Responsive image
博碩士論文 etd-0112117-195000 詳細資訊
Title page for etd-0112117-195000
論文名稱
Title
AZ31鎂合金以摩擦攪拌混摻不同比例羥磷灰石粉末之複合材料的機械性質
A study of mechanical behaviors of magnesium alloy (AZ31) based metal matrix compsite containing hydroxyapatite powder produced by friction stir process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-18
繳交日期
Date of Submission
2017-02-13
關鍵字
Keywords
複合材料、摩擦攪拌製程、骨材、織構、AZ31B鎂合金、羥磷灰石
texture, bone substitute materials, composite materials, AZ31B magnesium alloy, hydroxyapatite (HAp), friction stir process (FSP)
統計
Statistics
本論文已被瀏覽 5669 次,被下載 77
The thesis/dissertation has been browsed 5669 times, has been downloaded 77 times.
中文摘要
現今骨材的研究方向主要為惰性金屬在表面處理鍍上羥基磷灰石等生物相容材料以提高生物相容性,乃因為材料製備上的限制,以傳統冶金方式無法得到均勻且具有良好生物相容性之無缺陷複合材料,本論文即利用摩擦攪拌製程成功製作出AZ31B鎂合金與羥基磷灰石的複合材料以作為骨頭的替代材料,由X-ray繞射分析、能量散布光譜分析與耦合電漿質譜分析確認AZ31B鎂合金基材內部確實有第二相羥基磷灰石的顆粒存在,且前、中、後段成份接近,並由掃描式電子顯微鏡觀察到羥磷灰石均勻分。機械性質表現:5 w.t% HAp複合材料之降伏強度為181 ± 7.0 MPa,伸長率可達9.8 ± 0.6 %,硬度值為82.5 ± 4.9 Hv,而10 w.t% HAp複合材料之降伏強度達到211 ± 12.8 MPa,伸長率仍保有6.8 ± 0.5 %,硬度值為106.1 ± 4.8 Hv,其擁有與骨頭相仿的強度但具有更佳地伸長率,且楊氏係數僅為50 GPa左右,將大幅降低應力屏蔽效應的機率,比其他金屬複合物具有更高的潛力作為骨材替代物。
此實驗之摩擦攪拌製程採用16-6-6工具頭,經實驗測試獲得之最佳製程參數為1000 r.p.m.、40 mm/min,而以機械性質表現來看,10 w.t% HAp為最佳成份配方。此外,已知摩擦攪拌製程能夠大幅改變鎂合金的織構,在本實驗中也透過背向散射電子繞射確實觀察到製程前後的織構變化,並發現羥磷灰石的添加有破壞織構排列的現象,使得鎂晶粒呈現隨機排列而有提高機械性質的效果。
Abstract
The composites of AZ31B magnesium alloy and hydroxyapatite (HAp) were successfully fabricated by using friction stir process (FSP) as the substitute material of bones. X-Ray diffraction, EDS, ICP-MS and SEM analyses confirmed that the hydroxyapatite particles evenly distributed throughout the stirred-zone (SZ). The yield strength of the 5 w.t% HAp composite is 181 ± 7.0 MPa, the elongation is 9.8 ± 0.6 %, and the hardness is 82.5 ± 4.9 Hv, and the yield strength of the 10 w.t% HAp composite is 211 ± 12.8 MPa, the elongation is 6.8 ± 0.5 % and the hardness value is 106.1 ± 4.8 Hv. They are similar to the bone with excellent elongation. Young's modulus is only about 50 GPa, which will greatly reduce the stress shielding effect, and much better than other metal complexes, make it a high potential as the bone substitute.
In this experiment, the optimum process parameters were obtained at 1000 r.p.m. and 40 mm/min. Based on the data of tension test, the mechanical properties of samples with 10 w.t% HAp is the best. In addition. The friction stir process could greatly change the texture of magnesium alloy, but the addition of hydroxyapatite reduced the texture arrangement, so that grains appear random arrangement and the mechanical properties, improve.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 - 1 -
1.1 研究背景說明 - 1 -
1.2 研究動機與目的 - 3 -
第二章 文獻回顧 - 4 -
2.1 可降解生醫材料 - 4 -
2.1.1 生物可降解聚合物 - 4 -
2.1.2 生物可降解金屬 - 5 -
2.1.2.1 生物可降解鐵基合金 - 5 -
2.1.2.2 生物可降解鎂基合金 - 5 -
2.1.2.3 生物可降解鋅基合金 - 6 -
2.1.3 生物可降解陶瓷 - 6 -
2.1.3.1 惰性陶瓷 - 6 -
2.1.3.2 可吸收陶瓷 - 7 -
2.1.3.3 活性玻璃 - 7 -
2.2 摩擦攪拌銲接 - 8 -
2.3 鎂合金的變形機制 - 9 -
2.3.1 鎂的滑移系統與雙晶變形 - 9 -
2.3.2 鎂合金變形與破斷機制 - 13 -
2.3.3 摩擦攪拌製程與織構變化 - 14 -
2.4 複合材料的機械性質 - 15 -
第三章 實驗方法 - 17 -
3.1 實驗材料成份與製備 - 17 -
3.2 摩擦攪拌製程 - 18 -
3.2.1 機台及工具頭 - 18 -
3.2.2 參數設定 - 18 -
3.3 定性、定量分析 - 19 -
3.3.1 X-ray繞射分析(XRD) - 19 -
3.3.2 阿基米德法 - 19 -
3.3.3 耦合電漿質譜分析儀(ICP-MS) - 20 -
3.4 微結構觀察 - 21 -
3.4.1 掃描式電子顯微鏡(SEM) - 21 -
3.4.2 能量散布光譜分析(EDS) - 21 -
3.4.3 背向散射電子繞射(EBSD) - 22 -
3.5 機械性質分析 - 23 -
3.5.1 微硬度試驗 - 23 -
3.5.2 拉伸試驗 - 23 -
3.5.3 拉伸試驗後之金相與破斷面觀察 - 24 -
第四章 實驗結果 - 25 -
4.1 摩擦攪拌製程 - 25 -
4.2 摩擦攪拌試片的成份與顯微組織分析 - 25 -
4.2.1 成份定性定量分析 - 25 -
4.2.2 金相觀察 - 27 -
4.2.3 摩擦攪拌製程與EBSD極圖變化 - 29 -
4.2.4 摩擦攪拌製程與施密得係數變化 - 30 -
4.2.5 微硬度測試 - 30 -
4.3 拉伸試驗結果 - 31 -
4.3.1 機械性質 - 31 -
4.3.2 表面金相觀察 - 31 -
4.3.3 織構的變化 - 32 -
4.3.4 破斷面觀察 - 33 -
第五章 討論 - 35 -
5.1 摩擦攪拌製程 - 35 -
5.1.1 製程參數與成份探討 - 35 -
5.1.2 原位反應的發生與否 - 36 -
5.2 鎂晶體織構與滑移系統的變化 - 37 -
5.3 機械強度的探討 - 40 -
5.3.1 機械強度變化的原因 - 40 -
5.3.2 鎂基複合材料的比較 - 42 -
第六章 結論 - 44 -
參考文獻 - 45 -
參考文獻 References
[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-A review, Progress in Materials Science 54(3) (2009) 397-425.
[2] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials 27(9) (2006) 1728-1734.
[3] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and bio-
compatibility of binary magnesium alloys, Biomaterials 30(4) (2009) 484-498.
[4] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports 77(0) (2014) 1-34.
[5] F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomaterialia 6(5) (2010) 1680-1692.
[6] S. Koleini, M.H. Idris, H. Jafari, Influence of hot rolling parameters on microstructure and biodegradability of Mg-1Ca alloy in simulated body fluid, Materials & Design 33(0) (2012) 20-25.
[7] F. Witte, H. Ulrich, C. Palm, E. Willbold, Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling, Journal of Biomedical Materials Research - Part A 81(3) (2007) 757-765.
[8] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports 50(1-2) (2005) 1-78.
[9] B. Ratna Sunil, T.S. Sampath Kumar, U. Chakkingal, V. Nandakumar, M. Doble, Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior, Materials Science and Engineering: C 39 (2014) 315-324.
[10] 劉士榮,高宜娟,生醫材料,滄海書局,(2010).
[11] L. Tan, X. Yu, P. Wan, K. Yang, Biodegradable materials for bone repairs: A review, Journal of Materials Science & Technology 29(6) (2013) 503-513.
[12] H. Li, Y. Zheng, L. Qin, Progress of biodegradable metals, Progress in Natural Science: Materials International 24(5) (2014) 414-422.
[13] M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal - Results 6-18 months after implantation into New Zealand white rabbits, Heart 86(5) (2001) 563-569.
[14] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials 27(28) (2006) 4955-4962.
[15] P.K. Bowen, J. Drelich, J. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents, Advanced Materials 25(18) (2013) 2577-2582.
[16] S. Saber-Samandari, K.A. Gross, Micromechanical properties of single crystal hydroxyapatite by nanoindentation, Acta Biomaterialia 5(6) (2009) 2206-2212.
[17] A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, K.S. Shin, Microstructure and mechanical properties of Mg-HAP composites, Bull Mater Sci 33(1) (2010) 43-47.
[18] B. Ratna Sunil, C. Ganapathy, T.S. Sampath Kumar, U. Chakkingal, Processing and mechanical behavior of lamellar structured degradable magnesium-
hydroxyapatite implants, Journal of the Mechanical Behavior of Biomedical Materials 40(0) (2014) 178-189.
[19] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research 5(6) (1971) 117-141.
[20] D. Yadav, R. Bauri, Effect of friction stir processing on microstructure and mechanical properties of aluminium, Materials Science and Engineering: A 539(0) (2012) 85-92.
[21] M. Marya, L.G. Hector, R. Verma, W. Tong, Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors, Materials science and engineering: A 418(1) (2006) 341-356.
[22] P. Ulysse, Three-dimensional modeling of the friction stir-welding process, International Journal of Machine Tools and Manufacture 42(14) (2002) 1549-1557.
[23] M. Abbasi Gharacheh, A.H. Kokabi, G.H. Daneshi, B. Shalchi, R. Sarrafi, The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds, International Journal of Machine Tools and Manufacture 46(15) (2006) 1983-1987.
[24] S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch, Materials Science and Engineering: A 527(21-22) (2010) 6064-6075.
[25] 張志溢,摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究,國立中山大學碩士論文 (2004).
[26] 張志溢,以摩擦旋轉攪拌製程製作奈米細晶鎂基合金與複材之研發,國立中山大學博士論文 (2007).
[27] Y. Wang, J. Huang, Texture analysis in hexagonal materials, Materials Chemistry and Physics 81(1) (2003) 11-26.
[28] Y. Gan, W. Song, J. Ning, Crystal plasticity analysis of plane strain deformation behavior and texture evolution for pure magnesium, Computational Materials Science 123 (2016) 232-243.
[29] 昌山正孝原著,賴狄陽譯,非鐵金屬材料,復漢出版社,(1993).
[30] 蔡孟樹,變形雙晶之生成與晶粒尺寸之關係,國立中山大學碩士論文 (2012).
[31] R.E. Reed-Hill, W.D. Robertson, Additional modes of deformation twinning in magnesium, Physical metallurgy principles, (1967).
[32] M.R. Barnett, Z. Keshavarz, A.G. Beer, X. Ma, Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta Materialia 56(1) (2008) 5-15.
[33] W. Wu, C.-P. Chuang, D. Qiao, Y. Ren, K. An, Investigation of deformation twinning under complex stress states in a rolled magnesium alloy, Journal of Alloys and Compounds 683 (2016) 619-633.
[34] R. Xin, C. Guo, Z. Xu, G. Liu, X. Huang, Q. Liu, Characteristics of long {10-12} twin bands in sheet rolling of a magnesium alloy, Scripta Materialia 74 (2014) 96-99.
[35] M.R. Barnett, A taylor model based description of the proof stress of magnesium AZ31 during hot working, Metallurgical and Materials Transactions A 34(9) (2003) 1799-1806.
[36] M.R. Barnett, Z. Keshavarz, X. Ma, A semianalytical sachs model for the flow stress of a magnesium alloy, Metallurgical and Materials Transactions A 37(7) (2006) 2283-2293.
[37] Y. Wang, H. Choo, Influence of texture on Hall-Petch relationships in an Mg alloy, Acta Materialia 81 (2014) 83-97.
[38] É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Variant selection during secondary twinning in Mg-3%Al, Acta Materialia 58(11) (2010) 3970-3983.
[39] J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, Ė. Martin, The role of strain accommodation during the variant selection of primary twins in magnesium, Acta Materialia 59(5) (2011) 2046-2056.
[40] S.-G. Hong, S.H. Park, C.S. Lee, Role of {10-12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Materialia 58(18) (2010) 5873-5885.
[41] G. Liu, R. Xin, F. Liu, Q. Liu, Twinning characteristic in tension of magnesium alloys and its effect on mechanical properties, Materials & Design 107 (2016) 503-510.
[42] R.E. Reed-Hill, W.D. Robertson, Additional modes of deformation twinning in magnesium, Acta Metallurgica 5(12) (1957) 717-727.
[43] J. Koike, Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature, Metallurgical and Materials Transactions A 36(7) (2005) 1689-1696.
[44] D. Liu, R. Xin, Z. Li, Z. Liu, X. Zheng, Q. Liu, The activation of twinning and texture evolution during bending of friction stir welded magnesium alloys, Materials Science and Engineering: A 646 (2015) 145-153.
[45] N.S. Prasad, N. Naveen Kumar, R. Narasimhan, S. Suwas, Fracture behavior of magnesium alloys - Role of tensile twinning, Acta Materialia 94 (2015) 281-293.
[46] S. Rawat, S.P. Joshi, Effect of multiaxial loading on evolution of twinning in magnesium single crystals, Materials Science and Engineering: A 659 (2016) 256-269.
[47] J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction, Metallurgical and Materials Transactions A 36(6) (2005) 1427-1438.
[48] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K, Materials Transactions 44(4) (2003) 445-451.
[49] N. Stanford, K. Sotoudeh, P.S. Bate, Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31, Acta Materialia 59(12) (2011) 4866-4874.
[50] C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, M.T. Pérez-Prado, In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31, Acta Materialia 60(4) (2012) 1889-1904.
[51] L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy, Materials Science and Engineering: A 445-446 (2007) 302-309.
[52] S. Mu, J.J. Jonas, G. Gottstein, Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy, Acta Materialia 60(5) (2012) 2043-2053.
[53] M.R. Barnett, M.D. Nave, A. Ghaderi, Yield point elongation due to twinning in
a magnesium alloy, Acta Materialia 60(4) (2012) 1433-1443.
[54] H. Somekawa, A. Singh, T. Mukai, Fracture mechanism of a coarse-grained magnesium alloy during fracture toughness testing, Philosophical Magazine Letters 89(1) (2009) 2-10.
[55] H. Somekawa, K. Nakajima, A. Singh, T. Mukai, Ductile fracture mechanism in fine-grained magnesium alloy, Philosophical Magazine Letters 90(11) (2010) 831-839.
[56] D. Ando, J. Koike, Y. Sutou, The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys, Materials Science and Engineering: A 600 (2014) 145-152.
[57] R. Xin, D. Liu, B. Li, L. Sun, Z. Zhou, Q. Liu, Mechanisms of fracture and inhomogeneous deformation on transverse tensile test of friction-stir-processed AZ31 Mg alloy, Materials Science and Engineering: A 565 (2013) 333-341.
[58] W. Yuan, R.S. Mishra, B. Carlson, R.K. Mishra, R. Verma, R. Kubic, Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy, Scripta Materialia 64(6) (2011) 580-583.
[59] W. Woo, H. Choo, D.W. Brown, P.K. Liaw, Z. Feng, Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy, Scripta Materialia 54(11) (2006) 1859-1864.
[60] U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, C.W. Lee, Grain struc-
ture evolution during friction-stir welding of AZ31 magnesium alloy, Acta Materialia 57(18) (2009) 5406-5418.
[61] 李敬仁, Development and analysis of fine-grained Mg base alloys and compo-
sites fabricated by friction stir processing, 國立中山大學博士論文 (2006).
[62] Z. Liu, R. Xin, D. Liu, X. Shu, Q. Liu, Textural variation in triple junction region of friction stir welded Mg alloys and its influence on twinning and fracture, Materials Science and Engineering: A 658 (2016) 185-191.
[63] M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press (2009).
[64] C.I. Chang, C.J. Lee, J.C. Huang, Relationship between grain size and Zener-
Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Materialia 51(6) (2004) 509-514.
[65] C.I. Chang, X.H. Du, J.C. Huang, Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing, Scripta Materialia 57(3) (2007) 209-212.
[66] C.I. Chang, X.H. Du, J.C. Huang, Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing, Scripta Materialia 59(3) (2008) 356-359.
[67] Y. Chino, M. Mabuchi, R. Kishihara, H. Hosokawa, Y. Yamada, C. Wen, rsquo, K. Shimojima, H. Iwasaki, Mechanical properties and press formability at room temperature of AZ31 Mg Alloy processed by single roller drive rolling, Materials Transactions 43(10) (2002) 2554-2560.
[68] W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy, Scripta Materialia 65(11) (2011) 994-997.
[69] W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th Edition, Wiley Global Education (2009).
[70] R.Z. LeGeros, Calcium phosphates in oral biology and medicine, Monographs in oral science 15 (1990) 1-201.
[71] E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, N. Roveri, Nanocrystals of magnesium and fluoride substituted hydroxyapatite, Journal of Inorganic Biochemistry 72(1) (1998) 29-35.
[72] A. Bigi, G. Falini, E. Foresti, A. Ripamonti, M. Gazzano, N. Roveri, Magnesium influence on hydroxyapatite crystallization, Journal of Inorganic Biochemistry 49(1) (1993) 69-78.
[73] G. You, N. Ho, P. Kao, In-situ formation of Al 2 O 3 nanoparticles during friction stir processing of Al SiO 2 composite, Materials Characterization 80 (2013) 1-8.
[74] J.O. Nriagu, P.H. Moore, Phosphate Minerals, Springer Berlin Heidelberg (2012).
[75] S. Yi, Investigation on the deformation behavior and the texture evolution in magnesium wrought alloy AZ31, Fakultät für Natur- und Materialwissenschaften, Technischen Universität Clausthal, (2005).
[76] S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, J. Homeyer, Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta Materialia 54(2) (2006) 549-562.
[77] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Materialia 51(7) (2003) 2055-2065.
[78] X.L. Wu, K.M. Youssef, C.C. Koch, S.N. Mathaudhu, L.J. Kecskés, Y.T. Zhu, Deformation twinning in a nanocrystalline hcp Mg alloy, Scripta Materialia 64(3) (2011) 213-216.
[79] D.T. Zhang, M. Suzuki, K. Maruyama, Study on the texture of a friction stir welded Mg-Al-Ca alloy, Acta Metallurgica Sinica (English Letters) 19(5) (2006) 335-340.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code