈米粒子表面,在相對低溫的條件下,經過控制的反應時間,即可合成出ZnxCd1–xSe合金量子點奈米材料。實驗發現,這類合金量子點奈米材料之光學性質與成分組成,和其反應溶液中鋅離子對鎘離子的莫耳比率有高度相關性。伴隨著合金奈米粒子組成中鋅成分的增長,吸收峰與放射峰會產生有系統地藍位移現象,此外,粉末X光繞射峰亦有系統地向較大繞射角度位移(偏向ZnSe的特性波峯),這些結果顯示了合金量子點的形成。而在不同的鋅與鎘成分比率之合金量子點奈米粒子中,我們找到可激放白光的Zn0.93Cd0.07Se合金量子點奈米粒子,其光子產率為12%,並發現調控反應時間可以平衡放射光譜中band edge emission與trap state emission之放射光相對強度,進而獲得白光。最後,我們將此白光量子點奈米材料結合polydimethylsiloxane (PDMS),以365-nm UV lamp為激發源,製作出發白光的簡易固態發光元件。
另一部分,我們利用非離子型介面活性劑Tween 20修飾在金奈米粒子表面上,開發具功能化的Tween 20-AuNPs材料,使金奈米粒子能夠穩定分散在高鹽類溶液中,並可透過金硫鍵結選擇性地萃取濃縮硫醇分子,再藉由毛細管電泳搭配雷射誘導螢光偵測法(CE-LIF)來進行分離與定量分析。我們先應用在檢測生物樣品中胺基酸硫醇分子,將吸附在金奈米粒子表面的胺基酸硫醇分子離心濃縮後以2-thioglycolic acid取代出來,並加入衍生試劑OPA進行衍生,再引入CE-LIF分析。研究結果顯示,運用金奈米粒子萃取濃縮Hcys、GSH及GluCys等胺基酸硫醇分子可分別提升11、282與21倍的偵測靈敏度,且偵測極限分別可達4013 pM、80 pM及383 pM濃度範圍,並實際應用在人體尿液中的檢測。再者,我們應用在檢測環境樣品中含硫醇胜肽分子,實驗中使用1,4-dithiolthreitol作為取代試劑,萃取後胜肽分子再以OPA進行衍生,並使用poly(ethylene oxide)聚合物作為電泳分離及線上濃縮之添加劑,同時增加樣品注入量,藉由線上濃縮提升偵測靈敏度。分析結果GSH、GluCys及植物螯合素PC2~ PC4等5種含硫醇胜肽分子之偵測極限可達0.1-6 pM 範圍。此分析方法相較於文獻中已發表的方法,具有最低的偵測極限,且實際應用在海水樣品分析。我們所開發的方法結合了奈米材料技術與毛細管電泳技術,具有超靈敏檢測生物及環境樣品中硫醇分子之能力。
Abstract
This thesis focuses on development of novel nanomaterials, including semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs), for fabricating white-light emitting devices and assaying thiols in biological and environmental samples. The thesis mainly contains two divisions. One demonstrates synthesis, optical properties and white-light emissions of alloyed quantum dots and their application to light-emitting devices. The other describes to combine functionalized gold nanoparticles with capillary electrophoresis and accomplish high selectivity and ultrasensitive detection for thiols.
First, through one-step aqueous synthesis, alloyed ZnxCd1–xSe QDs have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using 3-mercaptopropionic acid as a surface-stabilizing agent. The optical properties and composition of the alloyed QDs were highly dependent on the molar ratio of Zn2+ to Cd2+. With the increase in Zn content, a systematic blue shift occurred in the first exciton absorption and band edge emission. Moreover, X-ray diffraction peaks of the alloyed QDs systematically shifted to larger angles simultaneously. These systematic shifts indicated the formation of the alloyed QDs. Interestingly, among these alloyed QDs, Zn0.93Cd0.07Se QDs exhibited white-light emission with quantum yields of 12%. In addition, we discovered that we could adjust the relative strength of the band edge and trap state emissions by controlling the reaction time, thereby attain white-light-emitting QDs. Finally, we blended alloyed QDs with ultraviolet-transparent polydimethylsiloxane (PDMS) to develop a white-light, solid-state lighting device by using a 365-nm UV lamp as the pump source.
In the other part of this thesis, we proposed a method for selective enrichment of thiols using Tween 20-capped gold nanoparticles (AuNPs) prior to capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF). By forming Au-S bonds, Tween 20-AuNPs can selectively extract thiols from a complicated matrix. A Tween 20 capping layer not only suppresses nonspecific adsorption, but also enables NPs to disperse in a highly-salinity solution. For analyses of aminothiols, after extraction and centrifugation, thioglycollic acid was utilized to remove aminothiols that attached to the NP surfaces. The extracted aminothiols was derivatized with o-phthalaldehyde (OPA) followed by CE-LIF. The use of this nanoprobe provided approximately 11-, 282-, and 21-fold sensitivity improvements for homocysteine (HCys), glutathione (GSH), and γ-glutamylcysteine (GluCys), respectively. Furthermore, the limits of detection (LODs) at a signal-to-noise ratio of 3 for HCys, GSH, and GluCys are 4013, 80, and 383 pM, respectively. A practical analysis of aminothiols in human urine sample has been accomplished by our proposed method. For another application to determining thiol-containing peptides, we use dithiothreitol to remove thiol-containing peptides from the NP surface through ligand exchange. The released peptides are selectively derivatized with OPA to form tricyclic isoindole derivatives. After injecting a large sample volume, the sensitivity of these peptides was improved by stacking them via using polyethylene oxide (PEO) as additive for on-line concentration and separation. As a result, LODs for GSH, GluCys, and phytochelatins (PC2 ~ PC4) were down to 0.1-6 pM. The proposed method has the lowest LODs for five peptides compared to other reported methods, and it also detect dissolve thiols in seawater in practice. Our proposed method is capable of ultrasensitive detection for thiols in biological and environmental samples.
目次 Table of Contents
中文摘要 i
英文摘要 iii
目錄 v
圖次 ix
表次 xii
第一章 緒論 1
1.1奈米材料簡介 1
1.1.1 奈米介觀 1
1.1.2 奈米材料的物理效應與特性 2
1.1.3 奈米粒子的製備與表面修飾 5
1.2 半導體量子點 8
1.2.1 量子點定義與特性 8
1.2.2 化學合成與量子點結構 9
1.2.3 量子點的修飾與應用 15
1.3 金奈米粒子 18
1.3.1 光學特性 18
1.3.2 合成製備方法 20
1.3.3 感測方法與應用 20
1.4 毛細管電泳 26
1.4.1 分離模式 27
1.4.2 偵測方法 32
1.4.3 毛細管線上濃縮技術 35
1.5 研究動機 40
1.6參考文獻 42
第二章 單一步驟水相低溫合成可激放白光之合金量子點 61
2.1 摘要 61
2.2 前言 62
2.3 實驗 64
2.3.1 實驗藥品與材料 64
2.3.2 NaHSe溶液之製備 65
2.3.3 ZnxCd1–xSe合金量子點之合成 66
2.3.4 CdSe與ZnSe量子點之合成 66
2.3.5 量子點定性與儀器設備 67
2.3.6 簡易固態發光元件的製作 70
2.4 結果與討論 72
2.4.1 改變Zn2+�Cd2+莫耳比的影響 72
2.4.2 白光量子點的定性 82
2.4.3 成長機制 85
2.4.4 發光元件的應用 92
2.5結論 94
2.6參考文獻 95
第三章 利用非離子型界面活性劑修飾之金奈米粒子萃取濃縮並結合毛細管
電泳雷射誘導螢光偵測法分析生物樣品中胺基酸硫醇分子 101
3.1 摘要 101
3.2 前言 102
3.3 實驗 105
3.3.1 藥品與溶液製備 105
3.3.2 實驗儀器 108
3.3.3 金奈米粒子的合成與定性 110
3.3.4 萃取及衍生流程 111
3.3.5 毛細管處理與電泳分離 111
3.3.6 尿液中胺基酸硫醇分子與肌酸酐的分析 112
3.4 結果與討論 113
3.4.1 胺基酸硫醇分子衍生與電泳分離的最佳化 113
3.4.2 取代試劑的選用 117
3.4.3 金奈米粒子濃度與取代試劑濃度的變化 119
3.4.4 樣品體積的影響 121
3.4.5 定量與真實樣品之應用 125
3.5結論 131
3.6參考文獻 132
第四章 利用金奈米粒子萃取濃縮並結合毛細管電泳雷射誘導螢光偵測方式
分析海水中的含硫醇胜肽分子 137
4.1 摘要 137
4.2 前言 138
4.3 實驗 142
4.3.1 藥品與溶液製備 142
4.3.2 實驗儀器 145
4.3.3 金奈米粒子的合成與修飾 147
4.3.4 奈米粒子的萃取流程 148
4.3.5 衍生方法 148
4.3.6 毛細管電泳分離與線上濃縮 148
4.3.7 海水中硫醇分子的分析 149
4.4 結果與討論 151
4.4.1 植物螯合素的衍生 151
4.4.2 PEO扮演的角色 155
4.4.3 偵測靈敏度的改善 158
4.4.4 再現性與定量及真實樣品之應用 167
4.5結論 171
4.6參考文獻 172
第五章 總結 179
附錄 181
參考文獻 References
第一章
1. Alivisatos, A. P. “Semiconductor clusters, nanocrystals, and quantum dots” Science 1996, 271, 933–937.
2. Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A.; Tomson, M.; Natelson, D; Colvin, V. L. “Low-field magnetic separation of monodisperse Fe3O4 nanocrystals” Science 2006, 314, 964–967.
3. Shama, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. ”Nanoparticles for bioimaging” Adv. Colloid Interface Sci. 2006, 16, 471–485.
4. Hasobe, T.; Imahori, H.; Kamat, P. V.; Ahn, T. K.; Kim, D.; Fujimoto, A.; Hirakawa, T.; Fukuzumi, S. “Using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles” J. Am. Chem. Soc. 2005, 127, 1216–1228.
5. Boisselier, E.; Astruc, D. “Gold nanoparticles in nanomedicine preparations, imaging, diagnostics, therapies and toxicity” Chem. Soc. Rev. 2009, 38, 1759–1782.
6. Wilson, R. “The use of gold nanoparticles in diagnostics and detection” Chem. Soc. Rev. 2008, 37, 2028–2045.
7. Liu, F. K. “Analysis and applications of nanoparticles in the separation sciences: a case of gold nanoparticles” J. Chromatogr. A 2009, 1216, 9034–9047.
8. Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y.-W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T. “Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins” J. Am. Chem. Soc. 2006, 128, 10658–10659.
9. Sathe, T. R.; Agrawal, A.; Nie, S. “Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation” Anal. Chem. 2006, 78, 5627–5632.
10. Gao, J.; Gu, H.; Xu, B. “Multifunctional magnetic nanoparticles: design, synthesis, and applications” Accounts Chem. Res. 2009, 42, 1097–1107.
11. Wise, F. W. “Lead salt quantum dots: the limit of strong quantum confinement” Accounts Chem. Res. 2000, 33, 773–780.
12. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G. Wu, A. M.; Gambhir, S. S.; Weiss, S. “Quantum dots for live cells, in vivo imaging, and diagnostics” Science 2005, 307, 538–544.
13. Mamedova, N. N.; Kotov, N. A. “Albumin–CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect” Nano Lett. 2001, 1, 281–286.
14. Wang, S.; Mamedova, N.; Kotov, N. A.; Chen, W.; Studer, J. “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates” Nano Lett. 2002, 2, 817–822.
15. Goldman, E. R.; Balighian, E. D.; Kuno, M. K.; Labrenz, S.; Tran, P. T.; Anderson, G.P.; Mauro, J. M.; Mattoussi, H. “Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays” Phys. Stat. Sol. 2002, 229, 407–414.
16. Qian, H. F.; Dong, C. Q.; Weng, J. F. “Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals ” Samll 2006, 2, 747–751.
17. Wang, H.; Tessmer, I.; Croteau, D. L.; Erie, D. A.; Houten, B. V. “Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot” Nano Lett. 2008, 8, 1631–1637.
18. Zhou, D.; Piper, J. D.; Abell, C.; David, K.; Kang, D.-J.; Ying, L. “Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA” Chem. Commun. 2005, 38, 4807–4809.
19. Gearheart, L. A.; Ploehn, H. J.; Murphy, C. J. “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA” J. Phys. Chem. B 2001, 105, 12609–12615.
20. Mahtab, R; Harden, H. H.; Murphy, C. J. “Temperature- and sale-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”–DNA interactions” J. Am. Chem. Soc. 2000, 122, 14–17.
21. Shaiu, W. L.; Larson, D. D.; Vesenka, J.; Henderson, E. “Atomic force microscopy of oriented linear DNA-molecules labeled with 5 nm gold spheres” Nucleic Acids Res. 1993, 21, 99–103.
22. Willard, D. M.; Carillo, L. L.; Jung, J.; Orden, A. V. “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay” Nano Lett. 2001, 1, 469–474.
23. Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. “Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein” J. Am. Chem. Soc. 2000, 122, 12142–12150.
24. Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E. “Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates” Langmuir 2000, 16, 3107–3118.
25. Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R. “Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots” Chem. Mater. 2002, 14, 2113–2119.
26. Warran, C. W. C.; Nie, S. M. “Quantum dot bioconjugates for ultrasensitive nonisotopic detection” Science 1998, 281, 2016–2018.
27. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. “In vivo imaging of quantum dots encapsulated in phospholipid micelles” Science 2002, 298, 1759–1762.
28. Zhang, H.; Wang, D.; Yang, B.; Möhwald, H. “Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures” J. Am. Chem. Soc. 2006, 128, 10171–10180.
29. Zheng, Y.; Gao, S.; Ying J. Y. “Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots” Adv. Mater. 2007, 19, 376–380.
30. Chan, W. C.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. “Luminescent quantum dots for multiplexed biological detection and imaging” Curr. Opin. Biotechnol. 2002, 13, 40–46.
31. Bailey, R. E.; Smith, A. M.; Nie, S. “Quantum dots in biology and medicine” Physica E 2004, 25, 1–12.
32. Smith, A. M.; Nie, S. “Chemical analysis and cellular imaging with quantum dots” Analyst 2004, 129, 672–677.
33. Henglein, A. “Photochemistry of colloidal cadmium-sulfide. 2. effects of adsorbed methyl viologen and of colloidal platinum” J. Phys. Chem. 1982, 86, 2291–2293.
34. Rossetti, R.; Brus, L. E. “Electron-hole recombination emission as a probe of surface-chemistry in aqueous CdS colloids” J. Phys. Chem. 1982, 86, 4470–4472.
35. Murray, C. B.; Norris, D. J.; Bawendi, M. G. “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites” J. Am. Chem. Soc. 1993, 115, 8706–8715.
36. Qu, L. H.; Peng, X. G. “Control of photoluminescence properties of CdSe nanocrystals in growth” J. Am. Chem. Soc. 2002, 124, 2049–2055.
37. Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. “A novel organometallic synthesis of highly luminescent CdTe nanocrystals” J. Phys. Chem. B 2002, 2, 2260–2263.
38. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. “Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture” Nano Lett. 2001, 1, 207–211.
39. Qu, L. H.; Peng, Z. A.; Peng, X. G. “Alternative routes toward high quality CdSe nanocrystals” Nano Lett. 2001, 1, 333–337.
40. Peng, Z. A.; Peng, X.G. “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor” J. Am. Chem. Soc. 2001, 123, 183–184.
41. Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. “Photochemistry of colloidal semiconductors. 20. surface modification and stability of strong luminescing CdS particles” J. Am. Chem. Soc. 1987, 109, 5649–5655.
42. Hines, M. A.; Guyot-Sionnest, P. “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals” J. Phys. Chem. 1996, 100, 468–471.
43. Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility” J. Am. Chem. Soc. 1997, 119, 7019–7029.
44. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R. “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites” J. Phys. Chem. B 1997, 101, 9463–9475.
45. Balet, L. P.; Ivanov, S. A.; Piryatinski, A.; Achermann, M.; Klimov, V. I. “Inverted core/shell nanocrystals continuously tunable between type-I and type-ll localization regimes” Nano Lett. 2004, 4, 1485–1488.
46. Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.; Brus, L. E. “Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media” J. Am. Chem. Soc. 1990, 112, 1327–1332.
47. Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M. “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures” J. Am. Chem. Soc. 2003, 125, 11466–11467.
48. Xia, Y.; Zhu, C. “Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II)” Analyst 2008, 133, 928–932.
49. Blackman, B.; Battaglia, D.; Peng, X. “Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe Type-II/Type-I nanocrystals, tuning the efficiency and stability by growth” Chem. Mater. 2008, 20, 4847–4853.
50. Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. “Near-infrared fluorescent type II quantum dots for sentinellymph node mapping” Nat. Biotechnol. 2004, 22, 93–97.
51. Klostranec, J. M.; Chan, W. C. W. “Quantum dots in biological and biomedical research: recent progress and present challenges” Adv. Mater. 2006, 18, 1953–1964.
52. Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W. “Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability” J. Am. Chem. Soc. 2003, 125, 8589–8594.
53. Zhong, X.; Feng, Y.; Knoll, W.; Han, M. “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width” J. Am. Chem. Soc. 2003, 125, 13559–13563.
54. Zhong, X.; Zhang, Z.; Liu, S.; Han, M.; Knoll, W. “Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1-xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength” J. Phys. Chem. B 2004, 108, 15552–15559.
55. Bailey R. E.; Nie, S. “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size” J. Am. Chem. Soc. 2003, 125, 7100–7106.
56. Swafford, L. A.; Weigand, L. A.; Bowers II, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J. “Homogeneously alloyed CdSxSe1-x nanocrystals: synthesis, characterization, and composition/size-dependent band gap” J. Am. Chem. Soc. 2006, 128, 12299–12306.
57. Zheng, Y.; Yang, Z.; Ying, J. Y. “Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCdxSe alloyed quantum dots” Adv. Mater. 2007, 19, 1475–1479.
58. Ge, J.-P.; Xu, S.; Zhuang, J.; Wang, X.; Peng, Q.; Li, Y.-D. “Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures” Inorg. Chem. 2006, 45, 4922–4927.
59. Chan, W. C. W.; Nie S. “Quantum dot bioconjugates for ultrasensitive nonisotopic detection” Science 1998, 281, 2016–2018.
60. Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E. “Hydroxylated quantum dots as luminescent probes for in situ hybridization” J. Am. Chem. Soc. 2001, 123, 4103–4104.
61. Aldana, J.; Wang, Y. A.; Peng, X. G. “Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols” J. Am. Chem. Soc. 2001, 123, 8844–8850.
62. Willard, D. M.; Carillo, L. L.; Jung, J.; Orden, A. V. “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay” Nano Lett. 2001, 1, 469–474.
63. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. “Semiconductor nanocrystals as fluorescent biological labels” Science 1998, 281, 2013–2016.
64. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots” J. Phys. Chem. B 2001, 105, 8861–8871.
65. Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Willoams, S. C.; Seite, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. “Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots” Chem. Mater. 2002, 14, 2113–2119.
66. Hermanson, G.T. “Bioconjugate techniques” Academic Press, New York, 1996.
67. Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N. F.; Peale, F.; Bruchez, M. P. “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots” Nat. Biotechnol. 2003, 21, 41–46.
68. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. “In vivo imaging of quantum dots encapsulated in phospholipid micelles” Science 2002, 298, 1759–1762.
69. Efros, A. L.; Efros, A. L. “Interband absorption of light in a semiconductor sphere” Sov. Phys. Semicond. 1982, 16, 772–775.
70. Ekimov, A. I.; Onushchenko, A. A. “Quantum size effect in the optical-spectra of semiconductor micro-crystals” Sov. Phys. Semicond. 1982, 16, 775–778.
71. Yoffe, A. D. “Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems” Adv. Phys. 2001, 50, 1–208.
72. Alivisatos, A. P. “Perspectives on the physical chemistry of semiconductor nanocrystals” J. Phys. Chem. 1996, 100, 13226–13239.
73. Alivisatos, A. P. “Semiconductor clusters, nanocrystals, and quantum dots” Science 1996, 271, 933–937.
74. Cottingham, K. “Quantum dots leave the light on” Anal. Chem. 2005, 9, 354A–357A.
75. Medintz, I.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. “Quantum dot bioconjugates for imaging, labeling and sensing” Nat. Mater. 2005, 4, 435–446.
76. Steckel, J. S.; Snee, P.; Coe-Sullivan, S.; Zimmer, J. P.; Halpert, J. E.; Anikeeva, P.; Kim, L.-A.; Bulovic, V.; Bawendi, M. G. “Color-saturated green-emitting QD-LEDs” Angew. Chem.-Int. Edit. 2006, 45, 1–5.
77. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. “Air-stable all-inorganic nanocrystal solar cells processed from solution” Science 2005, 310, 462–465.
78. Chen, Y.; Rosenzweig, Z. “Luminescent CdS quantum dots as selective ion probes” Anal. Chem. 2002, 74, 5132–5138.
79. Chen, J.;Gao, Y. C.; Xu, Z. B.; Wu, G. H.; Chen, Y. C.; Zhu, C. Q. “A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters” Anal. Chim. Acta 2006, 577, 77–84.
80. Ali, E. M.; Zheng, Y.; Yu, H.-h.; Ying, J. Y. “Ultrasensitive Pb2+ detection by glutathione-capped quantum dots” Anal. Chem. 2007, 79, 9452–9458.
81. Koneswaran, M.; Narayanaswamy, R. “Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II)” Sens. Actuator B-Chem. 2009, 139, 91–96.
82. Wang, S.; Mamedova, N.; Kotov, N. A.; Chen, W.; Studer, J. “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates” Nano Lett. 2002, 2, 817–822.
83. Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. “Avidin: a natural bridge for quantum dot-antibody conjugates” J. Am. Chem. Soc. 2002, 124, 6378–6382.
84. Cordes, D. B.; Gamsey, S.; Singaram, B. “Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution” Angew. Chem.-Int. Edit. 2006, 45, 3829–3832.
85. Oh, E.; Lee, D.; Kim, Y.-P.; Cha, S. Y.; Oh, D.-B.; Kang, H. A.; Kim, J.; Kim, H.-S. “Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation” Angew. Chem.-Int. Edit. 2006, 45, 7959–7963.
86. Peng, H.; Zhang, L.; Kjallman, T. H. M.; Soeller, C.; Travas-Sejdic, J. “DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA” J. Am. Chem. Soc. 2007, 129, 3048–3049.
87. Han, M. Y.; Gao, X.; Su, J. Z.; Nie, S. “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules” Nat. Biotechnol. 2001, 19, 631–635.
88. Gaponik, N.; Radtchenko, I. L.; Sukhorukov, G. B.; Weller, H.; Rogach, A. L. “Toward encoding combinatorial libraries: Charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR” Adv. Mater. 2002, 14, 879–882.
89. Rosenthal, S. J.; Tomlinson I.; Adkins, E. M.; Schroeter, S.; Adams, S.; Swafford, L.; McBride, J.; Wang, Y.; DeFelice, L. J.; Blakely, R. D. “Targeting cell surface receptors with ligand-conjugated nanocrystals” J. Am. Chem. Soc. 2002, 124, 4586–4594.
90. Åkerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. “Nanocrystal targeting in vivo” Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12617–12621.
91. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. “Nanostructured plasmonic sensors” Chem. Rev. 2008, 108, 494–521.
92. Creighton, J. A.; Eadon, D. G. “Ultraviolet visible absorption-spectra of the colloidal metallic elements” J. Chem. Soc.-Faraday Trans. 1991, 87, 3881–3891.
93. Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J. “Nanorice: A hybrid plasmonic nanostructure” Nano Lett. 2006, 6, 827–832.
94. Gerdon, A. E.; Wright, D. W.; Cliffel, D. E. “Epitope mapping of the protective antigen of B. anthracis by using nanoclusters presenting conformational peptide epitopes” Angew. Chem.-Int. Edit. 2006, 45, 594–598.
95. Frens, G. “Controlled nucleation for the regulation of the particle size in monodisperse gold solution” Nat.-Phys. Sci. 1973, 241, 20–22.
96. Lee, P. C.; Meisel, D. “Adsorption and surface-enhanced raman of dyes on silver and gold sols” J. Phys. Chem. 1982, 86, 3391–3395.
97. 林彥琇; 余政儒; 曾韋龍 “金奈米材料於感測器之應用” 化學, 2010, 68(1), 1–13.
98. Zhao, W.; Brool, M. A.; Li, Y. “Design of gold nanoparticle-based colorimetric biosensing assays” ChemBioChem 2008, 9, 2363–2371.
99. Knecht, M. R.; Sethi, M. “Bio-inspired colorimetric detection of Hg(2+) and Pb(2+) heavy metal ions using Au nanoparticles” Anal. Bioanal. Chem. 2009, 394, 33–46.
100. Huang, C. C.; Chang, H. T. “Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles” Chem. Commun. 2007, 12, 1215–1217.
101. Huang, K. W.; Yu, C. J.; Tseng, W. L. “Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion” Biosens. Bioelectron. 2010, 25, 984–989.
102. Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A. “MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes” J. Am. Chem. Soc. 2006, 128, 2172–2173.
103. Lee, J. S.; Han, M. S.; Mirkin, C. A. “Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles” Angew. Chem.-Int. Edit. 2007, 46, 4093–4096.
104. Liu, C.-W.; Hsieh, Y.-T.; Huang, C.-C.; Lin, Z.-H.; Chang, H.-T. “Detection of mercury(II) based on Hg(2+)-DNA complexes inducing the aggregation of gold nanoparticles” Chem. Commun. 2008, 19, 2242–2244.
105. Kim, D.; Daniel, W. L.; Mirkin, C. A. “Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes” Anal. Chem. 2009, 81, 9183–9187.
106. Porter, M. C.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. “SERS as a bioassay platform: fundamentals, design, and applications” Chem. Soc. Rev. 2008, 37, 1001–1011.
107. Ambrosi, A.; Airo, F.; Merkoci, A. “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker” Anal. Chem. 2010, 82, 1151–1156.
108. Rance G. A.; Marsh, D. H.; Khlobysstov, A. N. “Extinction coefficient analysis of small alkanethiolate-stabilised gold nanoparticles” Chem. Phys. Lett. 2008, 460, 230–236.
109. Thomas, K. G.; Kamat, P. V. “Chromophore-functionalized gold nanoparticles” Acc. Chem. Res. 2003, 36, 888–898.
110. Jin, Y.; Li, H.; Bai, J. “Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay” Anal. Chem. 2009, 81, 5709–5715.
111. Huang, C. C.; Chang, H. T. “Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution” Anal. Chem. 2006, 78, 8332–8338.
112. Maxwell, D. J.; Taylor, J. R.; Nie, S. “Self-assembled nanoparticle probes for recognition and detection of biomolecules” J. Am. Chem. Soc. 2002, 124, 9606-9612.
113. Fan, Y.; Long, Y. F.; Li, Y. F. “A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles” Anal. Chim. Acta 2009, 653, 207-211.
114. Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Perry, C.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A. K.; Senapati, D.; Ray, P. C. “Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater “ Angew. Chem.-Int. Edit. 2009, 48, 9668–9671.
115. Thaxton, C. S.; Hill, H. D.; Georganopoulou, D. G.; Stoeva, S. I.; Mirkin, C. A. “A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release” Anal. Chem. 2005, 77, 8174–8178.
116. Cao, C.; Sim, S. J. “Resonant Rayleigh light scattering response of individual Au nanoparticles to antigen–antibody interaction” Lab Chip 2009, 9, 1836–1839.
117. Ambrosi, A.; Airo, F.; Merkoci, A. “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker” Anal. Chem. 2010, 82, 1151–1156.
118. Harpster, M. K.; Zhang, H.; Sankara-Warrier, A. K.; Ray, B. H.; Ward, T. R.; Kollmar, J. P.; Carron, K. T.; Mecham, J. O.; Corcoran, R. C.; Wilson, W. C. Johnson, P. A. “SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label” Biosens. Bioelectron. 2009, 25, 674–681.
119. Lin, C.-C.; Yang, Y.-M.; Chen, Y.-F.; Yang, T.-S.; Chang, H.-C. “A new protein A assay based on Raman reporter labeled immunogold nanoparticles” Biosens. Bioelectron. 2008, 24, 178–183.
120. Villiers, M.-B.; Cortes, S.; Brakha, C.; Lavergne, J.-P.; Marquette, C. A.; Deny, P.; Livache, T.; Marche, P. N. “Peptide-protein microarrays and surface plasmon resonance detection: biosensors for versatile biomolecular interaction analysis” Biosens. Bioelectron. 2010, 26, 1554–1559.
121. Cao, Y. C.; Jin, R.; Mirkin, C. A. “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection” Science 2002, 297, 1536–1540.
122. Porter, M. C.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. “SERS as a bioassay platform: fundamentals, design, and applications” Chem. Soc. Rev. 2008, 37, 1001–1011.
123. Paul, S.; Vadgama, P.; Ray, A. K. “Surface plasmon resonance imaging for biosensing” IET Nanobiotechnol. 2009, 3, 71–80.
124. Chen, S.-J.; Chang, H.-T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727–3734.
125. Huang, Y.-F.; Chang, H.-T. “Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2006, 78, 1485–1493.
126. Wu, H.-P.; Huang, C.-C.; Cheng, T.-L.; Tsenga, W.-L. “Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine” Talanta 2008, 76, 347–352.
127. Li, M.-D.; Cheng, T.-L.; Tseng, W.-L. “Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection” Electrophoresis 2009, 30, 388–395.
128. Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288–293.
129. Tiselius, A. “A new apparatus for electrophoretic analysis of colloidal mixtures” Trans. Faraday Soc. 1937, 33, 524–531.
130. Jorgenson, J. W.; Lukacs, K. D. “Zone electrophoresis in open-tubular glass-capillaries” Anal. Chem. 1981, 53, 1298–1302.
131. Cohen, A. S.; Karger, B. L. “High-performance sodium dodecyl sulfate polyacryl amide gel capillary electrophoresis of peptides and proteins” J. Chromatogr. 1987, 397, 409–417.
132. Ganzler, K.; Greve, K. S.; Cohen, A. S.; Karger, B. L.; Guttman, A.; Cooke, N. “High-performance capillary electrophoresis of SDS-protein complexes using UV-transparent polymer networks” Anal. Chem. 1992, 64, 2665–2671.
133. Guttman, A.; Nolan, J. A.; Cooke, N. “Capillary sodium dodecyl sulfate gel electrophoresis of proteins” J. Chromatogr. 1993, 632, 171–175.
134. Gomis, D. B.; Junco, S.; Expósito, Y.; Gutiérrez, M. D. “Size-based separations of proteins by capillary electrophoresis using linear polyacrylamide as a sieving medium: model studies and analysis of cider proteins” Electrophoresis 2003, 24, 1391–1396.
135. Best, N.; Arriage, E.; Chen, D. Y.; Dovichi, N. J. “Separation of fragments up to 570 bases in length by use of 6% T non-cross-linked polyacrylamide for DNA sequencing in capillary electrophoresis” Anal. Chem. 1994, 66, 4063–4067.
136. Simò-Alfonso, E.; Conti, M.; Gelfi, C.; Righetti, P. G. “Sodium dodecyl sulfate capillary electrophoresis of proteins in entangled solutions of poly(vinyl alcohol)” J. Chromatogr. A 1995, 689, 85–96.
137. Lee, T. T.; Yeung, E. S. “High-sensitivity laser-induced fluorescence detection of native proteins in capillary electrophoresis” J. Chromatogr. 1992, 595, 319–325.
138. Sluszny, C.; He, Y.; Yeung, E. S. “Light-emitting diode-induced fluorescence detection of native proteins in capillary electrophoresis” Electrophoresis 2005, 26, 4197–4203.
139. An, Y.; Cooper, J. W.; Balgley, B. M.; Lee, C. S. “Selective enrichment and ultrasensitive identification of trace peptides in proteome analysis using transient capillary isotachophoresis/zone electrophoresis coupled with nano-ESI-MS” Electrophoresis 2006, 18, 3599–3608.
140. Huck, C. W.; Bakry, R.; Huber, L. A.; Bonn, G. K. “Progress in capillary electrophoresis coupled to matrix-assisted laser desorption/ionization-time of flight mass spectrometry” Electrophoresis 2006, 27, 2063–2074.
141. Burgi, D. S.; Chien, R. L. “Optimization in sample stacking for high-performance capillary electrophoresis” Anal. Chem. 1991, 63, 2042–2047.
142. Chien, R. L.; Helmer, J. C. “Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis” Anal. Chem. 1991, 63, 1354–1361.
143. Chien, R. L.; Burgi, D. S. “On-column sample concentration using field amplification in CZE” Anal. Chem. 1992, 64, 489A–496A.
144. Friedberg, M. A.; Hinsdale, M.; Shihabi, Z. K. “Effect of pH and ions in the sample on stacking in capillary electrophoresis” J. Chromatogr. A 1997, 781, 35–42.
145. Tan, W. G.; Tyrrell, D. L. J.; Dovichi, N. J. “Detection of duck hepatitis B virus DNA fragments using on-column intercalating dye labeling with capillary electrophoresis-laser-induced fluorescence” J. Chromatogr. A 1999, 853, 309–319.
146. Tagliaro, F.; Manetto, G.; Crivellente, F. “Hair analysis for abused drugs by capillary zone electrophoresis with field-amplified sample stacking” Forensic Sci. Int. 1999, 92, 201–211.
147. Chien, R. L.; Burgi, D. S. “Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis” Anal. Chem. 1992, 64, 1046–1050.
148. McGrath, G.; Smyth, W. F. “Large-volume sample stacking of selected drugs of forensic significance by capillary electrophoresis” J. Chromatogr. B 1996, 681, 125–131.
149. Monton, M. R. N.; Imami, K.; Nakanishi, M.; Kim, J. B.; Terabe, S. “Dynamic pH junction technique for on-line preconcentration of peptides in capillary electrophoresis” J. Chromatogr. A 2005, 1079, 266–273.
150. Jensen, P. K.; Paìa-Toli, L.; Peden, K. K.; Martinović, S.; Lipton, M. S.; Anderson, G. A.; Toli , N.; Wong, K.-K.; Smith, R. D. “Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures” Electrophoresis 2000, 21, 1372–1380.
151. Cheng, J.; Gao, J.; Lee, C. S. “Dynamic enhancements of sample loading and analyte concentration in capillary isoelectric focusing for proteome studies” J. Proteome Res. 2003, 2, 249–254.
152. Kvasnička, F. “Determination of egg white lysozyme by on-line coupled capillary isotachophoresis with capillary zone electrophoresis” Electrophoresis 2003, 24, 860–864.
153. Tseng, W. L.; Chang, H. T. “On-line concentration and separation of proteins by capillary electrophoresis using polymer solutions” Anal. Chem. 2000, 72, 4805–4811.
154. Yu, C. J.; Tseng, W. L. “Online concentration and separation of basic proteins using a cationic polyelectrolyte in the presence of reversed electroosmotic flow” Electrophoresis 2006, 27, 3569–3577.
第二章
1. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. “Chemistry and properties of nanocrystals of different shapes” Chem. Rev. 2005, 105, 1025–1102.
2. Rajeshwar, K.; Tacconi, N. R. D.; Chenthamarakshan, C. R. “Semiconductor-based composite materials: preparation, properties, and performance” Chem. Mater. 2001, 13, 2765–2782.
3. Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. “In vivo molecular and cellular imaging with quantum dots” Curr. Opin. Biotechnol. 2005, 16, 63–72.
4. Kwong, N. H.; Binder, R.; Lindberg, M. “Quantum-dot quantum-interference infrared photodetector: design proposal and modeling of performance characteristics” Opt. Lett. 2004, 29, 2536–2538.
5. Fleischhaker, F.; Zentel, R. “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots” Chem. Mater. 2005, 17, 1346–1351.
6. Baron, T.; Fernandes, A.; Damlencourt, J. F.; Salvo, B. D.; Martin, F.; Mazen, F.; Haukka, S. “Growth of Si nanocrystals on alumina and integration in memory devices” Appl. Phys. Lett. 2003, 82, 4151–4153.
7. Lim, J.; Jun, S.; Jane, E.; Baik, H.; Kim, H.; Cho, J. “Preparation of highly luminescent nanocrystals and their application to light-emitting diodes” Adv. Mater. 2007, 19, 1927–1932.
8. Zhao, J.; Zhang, J.; Jiang, C.; Bohnenberger, J.; Basché, T.; Mews, A. “Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes” J. Appl. Phys. 2004, 96, 3206–3210.
9. Coe, S.; Woo, W.-K.; Bawendi, M.; Bulović, V. “Electroluminescence from single monolayers of nanocrystals in molecular organic devices” Nature 2002, 420, 800–803.
10. Kido, J.; Kimura, M.; Nagai, K. “Multilayer white light-emitting organic electroluminescent device” Science 1995, 267, 1332–1334.
11. D’Andrade, B. W.; Forrest, S. R. “White organic light-emitting devices for solid-state lighting” Adv. Mater. 2004, 16, 1585–1595.
12. Li, Y.; Rizzo, A.; Cingolani, R.; Gigli, G. “Bright white-light-emitting device from ternary nanocrystal composites” Adv. Mater. 2006, 18, 2545–2548.
13. Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I. “Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers” Nano Lett. 2005, 5, 1039–1044.
14. Lin, Y.-W.; Tseng, W.-L.; Chang, H.-T. “Using a layer-by-layer assembly technique to fabricate multicolored-light-emitting films of CdSe@CdS and CdTe quantum dots” Adv. Mater. 2006, 18, 1381–1386.
15. Bowers II, M. J.; McBride, J. R.; Rosenthal, S. J. “White-light emission from magic-sized cadmium selenide nanocrystals” J. Am. Chem. Soc. 2005, 127, 15378–15379.
16. Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. “Bright white-light emission from semiconductor nanocrystals: by chance and by design” Adv. Mater. 2007, 19, 569–572.
17. Lu, H.-Y.; Chu, S.-Y.; Tan, S.-S. “The low-temperature synthesis and optical properties of near-white light emission nanophosphors based on manganese-doped zinc sulfide” Jpn. J. Appl. Phys. 2005, 44, 5282–5288.
18. Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y. “White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes” Appl. Phys. Lett. 2005, 86, 131905.
19. Lakowicz, J. R.; Principles of Fluorescence Spectroscopy; Kluwer Academic/ Plenum Publishers: New York, 1999.
20. Shavel, A.; Gaponik, N.; Eychmüller, A. “Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals” J. Phys. Chem. B 2004, 108, 5905–5908.
21. Langford, J. I.; Wilson, A. J. C. “Scherrer after sixty years: a survey and some new results in the determination of crystallite size” J. Appl. Cryst. 1978, 11, 102–113.
22. Bailey, R. E.; Nie, S. “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size” J. Am. Chem. Soc. 2003, 125, 7100–7106.
23. Ge, J.-P.; Xu, S.; Zhuang, J.; Wang, X.; Peng, Q.; Li, Y.-D. “Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures” Inorg. Chem. 2006, 45, 4922–4927.
24. Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W. “Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability” J. Am. Chem. Soc. 2003, 125, 8589–8594.
25. Zhong, X.; Zhang, Z.; Liu, S.; Han, M.; Knoll, W. “Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1-xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength” J. Phys. Chem. B 2004, 108, 15552–15559.
26. Yu, Z.; Li, J.; O’Connor, D. B.; Wang, L.-W.; Barbara, P. F. “Large resonant stokes shift in CdS nanocrystals” J. Phys. Chem. B 2003, 107, 5670–5674.
27. Deng, Z.; Lie, F. L.; Shen, S.; Ghosh, I.; Mansuripur, M.; Muscat, A. J. “Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence” Langmuir 2009, 25, 434–442.
28. Jeong, S.; Achermann, M.; Nanda, J.; Ivanov, S.; Klimov, V. I.; Hollingsworth, J. A. “Effect of the thiol–thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots” J. Am. Chem. Soc. 2005, 127, 10126–10127.
29. Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. “Identification of the transition responsible for the visible emission in ZnO using quantum size effects” J. Lumin. 2000, 90, 123–128.
30. Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. “Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy” J. Phys. Chem. B 2001, 105, 436–443.
31. Aldana, J.; Wang, Y. A.; Peng, X. “Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols” J. Am. Chem. Soc. 2001, 123, 8844–8850.
32. Qian, H.; Qiu, X.; Li, L.; Ren, J. “Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots” J. Phys. Chem. B 2006, 110, 9034–9040.
33. Lan, G.-Y.; Lin, Y.-W.; Huang, Y.-F.; Chang, H.-T. “Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution” J. Mater. Chem. 2007, 17, 2661–2666.
34. Hines, M. A.; Guyot-Sionnest, P. “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals” J. Phys. Chem. 1996, 100, 468–471.
35. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility” J. Am. Chem. Soc. 1997, 119, 7019–7029.
36. Zhong, X.; Feng, Y.; Knoll, W.; Han, M. “Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width” J. Am. Chem. Soc. 2003, 125, 13559–13563.
37. Denton, A. R.; Ashcroft, N. W. “Vegard’s law” Phys. Rev. A 1991, 43, 3161–3164.
38. Zheng, Y.; Yang, Z.; Ying, J. Y. “Aqueous synthesis of glutathione-capped ZnSe and Zn1–xCdxSe alloyed quantum dots” Adv. Mater. 2007, 19, 1475–1479.
39. Liu, F.-C.; Cheng, T.-L.; Shen, C.-C.; Tseng, W.-L.; Chiang, M. Y. “Synthesis of cysteine-capped ZnxCd1-xSe alloyed quantum dots emitting in the blue-green spectral range” Langmuir 2008, 24, 2162–2167.
40. Shih, P.-I.; Tseng, Y.-H.; Wu, F.-I.; Dixit, A. K.; Shu, C.-F. “Stable and efficient white electroluminescent devices based on a single emitting layer of polymer blends” Adv. Funct. Mater. 2006, 16, 1582–1589.
41. Shim, H. K.; Kang, I. N.; Jang, M. S.; Zyung, T.; Jung, S. D. “Electroluminescence of polymer blend composed of conjugated and nonconjugated polymers. white-light-emitting diode” Macromolecules, 1997, 30, 7749–7752.
42. Kim, J. K.; Luo, H.; Schubert, E. F.; Cho, J.; Sone, C.; Park, Y. “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup” Jpn. J. Appl. Phys. 2005, 44, 649–651.
43. Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. “Luminescent quantum dots for multiplexed biological detection and imaging” Curr. Opin. Biotechnol. 2002, 13, 40–46.
44. Liu, F.-C.; Chen, Y.-M.; Lin, J.-H.; Tseng, W.-L. “Synthesis of highly fluorescent glutathione-capped ZnxHg1-xSe quantum dot and its application for sensing copper ion” J. Colloid Interface Sci. 2009, 337, 414–419.
45. Chiang, C.-K.; Yang, Z. ; Lin, Y.-W.; Chen, W.-T.; Lin, H.-J.; Chang, H.-T. “Detection of proteins an protein–ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2010, 82, 4543–4550.
第三章
1. Kleinman, W. A.; Richie, J. P. “Status of glutathione and other thiols and disulfides in human plasma” Biochem. Pharmacol. 2000, 60, 19–29.
2. Deneke, S. M. “Thiol-based antioxidants” Curr. Top. Cell. Regul. 2000, 36, 151–180.
3. Danesh, J.; Lewington, S. “Plasma homocysteine and coronary heart disease: systematic review of published epidemiological studies” J. Cardiovasc. Risk 1998, 5, 229–232.
4. Richie J. P.; Skowronski, L.; Abraham, P.; Leutzinger, Y. “Blood glutathione concentrations in a large-scale human study” Clin. Chem. 1996, 42, 64–70.
5. Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A. “Plasma homocysteine as a risk factor for dementia and Alzheimer's disease” N. Engl. J. Med. 2002, 346, 476–483.
6. Refsum, H.; Ueland, P. M.; Nygard, O.; Vollset, S. E. “Homocysteine and cardiovascular disease” Annu. Rev. Med. 1998, 49, 31–40.
7. Gupta, V. J.; Wilcken, D. E. “Detection of cysteine-homocysteine mixed disulfide in plasma of normal fasting man” Eur. J. Clin. Invest. 1978, 8, 205–207.
8. Refsum, H.; Helland, S.; Ueland, P. M. “Radioenzymic determination of homocysteine in plasma and urine” Clin. Chem. 1985, 31, 624–628.
9. Matsumoto S.; Teshigawara M.; Tsuboi S.; Ohmori S. “Determination of glutathione and glutathione disulfide in biological samples using acrylonitrile as a thiol-blocking reagent” Anal. Sci. 1996, 12, 91–95.
10. Sass, J. O.; Endres, W. “Quantitation of total homocysteine in human plasma by derivatization to its N(O,S)-propoxycarbonyl propyl ester and gas chromatography-mass spectrometry analysis” J. Chromatogr. A 1997, 776, 342–347.
11. Fermo, I.; Arcelloni, C.; Mazzola, G.; D’Angelo, A.; Paroni, R. “High-performance liquid chromatographic method for measuring total plasma homocysteine levels” J. Chromatogr. B 1998, 719, 31–36.
12. Martin, S. C.; Hilton, A. C.; Bartlett, W. A.; Jones, A. F. “Plasma total homocysteine measurement by ion-paired reversed-phase HPLC with electrochemical detection” Biomed. Chromatogr. 1999, 13, 81–82.
13. Khaledi, M. G.; In High Performance Capillary Electrophoresis: Theory, Techniques, and Applications; John Wiley & Sons Inc.: New York, 1998.
14. Hogan, B. L.; Yeung, E. S. “Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection” Anal. Chem. 1992, 64, 2841–2845.
15. Carru, C.; Deiana, L.; Sotgia, S.; Pes, G. M.; Zinellu, A. “Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis” Electrophoresis 2004, 25, 882–889.
16. Chassaing, C.; Gonin, J.; Wilcox, C. S.; Wainer, I. W. “Determination of reduced and oxidized homocysteine and related thiols in plasma by thiol-specific pre-column derivatization and capillary electrophoresis with laser-induced fluorescence detection” J. Chromatogr. B 1999, 735, 219–227.
17. Orwar, O.; Sandberg, M.; Jacobson, I.; Sundahl, M.; Folestad, S. “Photochemical characterization and optimization of argon ion laser-induced fluorescence detection of o-phthalaldehyde/β-mercaptoethanol-labeled amino acids and γ-glutamyl peptides in liquid chromatography: Ultratrace analysis with neurobiological samples” Anal. Chem. 1994, 66, 4471–4482.
18. Parmentier, C.; Wellman, M.; Nicolas, A.; Siest, G.; Leroy, P. “Simultaneous measurement of reactive oxygen species and reduced glutathione using capillary electrophoresis and laser-induced fluorescence detection in cultured cell lines” Electrophoresis 1999, 20, 2938–2944.
19. Bayle, C.; Caussé, E.; Couderc, F. “Determination of aminothiols in body fluids, cells, and tissues by capillary electrophoresis” Electrophoresis 2004, 25, 1457–1472.
20. Orwar, O.; Fishman, H. A.; Ziv, N. E.; Scheller, R. H.; Zare, R. N. “Use of 2,3-Naphthalenedicarboxaldehyde derivatization for single-cell analysis of glutathione by capillary electrophoresis and histochemical localization by fluorescence microscopy” Anal. Chem. 1995, 67, 4261–4268.
21. Chen, S.-J.; Chang, H.-T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727–3734.
22. Huang, Y.-F.; Chang, H.-T. “Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2006, 78, 1485–1493.
23. Lu, C.; Zu, Y.; Yam, V. W.-W. “Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols” J. Chromatogr. A 2007, 1163, 328–332.
24. Yu, C.-J.; Chang, H.-C.; Tseng, W.-L. “On-line concentration of proteins by SDS-CGE with LIF detection” Electrophoresis 2008, 29, 483–490.
25. Lee, P. C.; Meisel, D. “Adsorption and surface-enhanced raman of dyes on silver and gold sols” J. Phys. Chem. 1982, 86, 3391–3395.
26. Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. “DNA-directed synthesis of binary nanoparticle network materials” J. Am. Chem. Soc. 1998, 120, 12674–12675.
27. Lin, Y.-H.; Pao, K.-Y.; Wu, V.-C.; Lin, Y.-L.; Chien, Y.-F.; Hung, C.-S.; Chen, Y.-J.; Liu, C.-P.; Tsai, I.-J. “The influence of estimated creatinine clearance on plasma homocysteine in hypertensive patients with normal serum creatinine” Clin. Biochem. 2007, 40, 230–234.
28. Mukai, Y.; Togawa, T.; Suzuki, T.; Ohata, K.; Tanabe, S. “Determination of homocysteine thiolactone and homocysteine in cell cultures using high-performance liquid chromatography with fluorescence detection” J. Chromatogr. B 2002, 767, 263–268.
29. Pastore, A.; Massoud, R.; Motti, C.; Russo, A. L.; Fucci, G.; Cortese, C.; Federici, G. “Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine” Clin. Chem. 1998, 44, 825–832.
30. Wu, H.-P.; Huang, C.-C.; Cheng, T.-L.; Tseng, W.-L. “Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine” Talanta 2008, 76, 347–352.
31. Seiwert, B.; Karst, U. “Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides” Anal. Chem. 2007, 79, 7131–7138.
第四章
1. Kawakami, S. K.; Gledhill, M.; Achterberg, E. P. “Production of phytochelatins and glutathione by marine” J. Phycol. 2006, 42, 975–989.
2. Srivastava, S.; Mishra, S.; Tripathi, R. D.; Dwivedi, S.; Gupta, D. K. “Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle” Aquat. Toxicol. 2006, 80, 405–415.
3. Rauser, W. E. “Phytochelatins” Annu. Rev. Biochem. 1990, 59, 61–86.
4. Noctor, G.; Foyer, C. H. “Ascorbate and glutathione: Keeping active oxygen under control” Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–79.
5. Grill, E.; Löffler, S.; Winnacker, E.-L.; Zenk, M. H. “Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)” Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6838–6842.
6. Chekmeneva, E.; Díaz-Cruz, J. M.; Ariño, C.; Esteban, M. “Binding of Hg2+ with phytochelatins: Study by differential pulse voltammetry on rotating Au-disk electrode, electrospray ionization mass-spectrometry, and isothermal titration calorimetry” Environ. Sci. Technol. 2009, 43, 7010–7015.
7. Keltjens, W. G.; Beusichem, M. L. “Phytochelatins as biomarkers for heavy metal toxicity in maize: Single metal effects of copper and cadmium” J. Plant Nutr. 1998, 21, 635–648.
8. Wei, L.; Ahner, B. A. “Sources and sinks of dissolved phytochelatin in natural seawater” Limnol. Oceanogr. 2005, 50, 13–22.
9. Tang, D.; Shafer, M. M.; Karner, D. A.; Overdier, J.; Armstrong, D. E. “Factors affecting the presence of dissolved glutathione in estuarine waters” Environ. Sci. Technol. 2004, 38, 4247–4253.
10. Kawakami, S. K.; Gledhill, M.; Achterberg, E. P. “Determination of phytochelatins and glutathione in phytoplankton from natural waters using HPLC with fluorescence detection” Trac-Trends Anal. Chem. 2006, 25, 133–142.
11. Tang, D.; Shafer, M. M.; Karner, D. A.; Armstrong, D. E. “Response of nonprotein thiols to copper stress and extracellular release of glutathione in the diatom Thalassiosira weissflogii” Limnol. Oceanogr. 2005, 50, 516–525.
12. Gusmão, R.; Cavanillas, S.; Ariño, C.; Díaz-Cruz, J. M.; Esteban, M. “Circular dichroism and voltammetry, assisted by multivariate curve resolution, and mass spectrometry of the competitive metal binding by phytochelatin PC5” Anal. Chem. 2010, 82, 9006–9013.
13. Fojta, M.; Fojtová, M.; Havran, L.; Pivoňková, H.; Dorčák, V.; Šestáková, I. “Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium” Anal. Chim. Acta 2006, 558, 171–178.
14. Serrano, N.; Šestáková, I.; Díaz-Cruz, J. M.; Ariño, C. “Adsorptive accumulation in constant current stripping chronopotentiometry as an alternative for the electrochemical study of metal complexation by thiol-containing peptides” J. Electroanal. Chem. 2006, 591, 105–117.
15. Mehra, R. K.; Miclat, J.; Kodati, V. R.; Abdullah, R.; Hunter, T. C.; Mulchandani, P. “Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins” Biochem. J. 1996, 314, 73-82.
16. Yen, T.-Y.; Villa, J. A.; DeWitt, J. G. “Analysis of phytochelatin–cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry” J. Mass Spectrom. 1999, 34, 930–941.
17. Potesil, D.; Petrlova, J.; Adam, V.; Vacek, J.; Klejdus, B.; Zehnalek, J.; Trnkova, L.; Havel, L. ; Kizek, R. “Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection” J. Chromatogr. A 2005, 1084, 134–144.
18. Dago, À.; González-García, O.; Ariño, C.; Díaz-Cruz, J. M.; Esteban, M. “Characterization of Hg(II) binding with different length phytochelatins using liquid chromatography and amperometric detection” Anal. Chim. Acta 2011, 695, 51–57.
19. Simmons, D. B. D.; Hayward, A. R.; Hutchinson, T. C.; Emery, R. J. N. “Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction” Anal. Bioanal. Chem. 2009, 395, 809–817.
20. Sadi, B. B.; Vonderheide, A. P.; Gong, J. M.; Schroeder, J. I.; Shann, J. R.; Caruso, J. A. “Advantages and limitations of a desolvation system coupled online to HPLC-ICPqMS/ES-MS for the quantitative determination of sulfur and arsenic in arseno-peptide complexes” J. Chromatogr. B 2008, 861, 123–129
21. Bräutigam, A.; Bomke, S.; Pfeifer, T.; Karst, U.; Krauss, G.-J.; Wesenberg, D. “Quantification of phytochelatins in Chlamydomonas reinhardtii using ferrocene-based derivatization” Metallomics, 2010, 2, 565–570.
22. Shirabe, T.; Ito, K.; Yoshimura, E. “Dequenching of Cu(I)- bathocuproinedisulfonate complexes for high-performance liquid chromatographic determination of phytochelatins, heavy-metal-binding peptides produced by the primitive red alga Cyanidioschyzon merolae” Anal. Chem. 2008, 80, 9360–9362.
23. Minocha. R.; Thangavel, P.; Dhankher, O. P.; Long, S. “Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography” J. Chromatogr. A 2008, 1207, 72–83.
24. Tang, D.; Hung, C.-C.; Warnken, K. W.; Santschi, P. H. “The distribution of biogenic thiols in surface waters of Galveston Bay” Limnol. Oceanogr. 2000, 45, 1289–1297.
25. Wei, L.; Donat, J. R.; Fones, G.; Ahner, B. A. “Interactions between Cd, Cu, and Zn influence particulate phytochelatin concentrations in marine phytoplankton: Laboratory results and preliminary field data” Environ. Sci. Technol. 2003, 37, 3609–3618.
26. Tang, D.; Shafer, M. M.; Vang, K.; Karner, D. A.; Armstrong, D. E. “Determination of dissolved thiols using solid-phase extraction and liquid chromatographic determination of fluorescently derivatized thiolic compounds” J. Chromatogr. A 2003, 998, 31–40.
27. Dupont, C. L.; Moffett, J. W.; Bidigare, R. R.; Ahner, B. A. “Distributions of dissolved and particulate biogenic thiols in the subartic Pacific Ocean” Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2006, 53, 1961–1974.
28. Khaledi, M. G.; In High Performance Capillary Electrophoresis: Theory, Techniques, and Applications; John Wiley & Sons Inc.: New York, 1998.
29. Pérez-Rama, M.; Abalde, J.; Herrero, C.; Suárez, C.; Torres, E. “A capillary zone electrophoresis for determination of thiolic peptides in biological samples” J. Sep. Sci. 2009, 32, 2152–2158.
30. Pérez-Rama, M.; Vaamonde, E. T.; Alonso, J. A. “Capillary zone electrophoresis for analysis of phytochelatins and other thiol peptides in complex biological samples derivatized with monobromobimane” Electrophoresis 2005, 26, 610–620.
31. Mounicou, S.; Vacchina, V.; Szpunar, J.; Potin-Gautier, M.; Łobiński, R. “Determination of phytochelatins by capillary zone electrophoresis with electrospray tandem mass spectrometry detection (CZE-ES MS/MS)” Analyst 2001, 126, 624–632.
32. Chang, C.-W.; Tseng, W.-L. “Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma” Anal. Chem. 2010, 82, 2696–2702.
33. Li, M.-D.; Cheng, T.-L.; Tseng, W.-L. “Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection” Electrophoresis 2009, 30, 388–395.
34. Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288–293.
35. Lu, C.; Zu, Y.; Yam, V. W.-W. “Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols” J. Chromatogr. A 2007, 1163, 328–332.
36. Lu, M.-J.; Chiu, T.-C.; Chang, P.-L.; Ho, H.-T.; Chang, H.-T. “Determination of glycine, glutamine, glutamate, and γ-aminobutyric acid in cerebrospinal fluids by capillary electrophoresis with light-emitting diode-induced fluorescence detection” Anal. Chim. Acta 2005, 538, 143–150.
37. Tseng, W.-L.; Chang, H.-T. “A new strategy for optimizing sensitivity, speed, and resolution in capillary electrophoretic separation of DNA” Electrophoresis 2001, 22, 763–770.
38. Orwar, O.; Sandberg, M.; Jacobson, I.; Sundahl, M.; Folestad, S. “Photochemical characterization and optimization of argon ion laser-induced fluorescence detection of o-phthalaldehyde/β-mercaptoethanol-labeled amino acids and γ-glutamyl peptides in liquid chromatography: Ultratrace analysis with neurobiological samples” Anal. Chem. 1994, 66, 4471–4482.
39. Michaelsen, J. T.; Dehnert, S.; Giustarini, D.; Beckmann, B.; Tsikas, D. “HPLC analysis of human erythrocytic glutathione forms using OPA and N-acetyl-cysteine ethyl ester: Evidence for nitrite-induced GSH oxidation to GSSG” J. Chromatogr. B 2009, 877, 3405–3417.
40. Monostori, P.; Wittmann, G.; Karg, E.; Túri, S. “Determination of glutathione and glutathione disulfide in biological samples: An in-depth review” J. Chromatogr. B 2009, 877, 3331–3346.
41. Chang, P.-L.; Chiu, T.-C.; Wang, T.-E.; Hu, K.-C.; Tsai, Y.-H.; Hu, C.-C.; Bair, M.-J.; Chang, H.-T. “Quantitation of branched-chain amino acids in ascites by capillary electrophoresis with light-emitting diode-induced fluorescence detection” Electrophoresis 2011, 32, 1080–1083.
42. Hsieh, M.-M.; Chen, S.-M. “Determination of amino acids in tea leaves and beverages using capillary electrophoresis with light-emitting diode-induced fluorescence detection” Talanta 2007, 73, 326–331.
43. Chang, P.-L.; Chiu, T.-C.; Chang, H.-T. “Stacking, derivatization, and separation by capillary electrophoresis of amino acids from cerebrospinal fluids” Electrophoresis 2006, 27, 1922–1931.
44. Tseng, W.-L.; Chang, H.-T. “On-line concentration and separation of proteins by capillary electrophoresis using polymer solutions” Anal. Chem. 2000, 72, 4805-4811.
45. Kyprianou, D.; Guerreiro, A. R.; Nirschl, M.; Chianella, I.; Subrahmanyam, S.; Turner, A. P. F.; Piletsky, S. “The application of polythiol molecules for protein immobilisation on sensor surfaces” Biosens. Bioelectron. 2010, 25, 1049–1055.
46. Henry, O. Y. F.; Cullen, D. C.; Piletsky, S. A. “Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review” Anal. Bioanal. Chem. 2005, 382, 947–956.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code