Responsive image
博碩士論文 etd-0112115-162142 詳細資訊
Title page for etd-0112115-162142
論文名稱
Title
單橫模光纖回饋光對多橫模面射型雷射的橫模控制研究
Mode Control of Multitransverse Vertical-Cavity Emitting Lasers by Using of Single Mode Fiber Optical Feedback
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-12
繳交日期
Date of Submission
2015-02-13
關鍵字
Keywords
模態匹配方法、光纖應用、光回饋、半導體雷射、模態選擇
optical feedback, semiconductor lasers, optical fiber applications, mode selection, mode matching methods
統計
Statistics
本論文已被瀏覽 5720 次,被下載 1990
The thesis/dissertation has been browsed 5720 times, has been downloaded 1990 times.
中文摘要
本研究調查了採用光束輪廓重整光學回饋去導引商業多橫模的垂直面射型雷射(VCSEL)發射具有寬可調範圍單橫模的可行性。基橫模被導引雷射出約1285 GHz可調範圍且約20dB旁模壓縮比(SMSRs)。

此外,這項工作採用線性回饋機制的簡單方法,完成一個穩定的基模雷射具有寬可調範圍有1000 GHz (或2.6 nm),SMSR約20 dB。雷射電流從2到20 mA都不會出現拍擊信號,透露出一個低雜訊的輸出。

總之,一個環形迴路或線形迴路控制單模光纖的光回饋,都可對具有甜圈狀多橫模Laguerre-Gaussian模態組合光斑的VCSEL進行產生穩定單基模的實驗運作,對其它不對稱的VCSEL來說,單模光纖腔是比較喜歡光斑圓形對稱分布的VCSEL,單模光纖腔也可以在交流電下操作,正交偏振光回饋和使用散熱片實施溫控等多種實驗探討。我們的雷射系統可建立在可調的大電流範圍且為低發散角發光的單基模,這些發現有助於提升半導體雷射的應用價值。
Abstract
This research investigated the feasibility of employing beam-profile-adapted optical feedback to conduct commercial multitransverse-mode vertical-cavity surface-emitting lasers (VCSELs) to emit a single transverse mode with a wide tuning range. The fundamental transverse mode could be conducted to lase with a tuning range of about 1285 GHz and side-mode suppression ratios (SMSRs) of around 20 dB.

Furthermore, this work presents a simple method using a linearly feedback mechanism. A stable fundamental-mode lasing was achieved within a tuning range as wide as 1000 GHz, or 2.6 nm, and SMSR around 20 dB. The beat note was not appeared for the laser’s current from 2 to 20 mA, and revealing a low-noise output.

Finally, a ring path or linear path controlled single-mode-fiber optical feedback, which were conducted to characterize the stable fundamental-mode operation of a donut-like multitransverse-mode Laguerre–Gaussian laser. All the single-mode-fiber cavities are prefer the circular symmetric beam-profile to other unsymmetrical VCSELs. The single-mode-fiber cavity can operate the more experiments of alternative current, orthogonal optical feedback, and temperature control in heat sink. Our laser systems are established a wide tuning of current and a low divergent angle single mode. These discoveries assist in the application of the semiconductor lasers.
目次 Table of Contents
目 錄

論文審定書…………………………………………………………… i
誌謝…………………………………………………………………… ii
中文摘要………………………………………………………….….. iii
英文摘要………………………………………..……………………. iv
目錄………………………………………………………………….... v
圖表目錄………………………………………………………………. vii
序言……………………………………………………………………. x
第 一 章 簡介……………………………………………………... 1
1.1 gain-guided VCSEL的多橫模……………………………… 2
1.2 平行偏振光注入對VCSEL橫模選擇的實驗探討………... 4
1.3 對自播種商用多橫模VCSEL的單橫模運作……………... 7
1.4 多橫模VCSEL藉由耦合腔產生單一偏振寬可調單基模… 9
1.5 自播種Fabry-Perot雷射產生成本效益的波長可調光纖雷射10
1.6 自播種Fabry-Perot雷射單模型態動力學…………………. 12
1.7 VCSEL選頻回饋的單模機制與橫模控制………………… 14
1.8 對多橫模VCSEL光回饋引發窄線寬的現象……………... 17
第 二 章 VCSEL光電特性與模態控制...………………………… 19
2.1 各種雷射基本性質比較…………………...….….…………. 19
2.1.1 雷射家族簡介……………….. ……..…………….... 19
2.1.2 VCSEL與EEL的縱模比較………………............... 22
2.2 VCSEL的結構與發光理論………...……………………...... 23
2.2.1 VCSEL的光譜帶,結構與發光機制……………… 23
2.2.2 VCSEL的速率方程式……………………………… 27
2.2.3 LI曲線、飽和載(光)子數的模擬…………………… 30
2.3 VCSEL口徑、橫模分布…………………………...………. 32
2.4 VCSEL基本橫模光斑的模擬……………………………… 34
2.5 雷射內腔的溫度效應……………………………………….. 37
第 三 章 單模光纖環形迴路回饋對VCSEL模態控制之研究….. 46
3.1 環形迴路回饋實驗系統…………………………………….. 46
3.2 實驗初始狀態量測………………………………………….. 49
3.3 回饋光將多模態轉變為單模態的物理機制……………….. 50
3.4 電流與回饋量對旁模壓縮比的影響……………………….. 51
3.5 實驗結果的補充資料……………………………………….. 54
3.6 結論………………………………………………………….. 58
第 四 章 線形迴路光纖腔對VCSEL模態控制之研究………….. 59
4.1 直線迴路回饋實驗系統…………………………………….. 59
4.2 實驗初始狀態量測……………………………….…………. 61
4.3 回饋光將多模態轉變為單模態的物理機制…….…………. 62
4.4 實驗結果與補充資料……………………………….………. 63
4.5 結論………………………………………………………….. 67
第 五 章 綜述……………………………………………………... 69
參考資料…………………………………………………………. 73
附錄A 已發表論文……….………………………………….......... 78
附錄B 基本模態的模擬…………………………………………... 84
附錄C VCSEL-5A41與單模光纖規格表………………………... 85





圖表目錄
圖1-1 不同電流時載子濃度與溫度軸向輪廓[21]……………… 3
圖1-2 不同電流時折射率與光增益值軸向輪廓[21]…………… 4
圖1-3 平行光注入實驗裝置圖[24]……………………………... 5
圖1-4 VCSEL在4.9 mA的光譜圖[24]……………………….. 6
圖1-5 完成單模選擇注入雷射的功率對波長差關係圖[24]…... 7
圖1-6 self-seeded 實驗裝置[4]…………………………………. 7
圖1-7 未回饋時,Y 偏振光譜與光場分布[4]……………….... 8
圖1-8 回饋時,Y 偏振光譜與光場圖樣分布[4]……………… 8
圖1-9 單一偏振,單橫模窄線寬VCSEL的實驗裝置[3]……… 9
圖1-10 20 mA, 25oC量測光譜[3]……………………………… 10
圖1-11 25oC耦合腔bias電流量測光[3]……………………….. 10
圖1-12 光纖連接可調波長Fabry-Perot雷射[33]……………... 11
圖1-13 多模FP-LD回饋前後光譜[33]………………………... 11
圖1-14 功率、旁模壓縮比與可調波長[33]…………………… 12
圖1-15 自播種Fabry-Perot雷射實驗設置圖[12]……………... 13
圖1-16 自播種FP雷射在switch-on的解析光譜[12]……….. 13
圖1-17 自播種FP雷射波長可調性質[12]…………………… 14
圖1-18 在1.7 mA時未回饋時各橫模的光譜[18]……………. 15
圖1-19 1.7 mA在回饋後各橫模的選頻回饋光譜[18]……….. 15
圖1-20 可調電流在回饋後的LI圖與光譜[18]………………. 16
圖1-21 窄線寬VCSEL的實驗設置[11]……………………… 17
圖1-22 回饋前後光譜線變化[11]……………………………... 18
圖2-1 EEL和VCSEL的模態與gain curve關係圖…………... 22
圖2-2 VCSELs寬光譜帶材料[13]……………………………. 23
圖2-3 VCSELs晶片結構圖[14]………………………………. 24
圖2-4 實驗VCSEL晶粒照片…………………………………… 24
圖2-5 活性層載子運動示意圖[20] ……….…………………….. 25
圖2-6 VCSELs晶片內電場強度的縱向分布[30]………………… 26
圖2-7 VCSELs側向結構示意圖[13]……………………………... 26
圖2-8 VCSEL-1與VCSEL-2偏振分解功率對電流圖………….. 30
圖2-9 VCSEL-1的飽和載(光)子數對電流圖…………………….. 31
圖2-10 VCSEL-2的飽和載(光)子數對電流圖…………………… 31
圖2-11 橫模標準模態……………………………………………... 32
圖2-12 VCSEL 的LI曲線分布與實驗設置[6]…………………... 33
圖2-13 VCSEL的近場影像[6]……………………………………. 33
圖2-14 TEM00模3D與2D的模擬圖…………………………….. 35
圖2-15 TEM01模3D與2D的模擬圖……………….….……... 35
圖2-16 TEM02模3D與2D的模擬圖…………………..…………. 35
圖2-17 TEM03模3D與2D的模擬圖…………………..…………. 36
圖2-18 TEM04模3D與2D的模擬圖…………………..…………. 36
圖2-19 TEM05模3D與2D的模擬圖…………………..…………. 36
圖2-20 TEM06模3D與2D的模擬圖…………………..…………. 36
圖2-21 廠商提供不同溫度下VCSEL-5A41的I-V圖……..……. 37
圖2-22 25oC時 measured與fitted的I-V曲線.…………………... 39
圖2-23 VCSEL-5A41 measured與fitted的deviation….………… 39
圖2-24 –40oC 時measured與fitted的I-V曲線………………….. 40
圖2-25 85oC 時measured與fitted的I-V曲線…………………… 41
圖2-26 二極體在298K與358K的特性曲線……………….…… 42
圖2-27 VCSEL-5A41模擬298K與358K的I-V圖………………. 43
圖2-28 heatsink起始溫度298K未加溫控時fitted的I-V曲線…... 44
圖2-29 VCSEL-1活性層升溫曲線圖…………………………... 45
圖2-30 VCSEL-2活性層升溫曲線圖…………………………… 45
圖3-1 環形迴路實驗設置圖…………………….……….……… 48
圖3-2 LI,光場圖樣與光譜…………………………………….. 49
圖3-3 光場輪廓調整回饋前後的雷射輸出圖………………..... 50
圖3-4 旁模壓縮比變化圖………………………………….…… 51
圖3-5 低頻雜訊偵測譜線圖………………………..…………... 52
圖3-6 VCSEL-2旁模壓縮比變化對注入電流關係圖..……….. 53
圖3-7 20 mA-Y偏振的BPAF橫模光譜圖……………….…... 54
圖3-8 VCSEL-1回饋後的光譜移動圖………………………… 55
圖3-9 Xf與Yf輸出功率對電流關係圖………………….…..… 56
圖3-10 光纖回饋量估算關係圖……………………………..…. 57
圖4-1 直線形回饋系統的前置作業圖.………………………… 59
圖4-2 雷射放置校準圖…………………………………………. 60
圖4-3 線形迴路實驗設置圖……………………………………. 61
圖4-4 未回饋未偏振的光譜、光場輪廓與其橫截面圖………. 62
圖4-5 X與Y回饋作用前後的圖樣變化…………………….. 63
圖4-6 Xf與Yf光譜對電流的分布……………………………... 64
圖4-7 SMSR對電流與對回饋量的曲線分布…………………. 65
圖4-8 在5 mA時的拍擊訊號譜線…………………………….. 66
圖4-9 5 mA時的低頻雜訊圖………………………..….……… 67
表2-1 VCSEL與EEL比較…………………………………….. 22
表2-2 VCSEL-1X、1Y、2X與2Y的模擬參數……………….. 27
表2-3 高電流時fitted實驗曲線取得的參數表……….………... 42
參考文獻 References
[1] A. A. Adeyemi, N. Barakat, and T. E. Darcie, “Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement” Opt. Express, vol. 17, pp. 1831 (2009).
[2] G. P. Agrawal, Semiconductor Lasers: Past, Present and Future (AIP, 1995).
[3] H. Chen and G. W. Schinn, “Single polarization, single transverse mode, and widely tunable narrow-linewidth laser from a multimode vertical cavity surface-emitting laser by use of a coupled cavity,” Opt. Lett., vol. 30, pp. 1006 (2005).
[4] D. L. Cheng, E. C. Liu, and T. C. Yen, “Single transverse mode operation of a self-seeded commercial multimode VCSEL,” IEEE Photon. Technol. Lett., vol. 16, pp. 278 (2004).
[5] D. L. Cheng, T. C. Yen, W. Chang, W. C. Kuo, K. S. Kao, and C. P. Hsu,
“Polarization mode-hopping suppression and performance enhancement by optical feedback in a current-driven polarization switching VCSEL,” IEEE Photon. Technol. Lett., vol. 19, pp. 1961 (2007).
[6] C. Degen, I. Fischer and W. Elsäber, “Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects,” Opt. Express 5, 38 (1999).
[7] J. Dellunde, A. Valle, and K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,”J. Opt. Soc. Am. B., vol. 13, pp. 2477 (1996).
[8] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. vol. 85, pp. 5161 (2004).
[9] X. Gao, H. Ohashi, H. Okamoto, M. Takasaka, and K. Shinoda, “Beam-shaping technique for improving the beam quality of a high-power laser-diode stack,” Opt. Lett., vol. 31, pp. 1654 (2006).
[10] G. E. Giudice, D. V. Kuksenkov, L. G. de Peralta, and H. Temkin,“Single-mode operation from an external cavity controlled vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett., vol. 11, pp. 1545 (1999).
[11] H. M. Hlaing, D. M. Thomazy, B. J. Viechnicki, and H. Lin, “Linewidth narrowing caused by optical feedback in a multi-mode vertical-cavity surface-emitting laser,” Opt. Commun., vol. 265, pp. 580-584 (2006).
[12] D. Huhse,M. Schell,W. Utz, J. Kaessner, and D. Bimberg, “Dynamics of
single-mode formation in self-seeded Fabry–Pérot laser diodes,” IEEE Photon. Technol. Lett., vol. 7, pp. 351 (1995).
[13] K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics field,” IEEE. J. Sel. Topics Quantum Electron., vol. 6, pp. 1201 (2000).
[14] K. Iga: Fundamentals of Laser Optics (Plenum Press, New York, 1994).
[15] J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers” IEEE J. Sel. Top. Quantum Electron., vol. 3, pp. 353 (1997).
[16] H. Li and K. Iga: Vertical-Cavity Surface-Emitting Lasers (Springer, 2003).
[17] H. Lin and H. M. Hlaing, “Transverse mode selection in a vertical-cavity surface-emitting laser by using preferential alignment of optical feedback,” Opt. Commun. 274, 130-135 (2007).
[18] F. Marino, S. Barland, and S. Balle, “Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback,” IEEE Photon. Technol. Lett., vol. 15, pp. 789 (2003).
[19] P. V. Mena, J. J. Morikuni, S. M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightw. Technol., vol. 17, pp. 865 (1999).
[20] R. Nagarajan, M. Ishikawa, T. Fukushima, R.S. Geels, J.E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron., vol. 28, pp. 1990–2008 (1992).
[21] W. Nakwaski, R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. vol. 148, pp. 63-69 (1998).
[22] K. Okamoto, Fundamentals of Optical Waveguides, pp. 71–79, Elsevier Academic Press, (2006).
[23] J. Prawiharjo, N. K. Daga, R. Geng, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express, vol. 16, pp. 15074 (2008).
[24] A. Quirce, A. Valle, A. Hurtado, C. Giménez, L. Pesquera, and M. J. Adams, “Experimental Study of Transverse Mode Selection in VCSELs Induced by Parallel Polarized Optical Injection,” IEEE J. Quantum Electron., vol. 46, no. 4, pp. 467–473 (2010).
[25] N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett., vol. 30, pp. 1479 (2005).
[26] J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, “High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength,” IEEE Photon. Technol. Lett. vol. 20, pp. 1121 (2008).
[27] Siegman, Anthony E. (1986) Lasers. University Science Books. ISBN 0-935702-11-3. Chapter 16, p645, eq. 54.
[28] H. Statz and G. A. deMars, pp. 530 in Quantum Electronics, ed. C. H. Townes. New York: Columbia University Press (1960).
[29] B. G. Streeman S. K. Banerjee, Solid State Electronic Devices, 6th ed., Prentice Hall, 2005. See Chapter 5, p.202, Eq. (5-25) and p.239, Eq. (5-74).
[30] M. Sugimoto, H. Kosaka, K. Kurihara, I. Ogura, T. Numai, K. Kasahara, “Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed Bragg reflectors,” Electron. Lett. vol. 28, pp. 385-387 (1992).
[31] Y. Tanguy, T. Ackemann, and R. Jager, “Characteristics of bistable localized emission states in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A, vol. 74, no. 053824 (2006).
[32] A. Valle, J. Sarma, and K. A. Shore, “Spatial hole burning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE. J. Quantum Electron., vol. 31, pp. 1423 (1995).
[33] C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Cost-effective wavelength-tunable fiber laser using self-seeding Fabry–Perot laser diode,” Opt. Express, vol. 16, pp. 435 (2008).
[34] Zhaokai Yuan, M. V. Ramana Murty, Sanjeev Gupta and Amolak Badesha: Modeling, Extraction and Verification of VCSEL Model for Optical IBIS AMI (DesignCon 2014), Santa Clara, CA, Jan. 28-31, 2014; Agilent paper 3TH2.
[35] H. Zhang, G. Mrozynski, A. Wallrabenstein, and J. Schrage, “Analysis of transverse mode competition of VCSELs based on a spatially independent model,” IEEE J. Quantum Electron., vol. 40, no. 1, pp. 18 (2004).
[36] Y. Zhao, W. Han, J. Song, X. Li, Y. Liu, D. Gao and Guotong Du, “Spontaneous emission factor for semiconductor superluminescent diodes” J. Appl. Phys., vol. 85, no. 8, pp. 3945 (1997).
[37] D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. vol. 38, pp. 1599 (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code