Responsive image
博碩士論文 etd-0112114-140916 詳細資訊
Title page for etd-0112114-140916
論文名稱
Title
機車用半主動混合式永磁避震器之設計
Design Analyses of a Semi-active Hybrid Permanent Magnet Shock Absorber for Scooter Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-24
繳交日期
Date of Submission
2014-02-13
關鍵字
Keywords
有限元素分析法、線性發電機、半主動式避震器、集中式磁鐵排列、可調式阻尼
Semi-active damping, linear generator, permanent magnet, suspension system, shock absorber
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
為了提高機車系統整體的能源有效利用率,本研究提出一種新型半主動混合式電磁避震器,主結構是使用一組互斥式永久磁鐵結合線性發電機,取代傳統式避震器的彈簧和阻尼減震筒,以達到可避震、可改變阻尼係數及可利用震動能量再生發電的功能。論文中將針對避震器的外觀尺寸、互斥永磁減震系統和電磁阻尼系統之設計細節,分別經由理論模型建構及有限元素分析三維(3-D)模擬的方式,提出一個有系統且完整的評估及設計流程。除了設計出能達到一般機車充電所需的12~14 V電壓及車燈照明所需的40 W功率。另一方面,亦將模擬在不同負載暫態下,所能達到的阻尼效應與發電效果,以確認此半主動混合式電磁避震器的可行性。
Abstract
This research proposes a new type of semi-active hybrid electromagnetic shock absorber which can effectively harvest the inherent vibration energy for electric scooter application. The electromagnetic shock absorber combining the permanent magnet linear generator (PMLG) with a pair of permanent magnets (PMs) is mainly designed to replace the conventional mechanical shock absorber with variable damping. With systematic and thorough designs, it is believed that the proposed hybrid electromagnetic shock absorber can not only eliminate the shock forces but also generate the electric power applicable for scooter lighting or battery charging.
目次 Table of Contents
目 錄 頁次
論文審定書............................................................i
誌謝.......................................................................ii
中文摘要..............................................................iii
英文摘要..............................................................iv
目 錄.....................................................................v
圖目錄..................................................................vii
表目錄...................................................................ix
符號對照表............................................................x
第一章 緒論........................................................1
1.1 前言.................................................................1
1.2 研究背景與動機.............................................5
1.3 研究目標與重點.............................................8
第二章 模擬方法簡介......................................10
2.1 永磁互斥力和阻尼對運動系統之影響.......10
2.1.1永磁互斥力.................................................10
2.1.2阻尼.............................................................11
2.2 標準測試法簡介...........................................14
2.3 懸吊系統常見之使用條件介紹...................16
第三章 混合式避震器設計.............................18
3.1 設計流程之限制與需求評估......................18
3.1.1設計前提與限制........................................19
3.1.2 設計流程...................................................20
3.2 互斥式永磁減震系統設計..........................22
3.3 電磁式阻尼系統設計..................................25
3.3.1 繞組部分...................................................25
3.3.2 磁鐵排列部分...........................................29
3.4 系統最佳化整合..........................................33
第四章 理論模型建構與分析........................36
4.1 系統方程式建構.......................... ...............36
4.2 線性化小訊號模型......................................40
4.3 操作條件對系統特性之影響......................44
第五章 標準化之數值系統性能測試驗證....49
5.1 標準測試法模擬驗證..................................49
5.2負載阻尼模擬驗證.......................................50
5.3 可調式電磁阻尼模擬驗證..........................52
第六章 結論與未來展望................................54
6.1結果討論.......................................................54
6.2未來展望.......................................................55
參考文獻............................................................57
參考文獻 References
參考文獻
[1] 財團法人車輛研究測試中心/知識庫/車輛暈車感性能之量測與評估方法,http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1436,2014/1/10。
[2] 財團法人車輛研究測試中心/知識庫/車輛研測資訊/電子控制懸吊系統介紹, http://www.artc.org.tw/chinese/03_service/03_01list.aspx?nPage=2&syear=2006,2014/1/3。
[3] B. L. J. Gysen, T. P. J. van der Sande, J. J. H. Paulides, and E. A. Lomonova, "Efficiency of a regenerative direct-drive electromagnetic active suspension," IEEE Trans. Veh. Tech., vol. 60, no. 4, pp. 1384-1393, May 2011.
[4] H. Sahin, N. Fukushima, T. Mochizuki, and I. Hagiwara, "HIL simulation evaluation of a novel hybrid-type self-powered active suspension system,"Proc. of the IEEE ICIT Int. Conf., pp. 1123-1130, March 2010.
[5] P. Hsu, "Power recovery property of electrical active suspension systems," Proc. of the 31st Intersociety, IECEC’96., vol. 3, pp. 1899-1904, Aug 1996.
[6] J. J. H. Paulides, L. Encica, E. A. Lomonova, and A. J. A. Vandenput, “Design considerations for a semi-active electromagnetic suspension system,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3446-3448, Oct. 2006.
[7] J. Wang, W. Wang, and K. Atallah, “A linear permanent-magnet motor for active vehicle suspension,” IEEE Trans. Veh. Tech., vol. 60, no. 1, pp. 55-63, Jan. 2011.
[8] I. Martins, J. Esteves, G. D. Marques, and F. Pina da Silva, “Permanent-magnets linear actuators applicability in automobile active suspensions,” IEEE Trans. Veh. Tech., vol. 55, no. 1, pp. 86-94, Jan. 2006.
[9] B. L. J. Gysen, J. J. H. Paulides, J. L. G. Janssen, and E. A. Lomonova, "Active electromagnetic suspension system for improved vehicle dynamics," IEEE Trans. Veh. Tech., vol. 59, no. 3, pp. 1156-1163, March 2010.
[10] Y. Zhang, K. Huang, F. Yu, Y. Gu, and D. Li, "Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system," Proc. of the IEEE Int. Veh. Electron. and Safety Conf., ICVES’07. pp. 1-5, Dec. 2007.
[11] 中華民國交通部/交通統計/機動車輛登記數,http://www.motc.gov.tw/ch/home.jsp?id=63&parentpath=0,6,2014/1/3。
[12] 日本湯淺電池/機車用電池/產品規格,http://www.yuasa.com.tw/_chinese/01_products/01_detail_02.php?pid=1&pdid=2,2014/1/3。
[13] Society of Automotive Engineers of Japan, Inc., JASO C602-01e: Automotive parts - Telescopic shock absorbers for suspension systems, Tokyo, Japan, 2001.
[14] B. Ebrahimi, Development of Hybrid Electromagnetic Dampers for Vehicle Suspension System, Ph.D. Thesis in Mechanical Engineering, University of Waterloo, Ontario, Canada, 2009.
[15] 林信男,往復式管狀線性發電機之系統化設計,碩士論文,國立中山大學,民國九十八年七月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.27.148
論文開放下載的時間是 校外不公開

Your IP address is 3.144.27.148
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code