Responsive image
博碩士論文 etd-0112118-151520 詳細資訊
Title page for etd-0112118-151520
論文名稱
Title
二代釋氧劑結合電動力-生物法處理受鄰苯二甲酸酯類污染之河川底泥
Coupling of a second generation oxygen release compound with electrokinetic-biological process for the remediation of phthalate esters contaminated river sediments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
366
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2018-02-14
關鍵字
Keywords
二代釋氧劑、鄰苯二甲酸酯類、緩釋型過氧化氫酶、底泥、高穩定性過碳酸鈉、電動力整治、加強式生物整治
Phthalate esters, Sediment, Sustained-release catalase, Second-generation oxygen release compound, Enhanced bioremediation, Electrokinetic remediation, High-stability sodium percarbonate
統計
Statistics
本論文已被瀏覽 5653 次,被下載 1
The thesis/dissertation has been browsed 5653 times, has been downloaded 1 times.
中文摘要
本研究旨在製備一長效型高效能釋氧劑 (本研究稱之為二代釋氧劑) (Second-generation oxygen release compound, 2G-ORC),並結合電動力傳輸2G-ORC所釋出之氧氣,促進現地微生物降解河川底泥中之鄰苯二甲酸酯類 (Phthalate esters, PAEs)。於2G-ORC製備部份,本研究以幾丁聚醣 (Chitosan) 包埋過氧化氫酶控制其水中溶解性,並延長有效性,製成緩釋型過氧化氫酶 (Sustained-release catalase, SRC);另以聚乳酸-聚甘醇酸共聚物 (Poly (D,L-lactide-co-glycolide), PLGA),包覆奈米級過碳酸鈉,降低水中溶解性,並維持穩定釋放,製成高穩定性過碳酸鈉 (High stability sodium percarbonate, HSSP)。水中釋氧批次試驗結果顯示,SRC (僅於第1日添加) 於水中之催化過氧化氫 (每日添加) 產生氧氣之效能可維持15天,並維持水中溶氧量為13.84-15.17 mg/L。接著,將SRC (僅於第1日添加) 與HSSP (僅於第1日添加) 結合組成2G-ORC,則可維持水中溶氧 (6.24 mg/L) 大於單純去離子水 (Deionized water) 之水中溶氧 (5.43 mg/L),並持續7天。因此,乃進一步將2G-ORC應用於促進現地微生物降解國內三條河川底泥中PAEs,結果顯示,首先,後勁溪底泥於最佳操作條件下,一次性添加時,於反應14天內之最高總菌落數可達4.75 × 109 CFU/g,反應後之PAEs降解效率為28-100%;若以二階段添加 (反應第1天及第8天),則PAEs降解效率可提升至51-100%。於2G-ORC結合電動力整治系統,以7天為一週期添加2G-ORC,其試驗結果顯示,2G-ORC添加於陽極槽端,藉由電滲透流傳輸氧氣予底泥中之微生物,會受陽極槽液pH值影響而降低釋氧效能,反應14天後,PAEs降解效率與單純施加電場之試驗組別相似,分別為14-52%及11-40%;若將2G-ORC添加於底泥反應室注入孔,則可減少傳輸過程之消耗,且底泥之pH緩衝能力及反應中期(第8天或第15天) 之電極極性轉換皆有助於維持底泥平均pH值為中性條件 (pH 7),使2G-ORC呈最佳釋氧狀態,因此,可有效促進現地微生物降解PAEs,反應14天後,PAEs降解效率可達32-100%。延長整治時間有助於現地微生物適應環境,轉變為可降解PAEs之優勢菌種,進一步提高PAEs降解效率,反應28天後,PAEs降解效率可達58-100%,上述整治成效於不同河川底泥皆可獲得相似結果。另外,聚合酵素連鎖反應 (Polymerse chain reaction, PCR) 結合變性梯度膠體電泳 (Denaturing gradient gel electrophoresis, DGGE) 之分析結果顯示,施加電場及添加2G-ORC可刺激現地微生物增長,提高菌相豐富度,由萃取之微生物DNA定序結果比對可以得知,Pseudomonas sp.及Clostridium sp.為河川底泥之原始現地微生物,具有降解PAEs之能力,係為本研究之優勢菌種。綜合上述研究發現,本組合整治技術利用電動力傳輸2G-ORC所產生之氧氣,可促進河川底泥中現地微生物降解PAEs,不僅適用範圍廣泛,且所添加之藥劑具生物可降解性,使用後不殘留,為一環境境友善之綠色整治技術,其操作成本 (4,228-5,528 元/噸) 較其他實驗室規模整治技術低廉,亦具經濟可行性。對於未來放大至模場/實場試驗,具有相當大之應用潛勢。
Abstract
The objectives of this research were to prepare a long-lasting high performance oxygen-releasing agent (called 2G-ORC, the second-generation oxygen release compound in this study) and use it in the electrokinetic-biological process (called EK test for short in this study) for the remediation of phthalate esters (PAEs) contaminated river sediments. The lab-prepared 2G-ORC is comprised of sustained-release catalase (SRC) and high-stability sodium percarbonate (HSSP). In this study, catalase was embedded in chitosan to control its water solubility and prolong its effectiveness, whereas PLGA (poly (lactic-co-glycolic) acid; also known as poly (D,L-lactide-co-glycolide)) was coated with nanoscale sodium percarbonate to reduce its solubility to achieve its stable release. Test results showed that one-time addition of SRC had the ability to catalyze hydrogen peroxide to produce oxygen gas for 15 d while maintaining the dissolved oxygen concentration in the range of 13.84-15.17 mg/L in water. When SRC was further combined with HSSP, it could maintain the dissolved oxygen concentration (6.24 mg/L) at a level higher than the dissolved oxygen concentration of deionized water (5.43 mg/L) even after 7 d of application. Based on this finding, lab-prepared biodegradable 2G-ORC was further evaluated its performance in batch tests of bioremediation of PAEs in Houjing River sediment. Under the optimal operating conditions, test results showed that one-time addition of 2G-ORC yielded a total bacterial count up to 4.75 × 109 CFU/g sediment and the 14-d degradation efficiency of 28-100% for various PAHs of concern. When 2-stage addition totaling double dose of 2G-ORC was practiced on Days 1 and 8, the degradation efficiency was increased to 51-100% for target PAEs. Therefore, further performance evaluation of 2G-ORC was conducted by coupling 2G-ORC addition with the EK test for remediation of PAEs contaminated river sediments for a period of 14 d or 28 d. Here, a time interval of 7 d was adopted for 2G-ORC addition to the remediation system, namely on Day 1, Day 8, and so on. It was found that the 14-d degradation efficiency of 11-40% for target PAHs was obtained for the control test without addition of 2G-ORC. When 2G-ORC was injected into the anode reservoir, a slightly increased 14-d degradation efficiency of 14-52% for target PAHs and a low degree of microbial growth were obtained as compared with the control test. It is speculated that a low pH in the anode reservoir has caused 2G-ORC to yield a reduced oxygen release for microbial growth resulting in a relatively poor biodegradation of PAEs. However, when 2G-ORC was injected into the sediment compartment in addition to the practice of polarity reversal right after one half of planned remediation time (i.e., after Day 7 or Day 14), a significant increase in microbial growth and 14-d degradation efficiency for target PAEs (32-100%) were found. A nearly neutral pH of sediment after EK remediation might be caused by polarity reversal, which would yield an alleviation of pH variation by acid front and base front. Besides, 2G-ORC injected into the sediment compartment might serve as a carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants such as PAEs. Additionally, injection of 2G-ORC into the sediment compartment would avoid the loss of 2G-ORC during EK transport. Further extending the remediation time from 14 d to 28 d, an increased degradation efficiency were found, namely 58-100% for target PAEs in Houjing River sediment. It is ascribed that a prolonged remediation time would be beneficial to gradual domestication of indigenous microorganisms in the remediation system and even more an evolution of new microbial species for PAEs degradation. Similar findings were also obtained for Dianbao River sediment and Cianjhen River sediment when they were subjected to the same remediation conditions. Through the analysis of molecular biotechnology (specifically, Polymerase chain reaction-denaturing gradient gel electrophoresis, PCR-DGGE), it was found that both addition of 2G-ORC and application of external electric field would be beneficial to the growth of native microbes and abundance of microflora. In addition, the DNA sequencing result showed that PAEs could be degraded by Pseudomonas sp. and Clostridium sp., two strains of indigenous microorganisms found in river sediments of this study. The above findings have confirmed that coupling of 2G-ORC and electrokinetic-biological process is a viable environmentally benign remediation technology to remediate PAEs-contaminated river sediments. This novel remediation technology was also determined to be economically feasible because of its low operating cost in the range of 138-180 USD/ton. Based on the above findings, the above-mentioned remediation technology appears to be promising for large scale applications.
目次 Table of Contents
目錄

頁次
論文審定書 i
聲明切結書 ii
誌謝 iii
摘要 v
Abstract viii
目錄 xii
圖目錄 xvii
表目錄 xxv
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 7
第二章 文獻回顧 11
2.1 鄰苯二甲酸酯類 11
2.2 底泥污染整治技術 21
2.2.1 電動力技術 26
2.2.2 生物整治法 35
2.3 好氧生物降解PAEs 39
2.4 分子生物技術之應用 41
2.5 釋氧劑 44
2.5.1 過碳酸鈉 47
2.5.2 過氧化氫酶 48
2.6 PLGA包覆法 50
2.7 幾丁聚醣包覆法 60
第三章 材料與方法 66
3.1 實驗材料 66
3.1.1 化學藥品 66
3.1.2 鄰苯二甲酸酯類標準品及內標準品 70
3.1.3 鄰苯二甲酸酯類代謝物標準品及內標準品 71
3.2 實驗儀器 73
3.3 緩釋型過氧化氫酶製備及效能評估 74
3.3.1 緩釋型過氧化氫酶製備及基本特性分析 74
3.3.2 緩釋型過氧化氫酶之催化釋氧效能評估 75
3.4 高穩定性過碳酸鈉製備 76
3.4.1 奈米級過碳酸鈉 77
3.4.2 利用PLGA包覆奈米級過碳酸鈉 78
3.5 二代釋氧劑釋氧批次試驗 79
3.5.1 PLGA包覆過程之不同油相基質、奈米級過碳酸鈉含量
及PLGA廠牌對釋氧效能之影響 79
3.5.2 不同緩釋型過氧化氫酶及高穩定性過碳酸鈉配比
對二代釋氧劑釋氧效果之影響 81
3.5.3 二代釋氧劑與市售釋氧劑之釋氧效能比較 82
3.6 河川底泥樣品 83
3.6.1 底泥樣品採集 83
3.6.2 底泥樣品基本性質分析 85
3.6.3 底泥pH值緩衝能力分析 86
3.6.4 樣品前處理 87
3.6.5 樣品分析 88
3.7 2G-ORC對現地微生物降解河川底泥中PAEs之影響 92
3.8 電動力整治試驗 94
3.8.1 電動力整治系統及試驗參數設置 94
3.8.2 電動力整治試驗後底泥中標的污染物濃度檢測 99
3.8.3 電動力整治試驗後底泥菌相變化分析 100
3.9 鄰苯二甲酸酯類生物降解反應機制探討 104
3.10 整治技術及經濟可行性評估 104
第四章 結果與討論 106
4.1 緩釋型過氧化氫酶 106
4.1.1 緩釋型過氧化氫酶製備及特性分析 106
4.1.2 緩釋型過氧化氫酶催化過氧化氫批次試驗 108
4.2 高穩定性過碳酸鈉 112
4.2.1 奈米級過碳酸鈉製備及特性分析 112
4.2.2 利用PLGA包覆之奈米級過碳酸鈉及其特性分析 115
4.3 二代釋氧劑在水中之釋氧效能評估 120
4.3.1 S/O/O法製備HSSP過程之油相基質差異、奈米級
過碳酸鈉含量及PLGA廠牌對2G-ORC釋氧效能
之影響 120
4.3.2 SRC及HSSP配比對2G-ORC在水中釋氧效能
之影響 124
4.3.3 釋氧劑之釋氧效能比較 126
4.4 受PAEs污染之河川底泥採樣 128
4.4.1 關切的三條河川之底泥基本性質 128
4.4.2 關切的三條河川之底泥pH值緩衝能力分析 131
4.5 2G-ORC及市售釋氧劑於受PAEs污染河川底泥之應用 135
4.5.1 添加2G-ORC及市售釋氧劑於後勁溪底泥
對現地微生物降解PAEs之影響 135
4.5.2 添加2G-ORC於典寶溪及前鎮河對現地微生物降解PAEs之影響 163
4.6 2G-ORC結合電動力-生物法整治受PAE污染
之河川底泥 172
4.7 電動力整治試驗前後底泥菌相分析 234
4.8 技術及經濟可行性評估 249
第五章 結論與建議 255
5.1 結論 255
5.2 建議 258
參考文獻 260
附錄 321
附錄一 河川底泥採樣照片 322
附錄二 Oxygen Release Compound (ORC®) Material Safety
Data Sheet 325
附錄三 鄰苯二甲酸酯類生物降解路徑 331
附錄四 二代釋氧劑懸浮液 334
附錄五 就學期間發表之學術論文 335


圖目錄

頁次
圖1-1 研究架構流程圖 8
圖2-1 電動力整治技術原理示意圖 27
圖2-2 現地電動力結合生物整治技術原理示意圖 39
圖2-3 聚酯類高分子聚合物結構式 52
圖2-4 不同PLA/PGA共聚比之PLGA模擬體內釋放率 53
圖2-5 PLGA之水解作用 54
圖2-6 W/O/W法包覆流程: (a) 溶劑萃取法; (b) 溶劑揮發法 56
圖2-7 S/O/W法包覆流程 57
圖2-8 W/O/O法包覆流程 58
圖2-9 S/O/O法包覆流程 59
圖2-10 幾丁質及幾丁聚醣結構式 61
圖2-11 幾丁聚醣微膠囊製備方法─凝膠相分離法 63
圖2-12 幾丁聚醣微膠囊製備方法─滴入法 64
圖2-13 幾丁聚醣微膠囊製備方法─噴霧乾燥法 65
圖3-1 關切的三條河川底泥採樣位置圖 85
圖3-2 二代釋氧劑結合實驗室規模電動力-生物整治系統示意圖 97

圖4-1 SRC之FTIR分析圖 107
圖4-2 緩釋型過氧化氫酶及KI催化過氧化氫釋氧效果比較
(pH 2) 109
圖4-3 緩釋型過氧化氫酶及KI催化過氧化氫釋氧效果比較
(pH 7) 110
圖4-4 緩釋型過氧化氫酶及KI催化過氧化氫釋氧效果比較
(pH 12) 111
圖4-5 過碳酸鈉XRD分析圖譜:(a) 本研究自行製備;
(b) 文獻之研究成果 (Wada et al., 2015) 113
圖4-6 過碳酸鈉之ESEM影像分析圖:(a) 放大倍率2,000x
(本研究);(b) 放大倍率20,000x (本研究);(c) 放大倍率50,000x (本研究);(d) 放大倍率100,000x (本研究);
(e) Wada and Koga (2013) 之研究成果 114
圖4-7 HSSP之ESEM影像分析圖:(a) 放大倍率5,000x;
(b) 放大倍率5,000x;(c) 放大倍率10,000x;
(d) 放大倍率20,000x 117
圖4-8 PLGA包覆後之藥物SEM影像分析圖:
(a) Alendronate (Nafea et al., 2007);(b) Insulin (Han et al.,
2009) 117
圖4-9 HSSP之FTIR分析圖 118
圖4-10 過碳酸鈉之FTIR分析圖 (Wada and Koga, 2013) 118
圖4-11 PLGA相關研究之FTIR分析圖:(a) Emami et al. (2009) ;
(b) 吳奎燁 (2013) 119
圖4-12 不同條件製備之2G-ORC在水中之釋氧效能評估比較 121
圖4-13 不同SRC及HSSP配比之2G-ORC在水中
之釋氧效能評估 124
圖4-14 不同釋氧劑之水中釋氧效能 127
圖4-15 關切的三條河川底泥之粒徑分佈圖 130
圖4-16 不同添加劑量之酸及鹼對三條河川底泥pH值之影響 133
圖4-17 後勁溪底泥中PAEs自然生物降解─HJ 1組別 139
圖4-18 添加2G-ORC對現地微生物降解後勁溪底泥中PAEs
之影響─HJ 2組別 140
圖4-19 添加2G-ORC對現地微生物降解後勁溪底泥中PAEs
之影響─HJ 3組別 144
圖4-20 添加2G-ORC對現地微生物降解後勁溪底泥中PAEs
之影響─HJ 4組別 145
圖4-21 添加市售釋氧劑ORC®對現地微生物降解後勁溪底泥中
PAEs之影響─HJ 5組別 148
圖4-22 添加市售釋氧劑CaO2對現地微生物降解
後勁溪底泥中PAEs之影響─HJ 6組別 149
圖4-23 添加不同釋氧劑對現地微生物降解後勁溪底泥PAEs
批次試驗過程之水中溶氧變化 152
圖4-24 添加不同釋氧劑對現地微生物降解後勁溪底泥PAEs
批次試驗過程之底泥pH值變化 159
圖4-25 典寶溪底泥中PAEs自然生物降解─DB 1組別 165
圖4-26 添加2G-ORC對現地微生物降解典寶溪底泥中PAEs
之影響─DB 2組別 166
圖4-27 前鎮河底泥中PAEs自然生物降解─CJ 1組別 170
圖4-28 添加2G-ORC對現地微生物降解前鎮河底泥中PAEs
之影響─CJ 2組別 171
圖4-29 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-1-HJ)
-陰、陽極槽液pH值之變化 173
圖4-30 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-1-HJ)
-電流密度之變化 175
圖4-31 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-1-HJ)
-累積電滲透流流量之變化 176
圖4-32 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-1-HJ)
-反應後底泥pH值之分布 178
圖4-33 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-1-HJ)
-反應後底泥不同PAEs殘留濃度之分布 181
圖4-34 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-1-HJ)
-反應後底泥不同PAEMs殘留濃度之分布 181
圖4-35 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-2-HJ)
-陰、陽極槽液pH值之變化 183
圖4-36 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-2-HJ)
-電流密度之變化 185
圖4-37 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-2-HJ)
-累積電滲透流流量之變化 186
圖4-38 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-2-HJ)
-反應後底泥pH值之分布 188
圖4-39 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-2-HJ)
-反應後底泥不同PAEs殘留濃度之分布 191
圖4-40 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-2-HJ)
-反應後底泥不同PAEMs殘留濃度之分布 191
圖4-41 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-3-HJ)
-陰、陽極槽液pH值之變化 193
圖4-42 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-3-HJ)
-電流密度之變化 195
圖4-43 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-3-HJ)
-累積電滲透流流量之變化 196
圖4-44 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-3-HJ)
-反應後底泥pH值之分布 198
圖4-45 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-3-HJ)
-反應後底泥不同PAEs殘留濃度之分布 200
圖4-46 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-3-HJ)
-反應後底泥不同PAEMs殘留濃度之分布 200
圖4-47 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-4-HJ)
-陰、陽極槽液pH值之變化 203
圖4-48 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-4-HJ)
-電流密度之變化 205
圖4-49 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-4-HJ)
-累積電滲透流流量之變化 207
圖4-50 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-4-HJ)
-反應後底泥pH值之分布 208
圖4-51 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-4-HJ)
-反應後底泥不同PAEs殘留濃度之分布 211
圖4-52 電動力整治PAEs污染後勁溪底泥試驗組別 (EK-4-HJ)
-反應後底泥不同PAEMs殘留濃度之分布 211
圖4-53 電動力整治PAEs污染典寶溪底泥試驗組別 (EK-5-DB)
-陰、陽極槽液pH值之變化 213
圖4-54 電動力整治PAEs污染典寶溪底泥試驗組別 (EK-5-DB)
-電流密度之變化 215
圖4-55 電動力整治PAEs污染典寶溪底泥試驗組別 (EK-5-DB)
-累積電滲透流流量之變化 216
圖4-56 電動力整治PAEs污染典寶溪底泥試驗組別 (EK-5-DB)
-反應後底泥pH值之分布 217
圖4-57 電動力整治PAEs污染典寶溪底泥試驗組別 (EK-5-DB)
-反應後底泥不同PAEs殘留濃度之分布 220
圖4-58 電動力整治PAEs污染典寶溪底泥試驗組別 (EK-5-DB)
-反應後底泥不同PAEMs殘留濃度之分布 220
圖4-59 電動力整治PAEs污染前鎮河底泥試驗組別 (EK-6-CJ)
-陰、陽極槽液pH值之變化 222
圖4-60 電動力整治PAEs污染前鎮河底泥試驗組別 (EK-6-CJ)
-電流密度之變化 224
圖4-61 電動力整治PAEs污染前鎮河底泥試驗組別 (EK-6-CJ)
-累積電滲透流流量之變化 225
圖4-62 電動力整治PAEs污染前鎮河底泥試驗組別 (EK-6-CJ)
-反應後底泥pH值之分布 227
圖4-63 電動力整治PAEs污染前鎮河底泥試驗組別 (EK-6-CJ)
-反應後底泥不同PAEs殘留濃度之分布 229
圖4-64 電動力整治PAEs污染前鎮河底泥試驗組別 (EK-6-CJ)
-反應後底泥不同PAEMs殘留濃度之分布 229
圖4-65 後勁溪、典寶溪及前鎮河原始底泥之菌相分析 235
圖4-66 後勁溪、典寶溪及前鎮河底泥電動力整治試驗前後
之底泥菌相分析 236



表目錄

頁次
表2-1 台灣PAEs運作量 13
表2-2 常見之PAEs基本性質及用途 14
表2-3 國外底泥樣品中PAEs檢出濃度 16
表2-4 國外底泥樣品中PAEs檢出濃度 (續) 17
表2-5 國內底泥樣品中PAEs檢出濃度 17
表2-6 國內底泥樣品中PAEs檢出濃度 (續) 18
表2-7 PLGA包覆程序 55
表3-1 各階段實驗所使用之化學藥品 67
表3-2 鄰苯二甲酸酯類及鄰苯二甲酸酯類代謝物
之化合物基本資料 72
表3-3 各階段實驗所使用之儀器設備 73
表3-4 緩釋型過氧化氫酶催化過氧化氫批次試驗參數 76
表3-5 緩釋型過氧化氫酶對不同製備方式之高穩定性過碳酸鈉
催化釋氧批次試驗 81
表3-6 不同緩釋型過氧化氫酶及高穩定性過碳酸鈉配比之
2G-ORC釋氧效果批次試驗 82
表3-7 2G-ORC與市售釋氧劑之釋氧批次試驗 83
表3-8 PAEs於UHPLC之操作條件 89
表3-9 PAEMs於UHPLC之操作條件 89
表3-10 PAEs及PAEMs之UHPLC-MS/MS分析條件 91
表3-11 2G-ORC及市售釋氧劑對現地微生物降解
後勁溪底泥中PAEs之影響批次試驗 93
表3-12 2G-ORC於典寶溪及前鎮河底泥對現地微生物
降解PAEs之影響批次試驗 94
表3-13 2G-ORC結合電動力-生物法整治受PAEs污染之河川底泥
參數及條件一覽表 98
表3-14 PCR反應條件 102
表3-15 膠體配製所需溶液及其比例 103
表4-1 關切的三條河川其底泥基本性質分析結果 129
表4-2 添加2G-ORC及市售釋氧劑對現地微生物降解
後勁溪底泥PAEs之影響 154
表4-3 添加2G-ORC及市售釋氧劑對後勁溪底泥PAEs
生物降解速率及半衰期之影響 162
表4-4 添加2G-ORC對於不同河川底泥PAEs生物降解效率比較 172
表4-5 2G-ORC結合電動力生物法整治受PAEs污染河川底泥之
6組試驗結果比較 233
表4-6 DGGE樣品順序表 234
表4-7 本研究三條河川底泥藉由DNA定序所鑑定出可降解PAEs
之菌種與文獻報導可降解PAEs菌種比對 242
表4-8 本研究三條河川底泥藉由DNA定序所鑑定出可降解PAEs
之菌種被利用於降解其他有機化合物之文獻報導 244
表4-9 2G-ORC結合電動力-生物整治試驗之操作成本估算
(分析級及試藥級藥劑) 250
表4-10 2G-ORC結合電動力-生物整治試驗之操作成本估算
(工業級藥劑) 251
表4-11 有機化合物污染底泥整治費用比較 254
參考文獻 References
參考文獻

Acar, Y. B. and A. N. Alshawabkeh, “Principles of electrokinetic remediation,” Environmental Science and Technology, Vol. 23, pp. 2638-2647 (1993).
Anid, P. J., P. J. J. Alvarez, and T. M. Vogel, “Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate,” Water Research, Vol. 27, pp. 685-691 (1993).
Aaito, A., T. Iwabuchi, and S. Harayama, “A novel phenanthrene dioxygenase from Nocardioides sp. strain kp7: expression in escherichia coli,” Journal of Bacteriology, Vol. 182, pp. 2134-2141 (2000).
Aitken, R. L., P. W. Moody, and P. G. McKinley, “Lime requirements of acidic Queensland soils 1. Relationships between soil properties and pH buffer capacity,” Australian Journal of Soil Research, Vol. 28, pp. 695-701 (1990).
Alaçam, A., O. Tulunoglu, T. Oygu¨r, and S. Bilicia, “Effects of topical Catalase application on dental pulp tissue: A histopathological evaluation,” Journal of Dentistry, Vol. 28, pp. 333-339 (2000).
Ammami, M. T., F. Portet-Koltalo, A. Benamar, C. Duclairoir-Poc, H. Wang, and F. Le Derf, “Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments,” Chemosphere, Vol. 125, pp. 1-8 (2015).
Amorim, A. M., M. D. G. Gasques, J. Andreaus, and M. Scharf, “The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics,” Anais da Academia Brasileira de Ciências, Vol. 74, pp. 433-436 (2002).
Astete, C. E. and C. M. Sabliov, “Synthesis and characterization of PLGA nanoparticles,” Journal of Biomaterials Science, Polymer Edition, Vol. 17, pp. 247-289 (2006).
Adeniyi, A. A., O. O. Okedeyi, and K. A. Yusuf, “Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun river catchments, Ketu, Lagos, Nigeria,” Environmental Monitoring and Assessment, Vol. 172, pp. 561-569 (2011).
Aruldoss, V. and P. T. Kalaichelvan, “Production of catalase by solid state fermentation using different agro and fruit peel wastes as substrates,” Journal of Modern Biotechnology, Vol. 3, pp. 8-13 (2014).
Abdel-daiem, M. M., J. Rivera-Utrilla, R. Ocampo-Pérez, J. D. Méndez-Díaz, and M. Sánchez-Polo, “Environmental impact of phthalic acid esters and their removal from water and sediments by different technologiese A review,” Water Research, Vol. 109, pp. 164-178 (2012).
Alatriste-Mondragon, F., R. Iranpour, and B. K. Ahring, “Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge,” Water Research, Vol. 37, pp. 1260-1269 (2003).
Boon, E. M., A. Downs, and D. Marcey, “Catalase: H2O2: H2O2 Oxidoreductase,” http://biology.kenyon.edu/BMB/Chime/catalase/frames/cattx.htm (2007).
Baran, T., T. Inanan, and A. Mentes, “Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst,” Carbohydrate Polymers, Vol. 145, pp. 20-29 (2016).
Bauer, M. J., and R. Herrmann, “Estimation of the environmental contamination by phthalic acid esters leaching from household wastes,” Science of the Total Environment, Vol. 208, pp. 49-57 (1997).
Bauer, M. J., R. Herrmann, A. Martin, and H. Zellmann, “Chemodynamics, transport behaviour and treatment of phthalic acid esters in municipal landfill leachates,” Water Science and Technology, Vol. 38, pp. 185-192 (1998).
Blair, J. D., M. G. Ikonomou, B. C. Kelly, B. Surridge, and F. A. P. C. Gobas, “Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS,” Environmental Science and Technology, Vol. 43, pp. 6262-6268 (2009).
Becker, K., M. Seiwert, J. Angerer, W. Heger, H. M. Koch, R. Nagorka, C. Schluter, B. Seifert, and D. Ullrich, “DEHP metabolites in urine of children and DEHP in house dust,” International Journal of Hygiene and Environmental Health, Vol. 207, pp. 409-417 (2004).
Borden, R. C., R. A. Daniel, L. E. LeBrun IV, and C. W. Davis, “Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer,” Water Resources Research, Vol. 33, pp. 1105-1115 (1997).
Brandt, B. W., I. M. M. van Leeuwen, and S. A. L .M. Kooijman, “A general model for multiple substrate biodegradation. Application to co-metabolism of structurally non-analogous compounds,” Water Research, Vol. 37, pp. 4843-4854 (2003).
Baghirov, H., S. Melikishvili, Y. Mørch, E. Sulheim, A. K.O. Åslund, T. Hianik, and C. D. L. Davies, “The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells,” Colloids and Surfaces B: Biointerfaces, Vol. 150, pp. 373-383 (2017).
Boisgard, A. S., M. Lamrayah, M. Dzikowski, D. Salmon, P. Kirilov, C. Primard, F. Pirot, B. Fromy, and B. Verrier, “Innovative drug vehicle for local treatment of inflammatory skin diseases: Ex vivo and in vivo screening of five topical formulations containing poly(lactic acid) (PLA) nanoparticles,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 116, pp. 51-60 (2017).
Baciocchi, R., M. R. Boni, and L. D’Aprile, “Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils,” Journal of Hazardous Materials, Vol. B96, pp. 305-329 (2003).
Brosillon, S., C. B. Montigny, and J. Mendret, “Study of photocatalytic degradation of tributyltin, dibutylin and monobutyltin in water and marine sediments,” Chemosphere, Vol. 109, pp. 173-179 (2014).
Balakrishnan, Biji., D. Soman, U. Payanam, A. Laurent, D. Labarre, and A. Jayakrishnan, “A novel injectable tissue adhesive based on oxidized dextran and chitosan,” Acta Biomaterialia, Vol. 53, pp. 343-354 (2017).
Cox, C. D., M. A. Shoesmith, and M. M. Ghosh, “Electrokinetic remediation of mercury contaminated soils using iodine/iodide lixiviant,” Environmental Science and Technology, Vol. 30, pp. 1933-1938 (1996).
Cui, J. J., C. G. Niu, X. Y. Wang, and G. M. Zeng, “Facile preparation of magnetic chitosan modified with thiosemicarbazide for adsorption of copper ions from aqueous solution,” Journal of Applied Polymer Science, Vol. 134, pp. 44528-44536 (2017).
Chao, W. L., C. M. Lin, I. I. Shiung, and Y. L. Kuo, “Degradation of di-butyl-phthalate by soil bacteria,” Chemosphere, Vol. 63, pp. 1377-1383 (2006).
Chee, G. J., “Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE,” Talanta , Vol. 85, pp. 1778-1782 (2011).
Chen, R. H. and M. L. Tsaih, “Effect of preparation method and characteristics of chitosan on the mechanical and release properties of the prepared capsule,” Journal of Applied Polymer Science, Vol. 66, pp. 161-169 (1997).
Chen, K., B. Guo, and J. Luo, “Quaternized carboxymethyl chitosan/organic montmorillonite nanocomposite as a novel cosmetic ingredient against skin aging,” Carbohydrate Polymers, Vol. 173, pp. 100-106 (2017).
Chen, C. W., C. F. Chen and C. D. Dong, “Distribution of phthalate esters in sediments of Kaohsiung Harbor, Taiwan,” Soil and Sediment Contamination, Vol. 22, pp. 119-131 (2013).
Chun, C. L., R. B. P, K. R. Sowers, and H. D. May, “Electrical stimulation of microbial PCB degradation in sediment,” Water Research, Vol. 47, pp. 141-152 (2013).
Chang, B. V., C. S. Liao, and S. Y. Yuan, “Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan,” Chemosphere, Vol. 58, pp. 1601-1607 (2005).
Chang, B. V., S. Y. Yuan, and C. C. Chiou, “Biodegradation of bisphenol-A in river sediment,” Journal of Environmental Science and Health, Vol. 46, pp. 931-937 (2011).
Chang. B. V., S. Y. Yuan, and Y. L. Ren, “Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment,” Chemosphere, Vol. 87, pp. 535-541 (2012).
Costa, S. A., T. Tzanov, A. Paar, M. Gudelj, G. M. Gubitz, and A. Cavaco-Pauloa, “Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents,” Enzyme and Microbial Technology, Vol. 28, pp. 815-819 (2001).
Crotts, G. and T. G. Park, “Preparation of porous and nonporous biodegradable polymeric hollow microshperes,” Journal of Controlled Release, Vol. 35, pp. 91-105 (1995).
Cabeza, L., R. Ortiz, J. Prados, Á. V. Delgado, M. J. Martín-Villena, B. Clares, G. Perazzoli, J. M. Entrena, C. Melguizo, and J. L. Arias, “Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study,” European Journal of Pharmaceutical Sciences, Vol. 102, pp. 24-34 (2017).
Chauret, C., C. I. Mayfield, and W. E. Inniss, “Biotransformation of di-n-butyl phthalate by a psychrotrophic Pseudomonas fluorescens (BGW) isolated from subsurface environment,” Canadian Journal of Microbiology, Vol. 41, pp. 54-63 (1995).
Cheung, J. K. H., R. K. W. Lam, M. Y. Shi, and J. Gu, “Environmental fate of endocrine-disrupting dimethyl phthalate esters (DMPE) under sulfate-reducing condition,” Science of the Total Environment, Vol. 381, pp. 126-133 (2007).
Cadogan, D. F., M Papez. A. C. Poppe, and J Scheubel, “An assessment of the release, occurrence and possible effect of plasticizers in the environment,” Progress in Rubber and Plastics Technology, Vol. 10, pp. 1-19 (1993).
Cetinus, S. A, H. N. Oztop, and D. Saraydın, “Immobilization of catalase onto chitosan and cibacron blue F3GA attached chitosan beads,” Enzyme and Microbial Technology, Vol. 41, pp. 447-454 (2007).
Cleland, J. L. and A. J. Jones, “Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres,” Pharmaceutical Research, Vol. 13, pp. 1464-1475 (2003b).
Colberg, P. J. S. and L. Y. Young, “Anaerobic degradation of nonhalogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction,” In: Young, L. Y. and C. E. Cerniglia (Eds.), Microbial Transformation and Degradation of Toxic Organic Chemicals, pp. 307-330, Wiley­Liss, NewYork, USA (1995).
Caldwell, J. C., “DEHP: Genotoxicity and potential carcinogenic mechanisms—A review,” Mutation Research, Vol. 751, pp. 82-157 (2012).
Cerchiara, T., A. Abruzzo, R. A. Ñ. Palomino, B. Vitali, R. D. Rose, G. Chidichimo, L. Ceseracciu, A. Athanassiou, B. Saladini, F. Dalena, F. Bigucci, and B. Luppi, “Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity,” European Journal of Pharmaceutical Sciences, Vol. 99, pp. 105-112 (2017).
Colacicco, A., G. D. Gioannis, A. Muntonic, E. Pettinao, A. Polettini, and R. Pomi, “Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs,” Chemosphere, Vol. 81, No. 1, pp. 45-56 (2010).
Chatterjee, S. and T. K. Dutta, “Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: Role of individual isolates in the assimilation pathway,” Chemosphere, Vol. 70, pp. 933-941 (2008).
Castellanos, I. J., G. Cruz, R. Crespo, and K. Griebenow, “Encapsulation-induced aggregation and loss in activity of gamma-chymotrypsin and their prevention,” Journal of Controlled Release, Vol. 81, pp. 307-319 (2002).
Castellanos, I. J., R. Crespo, and K. Griebenow, “Poly(ethylene glycol) as stabilizer and emulsifying agent: A novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester micro-spheres,” Journal of Colloid and Interface Science, Vol. 88, pp. 135-145 (2003a).
Castellanos, I. J. and K. Griebenow, “Improved alpha-chymotrypsin stability upon encapsulation in PLGA microspheres by solvent replacement,” Pharmaceutical Research, Vol. 20, pp. 1873-1880 (2003b).
Carrasquillo, K. G., A. M. Stanley, J. C. Aponte-Carro, P. De Jesus, H. R. Costantino, C. J. Bosques, and K. Griebenow, “Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein,” Journal of Controlled Release, Vol. 76, pp. 199-208 (2001).

Daniel, S. L., C. Pilsl, and H. L. Drake, “Anaerobic oxalate consumption by microorganisms in forest soils,” Research in Microbiology, Vol. 158, pp. 303-309 (2007).
Dobson et al., U.S. Patent Application 13/759, 996, February 5 (2013).
Duhamel, M. and E. A Edwards, “Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane,” Environment Science and Technology, Vol. 41, pp. 2303-2310 (2007).
DuTeaux, S. B., “A Compendium of Cost Data for Environmental Remediation Technologies,” In: Environmental Technology Cost-Savings Analysis Project, U.S. Department of Energy, pp. 1-109, Office of Science and Technology (EM-50), California, USA (1996).
Dean-Ross, D. and E. Cerniglia, “Degradation of pyrene by Mycobacterium flavescens,” Applied Microbiology and Biotechnology, Vol. 46, pp. 307 – 312 (1996).
Emami, J., H. Hamishehkar, A. R. Najafabadi, K. Gilani, M. Minaiyan, H. Mahdavi, and A. Nokhodchi, “A novel approach to prepare insulin-loaded poly (lactic-co-glycolic acid) microcapsules and the protein stability study,” Journal of Pharmaceutical Sciences, Vol. 98, pp. 1712-1731 (2009).
Fu, X., X. Gu, S. Lu, M. Xu, Z. Miao, X. Zhang, Y. Zhang, Y. Xue, Z. Qiu, and Q. Sui, “Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II),” Chemical Engineering Journal, Vol. 285, pp. 180-188 (2016).
Fu, X., X. Gu, S. Lu, Z. Miao, M. Xu, X. Zhang, Z. Qiu, and Q. Sui, “Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution,” Chemical Engineering Journal, Vol. 267, pp. 25-33 (2015).
Fang, Y., L. S. Zhang, J. Wang, Y. Zhou, and B. C. Ye, “Identification of the di-n-butyl phthalate-biodegrading strains and the biodegradation pathway in strain LMB-1,” Applied Biochemistry and Microbiology, Vol. 53, pp. 310-317 (2017).
Fierens, T., K. Servaes, M. V. Holderbeke, L. Geerts, S. De. Henauw, I. Sioen, and G. Vanermen, “Analysis of phthalates in food products and packaging materials sold on the Belgian market” Food and Chemical Toxicology, Vol. 50, pp.2575-2583 (2012).
Fischer, S. G. and L. S. Lerman, “Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis,” Cell, Vol. 16, pp. 191-200 (1979).
Forwood, J. M., J. O. Harris, M. Landos, and M. R. Deveneyc, “Evaluation of treatment methods using sodium percarbonate and formalin on Australian rainbow trout farms,” Aquacultural Engineering, Vol. 63, pp. 9-15 (2014).
Furtmann, K., “Phthalates in surface water - a method for routine trace level analysis,” Fresenius' Journal of Analytical Chemistry, Vol. 348, pp. 291-296 (1994).
Fountoulakis, M. S., K. Stamatelatou, D. J. Batstone, and G. Lyberatos, “Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge,” Water Science and Technology, Vol. 54, pp. 119-128 (2006).
Gu, J. D., J. Li, and Y. Wang, “Biochemical pathway and degradation of phthalate ester isomers by bacteria,” Water Science and Technolog, Vol. 52, pp. 241-248 (2005).
Gao, D. W. and Z. D. Wen, “Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes,” Science of the Total Environment, Vol. 541, pp. 986-1001 (2016).
Gao, D., Z. Li, Z. Wen, and N. Ren, “Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China,” Chemosphere, Vol. 95, pp. 24-32 (2014).
Goi, A., M. Viisimaa, M. Trapido, and R. Munter, “Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides,” Chemosphere, Vol. 82, pp. 1196-1210 (2011).
Gill, R. T., M. J. Harbottle, J. W. N. Smith, and S. F. Thornton, “Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications,” Chemosphere, Vol. 107, pp. 31-42 (2014).
Garbaciak, S. and J. A. Miller, “Field demonstration of sediment treatment technologies by the US EPA’s Assessment and Remediation of Contaminated Sediments (ARCS) Program,” In: Dredging, Remediation, and Containment of Contaminated Sediments. American Society for Testing and Materials, Dewars, K. R., G. N. Richardson, R. N. Yong, and R. C. Chaney (Eds.), pp. 145-154, Pennsylvania, USA (1995).
Golovleva, K. L. A., R. N. Pertsova, L. I. Evtushenko, and B. P. Baskunov, “Degradation of 2,4,5-Trichlorophenoxyacetic acid by a Nocardioides simplex culture,” Biodegradation, Vol. 1, pp. 263-271 (1990).
García-Rubio, A., J. M. Rodríguez-Maroto, F. García-Herruzo, C. Vereda-Alonso, C. Gómez-Lahoz, J. M. Esbrí, and P. Higueras, “Implementation of a iodide enhanced EKR to a mercury contaminated soil,” Book of Abstracts, The 6th Symposium on Electrokinetic Remediation (EREM 2007), p. 167, Vigo, Spain, June 12-15 (2007).
Gunasekaran, S., T. Wang, and C. Chai, “Swelling of ph-sensitive chitosan–poly(vinyl alcohol) hydrogels,” Journal of Applied Polymer Science, Vol. 102, pp. 4665-4671 (2006).
Gallego-Blanca, R., A. García-Rubio, J. M. Rodríguez-Maroto, F. García-Herruzo, C. Vereda-Alonso, and C. Gómez-Lahoz, “Sequetial application of different EKR enhancements to a mercury contaminated soil,” Book of Abstracts, 8th Syposium on Electrokinetic Remediation (EREM 2009), p. 38, Lisbon, Portugal, July 26-29 (2009).
He, Z., H. Xiao, L. Tang, H. Min, and Z. Lu, “Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge,” Bioresource Technology, Vol. 128, pp. 526-532 (2013).
Han, Y., H. Tian, P. He, X. Chen, and X. Jing, “Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system,” International Journal of Pharmaceutics, Vol. 378, pp. 159-166 (2009).
Hanh, D. N., B. K. Rajbhandari, and A. P. Annachhatre, “Bioremediation of sediments from intensive aquaculture shrimp farms by using calcium peroxide as slow oxygen release agent,” Environmental Technology, Vol. 26, pp. 581-589 (2005).
Horn, O., S. Nalli, D. Cooper, and J. Nicell, “Plasticizer metabolites in the environment,” Water Research, Vol. 38, pp. 3693-3698 (2004).
Habib, A., H. Mori, K. Yahagi, and A. V. Finn, “Contemporary drug-eluting stents and vascular response,” European Medical Journal, Vol. 1, pp. 60-68 (2017).
Hamed, J. T. and A. Bhadra, “Influence of current density and pH on electrokinetics,” Journal of Hazardous Materials, Vol. 55, pp. 279-294 (1997).
Huang, K. C., G. E. Hoag, P. Chheda, B. A. Woody, and G. M. Dobbs, “Oxidation of chlorinated ethenes by potassium permanganate: A kinetics study,” Journal of Hazardous Materials, Vol. B87, pp. 155-169 (2001).
Huang, P. C., C. J. Tien, Y. M. Sun, C. Y. Hsieh, and C. C. Lee, “Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor,” Chemosphere, Vol. 73, pp. 539-544 (2008).
Habibi, D., M. A. Zolfigol, M. Safaiee, A. Shamsian, and A. Ghorbani-Choghamarani, “Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr,” Catalysis Communications, Vol. 10, pp. 1257-1260 (2009).
Haroun, M., G. V. Chilingar, and S. Pamukcu, “The efficacy of using electrokinetic transport in highly-contaminated offshore sediments,” Journal of Applied Electrochemistry, Vol. 40, pp. 1131-1138 (2010).
Haggett, K. D., P. P. Gray, and N. W. Dunn, “Crystalline cellulose degradation by a strain of Cellulornonas and its mutant derivatives,” European Journal of Applied Microbiology and Biotechnology, Vol. 8, pp. 183-190 (1979).
Hesselsoe, M., S. Boysen, N. Iversen, L. Jørgensen, J. C. Murrell, I. McDonald, S. Radajewski, H. Thestrup, and P. Roslev, “Degradation of organic pollutants by methane grown microbial consortia,” Biodegradation, Vol. 16, pp. 435-448 (2005).
Hahladakis, J. N., N. Lekkas, A. Smponias, and E. Gidarakos, “Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs,” Chemosphere, Vol. 105, pp. 44-52 (2014).
Heidelberg, J. F., R. Seshadri, S. A. Haveman, C. L Hemme, I. T. Paulsen, J. F Kolonay, J. A. Eisen, N. Ward, B. Methe, L. M. Brinkac, S. C. Daugherty, R. T Deboy, R. J. Dodson, A. S. Durkin1, R. Madupu, W. C. Nelson, S. A. Sullivan, D. Fouts, D. H Haft, J. Selengut, J. D. Peterson, T. M. Davidsen, N. Zafar, L. Zhou, D. Radune, G. Dimitrov, M. Hance, K. Tran, H. Khouri, J. Gill, T. R. Utterback, T. V. Feldblyum, J. D. Wall, G. Voordouw, and C. M. Fraser, “The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough,” Nature Biotechnology, Vol. 22, pp. 554-559 (2004).
Hassanzadeh, N., A. E. Sari, S. Khodabandeh, and N. Bahramifar, “Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran),” Marine Pollution Bulletin, Vol. 89, pp. 128-135 (2014).
Herrero-Vanrell, R., I. Bravo-Osuna, V. Andrés-Guerrero, M. Vicario-de-la-Torre, and I. T. Molina-Martínez, “The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies,” Progress in Retinal and Eye Research, Vol. 42, pp. 27-43 (2014).
Im, J. and J. D. Semrau, “Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: Bioremediation via facultative methanotrophy,” FEMS Microbiology Letters, Vol. 318, pp. 137-142 (2011).
Iino, T., K. Mori, Y. Uchino, T. Nakagawa, S. Harayama, and K. Suzuki, “Phosphorus composition and release in sediment bacteria of the genus Pseudomonas during aerobic and anaerobic conditions,” Hydrobiologia, Vol. 253, pp. 131-140 (1993).
Iino, T., K. Mori, Y. Uchino, T. Nakagawa, S. Harayama, and K. Suzuki, “Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria,” International Journal of Systematic and Evolutionary Microbiology, Vol. 60, pp. 1376-1382 (2010).
Ibezim, E. C., C. T. Andrade, C. Marcia, B. Barretto, D. C. Odimegwu, and F. F. D. Lima, “Ionically cross-linked chitosan/tripolyphosphate microparticles for the controlled delivery of pyrimethamine,” Ibnosina Journal of Medicine and Biomedical Sciences, Vol. 3, pp. 77-88 (2011).
Ikunaga, Y., I. Sato, S. Grond, N. Numaziri, S. Yoshida, H. Yamaya, S. Hiradate, M. Hasegawa, H. Toshima, M. Koitabashi, M. Ito, P. Karlovsky, and S. Tsushima, “Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivaleno,” Applied Microbiology and Biotechnology, Vol. 89, pp. 419-427 (2011).
Iannelli, R., M. Masi, A. Ceccarini, M. B. Ostuni, R. Lageman, A. Muntoni, D. Spiga, A. Polettini, A. Marini, and R. Pomi, “Electrokinetic remediation of metal-polluted marine sediments: Experimental investigation for plant design,” Electrochimica Acta, Vol. 181, pp. 146-159 (2015).
Jiang, G., B. C. Thanoo, and P. P. DeLuca, “Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres,” Pharmaceutical Development and Technology, Vol. 7, pp. 391-399 (2002).
Kim, G., W. Jeong, and S. Choe, “Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron,” Journal of Environmental Science and Health, Part B, Vol. 42, pp. 287-295 (2007).
Kim, H. Y., T. S. Kim, and B. H. Kim, “Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide by Desulfovibrio desulfuricans M6.,” Biotechnology Letters, Vol. 12, pp. 761-764 (1990).
Kim, S. H., H. Y. Han, Y. J. Lee, C. W. Kim, and J. W. Yang,. “Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil,” Science of the Total Environment, Vol. 408, pp. 3162-3168 (2010).
Karn, S. K., S. K. Chakrabarti, and M. S. Reddy, “Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill,” Biodegradation, Vol. 22, pp. 63-69 (2011).
Kato, S., T. Kosaka, and K. Watanabe, “Substrate-dependent transcriptomic shifts in Pelotomaculum thermopropionicum grown in syntrophic co-culture with Methanothermobacter thermautotrophicus,” Microbial Biotechnology, Vol. 2, pp. 575-584 (2009).
Keith, L. H., “Priority pollutants,” Environmental Science and Technology, Vol. 13, pp. 416-419 (1979).
Knorr, D., “Use of chitosan polymers in food-A challenge for food research and development,” Food Technology, Vol. 38, pp. 85-97 (1984).
Kumar, M. N. V. R., “A review of chitin and chitosan applications,” Reactive & Functional Polymers, Vol. 46, pp. 1-27 (2000).
Kakarla, P. K., T. Andrews, R. S. Greenberg, and D. S. Zervas, “Modified fenton’s processes for effective in-situ chemical oxidation—Laboratory and field evaluation,” Remediation Journal, Vol. 12, pp. 23-36 (2002).
Katare, Y. K. and A. K. Panda, “Influences of excipients on in vitro release and in vivo performance of tetanus toxoid loaded polymer particles,” European Journal of Pharmaceutical Sciences, Vol. 28, pp. 179-188 (2006).
Kozaki, M., S. Kobayashi, Y. Goda, H. Okuda, and K. Sakai-Kato, “Evaluating the properties of poly(lactic-co-glycolic acid) nanoparticle formulations encapsulating a hydrophobic drug by using the quality by design approach,” Chemical and Pharmaceutical Bulletin, Vol. 65, pp. 218-228 (2017).
Khattab, S. N., S. E. A. Naim, M. El-Sayed, A. A. E. Bardan, A. O. Elzoghby, A. A. Bekhit, and A. El-Faham, “Design and synthesis of new s-triazine polymers and their application as nanoparticulate drug delivery systems,” New Journal of Chemistry, Vol. 40, pp. 9565-9578 (2016).
Kunukcu, Y. K., “In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs),” Journal of Environmental Science and Health Part A, Vol. 42, pp. 839-845 (2007).
Kyrikou, I. and D. Briassoulis, “Biodegradation of agricultural plastic films: A critical review,” Journal of Polymers and the Environment, Vol. 15, pp. 125-150 (2007).
Li, H., Y. H. Liu, N. Luo, X. Y. Zhang, T. G. Luan, J. M. Hu, Z. Y. Wang, P. C. Wu, M. J. Chen, and J. Q. Lu, “Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22,” Research in Microbiology, Vol. 157, pp. 629-636 (2006a).
Li, J., J. Chen, Q. Zhao, X. Li, and W. Shu, “Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber,” Chemosphere, Vol. 65, pp. 1627-1633 (2006b).
Li, R., J. Sun, Y. Fu, K. Du, M. Cai, P. Ji, and W. Feng, “Immobilization of genetically-modified d-amino acid oxidase and catalase on carbon nanotubes to improve the catalytic efficiency,” Catalysts, Vol. 6, pp. 66- 75 (2016).
Li, T., S. Yuan, J. Wan, and X. Lu, “Hydroxypropyl-ß-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals,” Journal of Hazardous Materials, Vol. 176, pp. 306-312 (2010).
Li, Y., J. Gao, F. Meng, and J. Chi, “Enhanced biodegradation of phthalate acid esters in marine sediments by benthic diatom Cylindrotheca closterium,” Science of the Total Environment, Vol. 508, pp. 251-257 (2015).
Li, Z., D. Suzuki, C. Zhang, N. Yoshida, S. Yang, and A. Katayama, “Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol,” Journal of Bioscience and Bioengineering, Vol. 116, pp. 602-609 (2013).
Li, Z., J. W. Yu, and I. Neretnieks, “Electroremediation: Removal of heavy metals from soils by using cation selective membrane,” Environmental Science and Technology, Vol. 32, pp. 394-397 (1998).
Lu, P., Q. Feng, Q. Meng, and T. Yuan, “Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site,” Separation and Purification Technology, Vol. 98, pp. 216-220 (2012).
Lu, Y., F. Tang, Y. Wang, J. Zhao, X. Zeng, Q. Luo, and L. Wang, “Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge,” Journal of Bioscience and Bioengineering, Vol. 168, pp. 938-943 (2009).
Lee, H. H. and J. W. Yang, “A new method to control electrolytes pH by circulation system in electrokinetic soil remediation,” Journal of Hazardous Materials, Vol. 77, Vol. 3, pp. 227-240 (2000).
Lin, C., C. J. Lee, W. M. Mao, and F. Nadim, “Identifying the potential sources of di-(2-ethylhexyl) phthalate contamination in the sediment of the Houjing River in southern Taiwan,” Journal of Hazardous Materials, Vol. 161, pp. 270-275 (2009).
Lin, C. W., C. H. Wu, C. T. Tang, and S. H. Chang, “Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water,” Bioresource Technology, Vol. 124, pp. 45-51 (2012).
Lin, Y., X. Han, and J. Zhou, “Study of archaea community structure during the biodegradation process of nitrobenzene wastewater in an anaerobic baffled reactor,” International Biodeterioration and Biodegradation, Vol. 85, pp. 499-505 (2013).
Liu, H., K. Cui, F. Zeng, L. Chen, Y. Cheng, H. Li, S. Li, X. Zhou, F. Zhu, G. Ouyang, T. Luan, and Z. Zeng, “Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China,” Marine Pollution Bulletin, Vol. 84, pp. 358-365 (2014).
Liu, J., S. Liu, K. Sun, Y. Sheng, Y. Gu, and Y. Gao, “Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination,” PLoS One, Vol. 9, pp. e108249. (2014).
Liu, Y., Z. Chen, and J. Shen, “Occurrence and removal characteristics of phthalate esters from typical water sources in Northeast China,” Journal of Analytical Methods in Chemistry, Vol. 2013, pp. 1-8 (2013).
Liu, Y., Z. Chen, and J. Shen, “The occurrence of bisphenol a, phthalates, parabens and other environmental phenolic compounds in house dust: a review,” Current Organic Chemistry, Vol. 18, pp. 2182-2199 (2014).
Luo, Q., H. Wang, X. Zhang, and Y. Qian, “Effect of direct electric current on the cell surface properties of phenol-degrading bacteria,” Applied and Environmental Microbiology, Vol. 71, pp. 423-427 (2005a).
Luo, Q., X. Zhang, H. Wang, and Y. Qian, “Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics,” Chemosphere, Vol. 59, pp. 1289-1298 (2005b).
Lear, G., M. J. Harbottle, C. J. van der Gast, S. A. Jackman, C. J. Knowles, G. Sills, and I. P. Thompson, “The effect of electrokinetics on soil microbial communities,” Soil Biology and Biochemistry, Vol. 36, pp. 1751-1760 (2004).
Leja, K. and G. Lewandowicz, “Polymer biodegradation and biodegradable polymers – A review,” Polish Journal of Environmental Studies, Vol. 19, pp. 255-266 (2010).
Liou, S. H., G. C. C. Yang, C. L. Wang, and Y. H. Chiu, “Monitoring of PAEMs beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects,” Journal of Hazardous Materials, Vol. 277, pp. 169-179 (2014).
Liang, D. W., H. H. P. Fang, and T. Zhang, “Microbial characterization and quantification of an anaerobic sludge degrading dimethyl phthalate,” Journal of Applied Microbiology, Vol. 106, pp. 296-305 (2009).
Lohner, S. T. and A. Tiehm, “Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation,” Environmental Science and Technology, Vol. 43, pp. 7098-7104 (2009).
Lohner, S. T., D. Becker, K. M. Mangold, and A. Tiehm, “Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process,” Environment Science and Technology, Vol. 45, pp. 6491-6497 (2011).
Lageman, R., “Electroreclamation. applications in Netherlands,” Environmental Science and Technology, Vol. 27, pp. 2648-2650 (1993).
Leonardo, R. Di., A. Mazzola, C. D. Tramati, A. Vaccaro, and S. Vizzini, “Highly contaminated areas as sources of pollution for adjoiningecosystems: The case of Augusta Bay (Central Mediterranean),” Marine Pollution Bulletin, Vol. 89, pp. 417-426 (2014).
Landmeyer, J. E., F. H. Chapelle, H. H. Herlong, and P. M. Bradley, “Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions,” Environmental Science and Technology, Vol. 35, pp. 1118-1126 (2001).
Meng, X. Z., Y. Wang, N. Xiang, L. Chen, Z. Liu, B. Wu, X. Dai, Y. H. Zhang, Z. Xie, and R. Ebinghaus, “Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: Implication for risk assessment of sludge applied to soil,” Science of the Total Environment, Vol. 476-477, pp. 242-249 (2014).
Maini, G., A. K. Sharman, C. J. Knowles, G. Sunderland, and S. A. Jackman, “Electrokinetic remediation of metals and organics from historically contaminated soil,” Journal of Chemical Technology and Biotechnology, Vol. 75, pp. 657-664 (2000).
Mhiri, S., N. Mignard, M. Abid, F. Prochazka, J. C. Majeste, and M. Taha, “Thermally reversible and biodegradable polyglycolic-acid-based networks,” European Polymer Journal, Vol. 88, pp. 292-310 (2017).
Munin, A. and F. Edwards-Lévy, “Encapsulation of natural polyphenolic compounds: A Review,” Pharmaceutics, Vol. 3, pp. 793-829 (2011).
Minten, J., M. Adolfsson-Erici, and T. Alsberg, “Extraction and analysis of pharmaceuticals in polluted sediment using liquid chromatography mass spectrometry,” International Journal of Environmental Analytical Chemistry, Vol. 91, pp. 553-566 (2011).
Mineta, R., Z. Salehi, H. Yoshikawa, and Y. Kawase, “Oxygen transfer during aerobic biodegradation of pollutants in a dense activated sludge slurry bubble column: Actual volumetric oxygen transfer coefficient andoxygen uptake rate in p-nitrophenol degradation by acclimated waste activated sludge,” Biochemical Engineering Journal, Vol. 53, pp. 266-274 (2011).
Mrozik, A. and Z. Piotrowska-Seget, “Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds,” Microbiological Research, Vol. 165, pp. 363-375 (2010).
Mallick, S. P., K. Pal, A. Rastogi, and P. Srivastavaa, “Evaluation of poly(L-lactide) and chitosan composite scaffolds for cartilage tissue regeneration,” Designed Monomers and Polymers, Vol. 19, pp. 271-282 (2012).
McBride, M. B., Environmental Chemistry of Soils, pp. 171-172, Oxford University Press Inc., New York (1994).
Makadia, H. K. and S. J. Siegel, “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers, Vol. 3, pp. 1377-1397 (2011).
Mahdizadeh, F. and M. Eskandarian, “Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: Corrosion controlling of boilers,” Journal of Industrial and Engineering Chemistry, Vol. 20, pp. 2378-2383 (2014).
Muzzarelli, R. A. A., “Chitin,” Pergramon Press, Oxford, UK (1977).
Net, S., R. Sempere, A. Delmont, A. Paluselli, and B. Ouddane, “Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices,” Environmental Science and Technology, Vol. 49, pp. 4019-4035 (2015).
Net, S., S. Rabodonirin, R. B. Sghaier, D. Dumoulin, C. Chbib, I. Tlili, B. Ouddane, “Distribution of phthalates, pesticides and drug residues in the dissolved, particulate and sedimentary phases from transboundary rivers (France–Belgium),” Science of the Total Environment, Vol. 521-522, pp. 152-159 (2015).
Nyer, E. K., S. Fam, D. F. Kidd, P. L. Palmcr, G. Bocttcheer, T. L. Crossman, and S. S. Suthersan, “In-situ treatment,” CRC Press, Inc., Boca Raton, Florida, pp. 310-314 (1996).
Nafea, E. H., M. A. El-Massik, L. K. El-Khordagui, M. K. Marei, and N. M. Khalafallah, “Alendronate PLGA microspheres with high loading efficiency for dental applications,” Journal of Microencapsulation, Vol. 24, pp. 525-538 (2007).
Nelson, D. W. and L. E. Sommers., “Total carbon, organic carbon, and organic matter,” In: Methods of soil analysis, Part 3, Chemical methods, (Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner; Eds), pp. 1011-1069, American Society of Agronomy, Madison, WI, USA (1996).
Nagatsu, T. and S. Udenfriend, “Photometric assay of dopaminehydroxylase activity in human blood,” Clinical Chemistry, Vol. 18, pp. 980-983 (1972).
Omrani, I., N. Babanejad, H. K. Shendi, and M. R. Nabid, “Preparation and evaluation of a novel sunflower oil-based waterborne polyurethane nanoparticles for sustained delivery of hydrophobic drug,” European Journal of Lipid Science and Technology, Vol. 119, pp. 1600283 (1 of 13) (2017).
Oscar, L., “A new enzyme of general occurrence in organisms,” Science, Vol. 11, pp. 701-702 (1990).
Oyo-Ita, O. E., B. O. Ekpo, I. O. Oyo-Ita, and J. O. Offem, “Phthalates and other plastic additives in surface sediments of the cross river system, S.E. Niger Delta, Nigeria: Environmental implication,” Environmental Pollution, Vol. 3, pp. 60-72 (2014).
Ogunmwonyi, I. N., O. E. Igbinosa, O. A. Aiyegoro, and E. E. Odjadjare, “Microbial analysis of different top soil samples of selected site in Obafemi Awolowo University, Nigeria,” Scientific Research and Essay, Vol. 3, pp. 120-124 (2008).
Paar, A., S. Costa, T. Tzanov, M. Gudelj, K. H. Robra, A. Cavaco-Paulo, and G. M. Gubitz, “Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents,” Journal of Biotechnology, Vol. 89, pp. 147-153 (2001).
Park, M. A., K. A. Hwang, H. R. Lee, B. R. Yi, E. B. Jeung, and K. C. Choi, “Cell growth of BG-1 ovarian cancer cells is promoted by di-n-butyl phthalate and hexabromocyclododecane via upregulation of the cyclin D and cyclin-dependent kinase-4 genes,” Molecular Medicine Reports, Vol. 5, pp. 761-766 (2012).
Peng, W., Z. Lin, J. Chang, F. Gu, and X. Zhu, “Biomedical molecular characteristics of YBSJ extractives from Illicium Verum fruit,” Biotechnology and Biotechnological Equipment, Vol. 27, pp. 4311-4316 (2013).
Pazos, M., O. Iglesias, J. Go´ mez, E. Rosales, and M. A. Sanroma´n “Remediation of contaminated marine sediment using electrokinetic–Fenton technology,” Journal of Industrial and Engineering Chemistry, Vol. 19, pp. 932-937 (2013).
Prabhu, R. S., C. Senthil, and A. A. H. Sathali “Microballoons - from formulation to pharmaceutical design and applications,” World Journal of Pharmacy and Pharmaceutical Sciences, Vol. 5, pp. 341-352 (2016).
Prasad, B. and S. Suresh, “Biodegradation of dimethyl phthalate ester using free cells, entrapped cells of Variovorax sp. BS1 and cell free enzyme extracts: A comparative study,” International Biodeterioration and Biodegradation, Vol. 97, pp. 179-187 (2015).
Peijnenburg, W. J. G. M. and J. Struijs, “Occurrence of phthalate esters in the environment of the Netherlands,” Ecotoxicology and Environmental Safety, Vol. 63, pp. 204-205 (2006).
Qiu, Y. L., Y. Sekiguchi, S. Hanada, H. Imachi, I. C. Tseng, S. S. Cheng, A. Ohashi, H. Harada, and Y. Kamagata, “Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens,” Archives of Microbiology, Vol. 185, pp. 172-182 (2006).
Qian, Y., X. Zhou, Y. Zhang, W. Zhang, and J. Chen, “Performance and properties of nanoscale calcium peroxide for toluene removal,” Chemosphere, Vol. 91, pp. 717-723 (2012).
Rey, C., “Orthopedic biomaterials, bioactivity, biodegradation; A physical-chemical approach,” Journal of Biomechanics, Vol. 31, p. 182 (1998).
Reis, E., A. Lodolo, and S. Miertus, “Survey of sediment remediation technology,” International Centre for Science and High Technology, United Nations Industrial Development Organization, (2007).
Ruan, G., S. S. Feng, and Q. T. Li, “Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process,” Journal of Controlled Release, Vol. 3, pp. 151-160 (2002).
Raji´c, L., B. Dalmacija, M. Dalmacija, S. Ronˇcevi´c, and S. U. Perovi´, “Enhancing electrokinetic lead removal from sediment: Utilizing the moving anode technique and increasing the cathode compartment length,” Electrochimica Acta, Vol. 86 pp. 36-40 (2012).
Reddy, K. R. and P. R. Ala, “Electrokinetic remediation of metal‐contaminated field soil,” Separation Science and Technology, Vol. 40, pp. 1701-1720 (2005).
Reddy, K. R., P. R. Ala, S. Sharma, and S. N. Kumar, “Enhanced electrokinetic remediation of contaminated manufactured gas plant soil,” Engineering Geology, Vol. 85, pp. 132-146 (2006).
Reddy, K. R. and S. Chinthamreddy, “Electrokinetic remediation of heavy metal-contaminated soils under reducing environments,” Waste Management, Vol. 19, pp. 269-282 (1999).
Reddy, K. R., U. S. Parupudi, S. N. Devulapalli, and Y. C. Xu, “Effects of soil composition on the removal of chromium by electrokinetics,” Journal of Hazardous Materials, Vol. 55, pp. 135-158 (1997).
Rozas, F. and M. Castellote, “Selecting enhancing solutions for electrokinetic remediation of dredged sediments polluted with fuel,” Journal of Environmental Management, Vol. 151, pp. 153-159 (2015).
Rahner, D., G. Ludwig, and J. Röhrs, “Electrochemically induced reactions in soils - A new approach to the in-situ remediation of contaminated soils?: Part 1: the microconductor principle,” Electrochimica Acta, Vol. 47, pp. 1395-1043 (2002).
Roslev, P., K. Vorkamp, J. Aarup, K., Frederiken, and P. H. Nielsen, “Degradation of phthalate esters in an activated sludge wastewater treatment plant,” Water Research, Vol. 41, pp. 969-976 (2007).
Rushdi, A. I., A. A. Z. DouAbul, B. R. T. Simoneit, A. H. El-Mubarak, K. F. Al-Mutlaq, M. A. B. Qurban, and M. A. Goni, “Nonpolar lipid tracers in sediments from the Shatt al-Arab River of Iraq and the northwestern Arabian Gulf,” Arabian Journal of Geosciences, Vol. 7, pp. 5495-5508 (2014).
Reguera, G. and S. B. Leschine, “Chitin degradation by cellulolytic anaerobes and facultative aerobes from soils and sediments,” FEMS Microbiology Letters, Vol. 204, pp. 367-374 (2001).
Ribbons, D. W., P. Keyes, D. A. Kuna, B. F. Taylor, R. W. Etaon, and B. N. Anderson, “Microbial degradation of phthalates,” In: Microbial Degradation of Organic Compounds, Gibson, D. T. (ed.), pp. 371-397, Marcel Dekker, New York, USA (1984).
Robertson, W. J., J. P. Bowman, P. D. Franzmann, and B. J. Mee, “Desulfosporosinus meridiei sp. nov., a sporeforming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater,” International Journal of Systematic and Evolutionary Microbiology, Vol. 51, pp. 133-140 (2001).
Rezessy-Szabo, J. M., G. N. M. Huijberts, and J. A. M. de Bont, “Potential of organic solvents in cultivating microorganisms on toxic water-insoluble compounds,” In: Biocatalysis in Organic Media. Elsevier Science Publishers, Laane, C., J. Tramper, and M. D. Lilly (Eds.), pp. 295-302, Amsterdam, Netherlands (1987).
Rojas-Avelizapa, N., E. Olvera-Barrera, and L. Fernandez-Linares, “Feasibility study of bioremediation of a drilling-waste-polluted soil: Stimulation of microbial activities and hydrocarbon removal,” Journal of Environmental Science and Health Part A, Vol. 40, pp. 2189-2210 (2005).
Sha, Y., X. Xia, Z. Yang, and G. H. Huang, “Distribution of PAEs in the middle and lower reaches of the Yellow River, China,” Environmental Monitoring and Assessment, Vol. 124, pp. 277-287 (2007).
Shi, L., H. Harms, and L. Y. Wick, “Electroosmotic flow stimulates the release of alginate-bound phenanthrene,” Environmental Science & Technology, Vol. 42, pp. 2105-2110 (2008a).
Shi, L., S. Müller, H. Harms, and L. Y. Wick, “Effect of electrokinetic transport on the vulnerability of PAH-degrading bacteria in a model aquifer,” Environmental Geochemistry and Health, Vol. 30, pp. 177-182 (2008b).
Sun, J., J. Huang, A. Zhang, W. Liu, and W. Cheng, “Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime,” Journal of Hazardous Materials, Vol. 248, pp. 142-149 (2013).
Sun, J., Y. Zhang, G. Liu, X. Ning, Y. Wang, and J. Liu, “Unveiling characteristics of a bioelectrochemical system with polarity reversion for simultaneous azo dye treatment and bioelectricity generation,” Applied Microbiology and Biotechnology, Vol. 99, pp. 7295-7305 (2015).
Sun, W., Y. Li, L. R. McGuinness, S. Luo, W. Huang, L. J. Kerkhof, E. E. Mack, M. M. Häggblom, and D. E. Fennell, “Identi fi cation of anaerobic aniline-degrading bacteria at a contaminated industrial site,” Environmental Science and Technology, Vol. 49, pp. 11079 – 11088 (2015).
Suèr, P., K. Gitye, and B. Allard, “Speciation and transport of heavy metals and macroelements during electroremediation,” Environmental Science and Technology, Vol. 37, pp. 177-181 (2003).
Sung, Y., K. M. Ritalahti, R. P. Apkarian, and F. E. Loffler, “Quantification PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate,” Applied and Environmental Microbiology, Vol. 72, pp. 1980-1987 (2006).
Saiki, R. K ., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase,” Science, Vol. 239, No. 4839, pp. 487-491 (1988).
Singh, N., V. Dalal, J. K. Mahto, and P. Kumar, “Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog,” Journal of Hazardous Materials, Vol. 338, pp. 11-22 (2017).
Sirén, E. K., M. P. P. Haapasalo, T. M. T. Waltimo, and D. Ørstavik, “In vitro antibacterial effect of calcium hydroxide combined with chlorhexidine or iodine potassium iodide on Enterococcus faecalis,” European Journal of Oral Sciences, Vol. 112, pp. 326-331 (2004).
Sandor, M., A. Riechel, I. Kaplan, and E. Mathiowitz, “Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres,” Biochimica et Biophysica Acta, Vol. 1570, pp. 63-74 (2002).
Sarkar, J., P. P. Chowdhury, and T. K. Dutta, “Complete degradation of di-n-octyl phthalate by Gordonia sp. strain Dop5,” Chemosphere, Vol. 90, pp. 2571-2577 (2013).
Seeley Jr., H. W. and P. J. vanDemark, “Microbes in Action. A Laboratory Manual of Microbiology, Third ed.,” W. H. Freeman and Company, USA (1981).
Semple, K. T., K. J. Doick, K. C. Jones, P. Burauel, A. Craven, and H. Harms, “Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated,” Environmental Science and Technology, Vol. 38, pp. 228A-231A (2004).
Sibali, L. L., J. O. Okonkwo, R. I. Mccrindle, “Determination of selected phthalate esters compounds in water and sediments by capillary gas chromatography and flame ionization detector,” Journal of Environmental Science and Health, Part A, Vol. 48, pp. 1365-1377 (2013).
Simoni, S. F., A. Schäfer, H. Harms, and A.J. Zehnder, “Factors affecting mass transfer limited biodegradation in saturated porous media,” Journal of Contaminant Hydrology, Vol. 50, pp. 99-120 (2001).
Saichek, R. E. and K. R. Reddy, “Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review,” Critical Reviews in Environmental Science and Technology, Vol. 35, pp. 115-192 (2005).
Shapiro, A. P. and R. E. Probstein, “Removal of contaminants from saturated clay by electroosmosis,” Environmental Science and Technology, Vol. 27, pp. 283-291 (1993).
Shelton, D. R., S. A. Boyd, and J. M. Tledje, “Anaerobic biodegradation of phthalic acid esters in sludge,” Environmental Science and Technology, Vol. 18, pp. 93-97 (1984).
Sturman, P. J., P. S. Stewart, A. B. Cunningham, E. J. Bouwer, and J. H. Wolfram, “Engineering scale-up of in situ bioremediation processes: A review,” Journal of Contaminant Hydrology, Vol. 19, pp. 171-203 (1995).
Selvaraj, K. K., G. Sundaramoorthy, P. K. Ravichandran, G. K. Girijan, S. Sampath, and B. R. Ramaswamy, “Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations,” Environmental Geochemistry and Health, Vol. 37, pp. 83-96 (2015).
Tang, W. J., L. S. Zhang, Y. Fang, Y. Zhou, and B. C. Ye, “Biodegradation of phthalate esters by newly isolated Rhizobium sp. LMB-1 and its biochemical pathway of di-n-butyl phthalate,” Journal of Applied Microbiology, Vol. 121, pp. 177-186 (2016).
Teng, W., F. Jia, H. Han, Z. Qin, Q. Jin, and J. Ji, “Polyamino acid-based gemcitabine nanocarriers for targeted intracellular drug delivery,” Polymer Chemistry, Vol. 8, pp. 2490-2498 (2017).
Tamber, H., P. Johansen, H. P. Merkle, and B. Gander, “Formulation aspects of biodegradable polymeric microspheres for antigen delivery,” Advanced Drug Delivery Reviews, Vol. 57, pp. 357-376 (2005).
Tarhan, L., “Use of immobilised catalase to remove H2O2 used in the sterilisation of milk,” Process Biochemistry, Vol. 30, pp. 623-628 (1995).
Thöming, J., B. K. Kliem, and L. M. Ottosen, “Electrochemically enhanced oxidation reactions in sandy soil polluted with mercury,” Science of the Total Environment, Vol. 261, pp. 137-147 (2000).
Thepsithar, P. and E. P. L. Roberts, “Removal of phenol form contaminated kaolin using electrokinetically enchanced in situ chemical oxidation,” Environmental Science and Technology, Vol. 40, pp. 6098-6103 (2006).
Tolaimatea, A., J. Desbrie`res, M. Rhazia, A. Alaguic, M. Vincendond, and P. Votterod, “On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin,” Polymer, Vol. 41, pp. 2463-2469 (2000).
Triky-Dotan, S., M. Ofek, M. Austerweil, B. Steiner, D. Minz, J. Katan, and A. Gamliel, “Microbial aspects of accelerated degradation of metam sodium in soil,” Disease Control and Pest Management, Vol. 100, pp. 367-375 (2010).
Trusek-Holownia, A. and A. Noworyta, “Catalase immobilized in capsules in microorganisms removal from drinking water, milk, and beverages,” Desalination and Water Treatment, Vol. 55, pp. 2721-2727 (2015).
USEPA “Bioremediation in the Field, No. 4 (EPA/540/2-91/027)” Office of Solid Waste and Emergency Response (December 1991), pp. 1-28, Washington, DC, USA (1991).
USEPA, “Abstracts of Remediation Case Studies (EPA/542/R/92-001),” Federal Remediation Technologies Roundtable (March 1995), pp. 92-93, US Government Printing Office, Washington, DC, USA (1995).
USEPA, “Clean up technologies,” Superfund of United States Environmental Protection Agency, http://www.epa.gov/remedytech/. Accessed 15 June 2015 (2015).
Virkutyte, J., M. Sillanpää, and P. Latostenmaa, “Electrokinetic soil remediation-critical overview,” Science of the Total Environment, Vol. 289, pp. 97-121 (2002).
Virkutyte, J., M. Sillanpää, P. Latostenmaa, and J. Martisius, “Electrode layout and process kinetics of electroremoval of copper from sand,” International Journal of Surface Mining, Reclamation and Environment, Vol. 18, pp. 220-231 (2004).
Venkatesana, J., S. Anil, S. K. Kim, and M. S. Shim, “Aeaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery,” Polymers, Vol. 8, pp. 30-55 (2016).
Wu, D., Q. Mahmood, L. Wu, and P. Zheng, “Activated sludge-mediated biodegradation of dimethyl phthalate under fermentative conditions,” Journal of Environmental Sciences, Vol. 20, pp. 922-926 (2008).
Wu, D., Q. Mahmood, P. Zheng, and M. J. Hassan, “Isolation and physiology of a dimethyl phthalate degrading bacterial strain YZ2,” Environmental Progress, Vol. 26, pp. 384-390 (2007).
Wada, T. and N. Koga, “Chemical composition of sodium percarbonate: An inquiry-based laboratory exercise,” Journal of Chemical Education, Vol. 90, pp. 1048-1052 (2013).
Wada, T., M. Nakano, and N. Koga, “Multistep kinetic behavior of the thermal decomposition of granular sodium percarbonate: hindrance effect of the outer surface layer,” Journal of Physical Chemistry A, Vol. 119, pp. 9749-9760 (2015).
Wams, T. J., “Diethylhexylphthalate as an environmental contaminant-A review,” Science of the Total Environment, Vol. 66, pp. 1-16 (1987).
Wang, I., T. L. Wang, J. H. Cheng, C. K. Fan, and K. W. Ju, “Electrokinetics enhancement for copper removal in groundwater at an electronic manufacturer,” The 9th Symposium on Electrokinetic Remediation (EREM 2010), Kaohsiung, Taiwan, July 27-30 (2010).
Wang, J., K. M. Chua, and C. H. Wang, “Stabilization and encapsulation of human immunoglobulin G into biodegradable microspheres,” Journal of Colloid and Interface Science, Vol. 271, pp. 92-101 (2004).
Wang, J., L. Bo, L. Li, D. Wang, G. Chen, P. Christie, and Y. Teng, “Occurrence of phthalate esters in river sediments in areas with different land use patterns,” Science of the Total Environment, Vol. 500-501, pp. 113-119 (2014).
Wang, J. L., L. J. Chen, H. C. Shi, and Y. Qian, “Microbial degradation of phthalic acid esters under anaerobic digestion of sludge,” Chemosphere, Vol. 41, pp. 1245-1248 (2000).
Wang, J., M. Y. Zhang, T. Chen, Y. Zhu, Y. Teng, Y. M. Luo, and P. Christie, “Isolation and identification of a di-(2-ethlhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil,” Pedosphere, Vol. 25, pp. 202-211 (2015).
Wang, J., P. Liu, H. Shi, and Y. Qian, “Kinetics of phthalic acid ester degradation by acclimated activated sludge,” Process Biochemistry, Vol. 32, pp. 567-571 (1997).
Wang, J. W., W. Xu, T. H. Zhong, G. Y. He, and Z. H. Luo, “Degradation of dimethyl phthalate esters by a filamentous fungus Aspergillus versicolor isolated from deep-sea sediments,” Botanica Marina, Vol. 60, pp. 351-359 (2017).
Wang, L., G. Chen, J. Zhao, and N. Cai, “Catalase immobilization on amino-activated Fe3O4@SiO2 nanoparticles: Loading density affected activity recovery of catalase,” Journal of Molecular Catalysis B: Enzymatic, Vol. 133, pp. S468-S474 (2016).
Wang, P., S. L. Wang, and C. Q Fan, “Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a metropolitan city, Nanjing, East China,” Chemosphere, Vol. 72, 1567-1572 (2008).
Wang, W., Y. Zhang, S. Wang, C. Q. Fan, and H. Xu, “Distributions of phthalic esters carried by total suspended particulates in Nanjing, China,” Environmental Monitoring and Assessment, Vol. 184, pp. 6789-6798 (2012).
Wang, Y., B. Miao, D. Hou, X. Wu, and B. Peng, “Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp. ZH2 strain,” Process Biochemistry, Vol. 47, pp. 936-940 (2012).
Wang, Y., P. Li, T. T. D. Tran, J. Zhang, and L. Kong, “Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer,” Nanomaterials, Vol. 6, pp. 26-44 (2016).
Wang, Y., T. Sun, Y. Zhang, B. Chaurasiya, L. Huang, X. Liu, J. Tu, Y. Xiong, and C. Sun, “Exenatide loaded PLGA microspheres for long-acting antidiabetic therapy: preparation, characterization, pharmacokinetics and pharmacodynamics,” RSC Advances, Vol. 6, pp. 37452-37462 (2016).
Wang, Z., Y. Yang, W. Sun, S. Xie, and Y. Liu, “Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms,” Ecotoxicology and Environmental Safety, Vol. 106, pp. 1-5 (2014).
Wang, Z., Z. Ye, M. Zhang, and X. Bai, “Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter,” Process Biochemistry, Vol. 45, pp. 993-1001 (2010).
Wick, L. Y., “Coupling electrokinetics to the bioremediation of organic contaminants: Principles and fundamental interactions,” In: Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, Reddy, K. R. and C. Cameselle (eds.), Chaper 18, pp. 369-387, John Wiley and Sons, New Jersey, USA (2009).
Wick, L.Y., F. Buchholz, I. Fetzer, S. Kleinsteuber, C. Härtig, L. Shi, A. Miltner, H. Harms, and G. N. Pucci, “Responses of soil microbial communities to weak electric fields,” Science of the Total Environment. Vol. 408, pp. 4886-4893 (2010).
Wick, L. Y., L. Shi, and H. Harms, “Electro-bioremediation of hydrophobic organic soil-contaminants: A review of fundamental interactions,” Electrochimica Acta, Vol. 52, pp. 3441-3448 (2007).
Watts, R. J. and A. L. Teel, “Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations–CHP) for in situ soil and groundwater remediation,” Journal of Environmental Engineering, Vol. 131, pp. 612-622 (2005).
Watts, R. J., M. K. Foget, S. H. Kong, and A. L. Teel, “Hydrogen peroxide decomposition in model subsurface systems,” Journal of Hazardous Materials, Vol. B69, pp. 229-243 (1999).
Weert, M., J. Hoechstetter, W. E. Hennink, and D. J. Crommelin, “The effect of a water/organic solvent interface on the structural stability of lysozyme,” Journal of Controlled Release, Vol. 68, pp. 351-359 (2000).
Wilson, L. P. and E. J. Bouwer, “Lime requirement of acidic queensland soils. I. Relationships between soil properties and pH buffer capacity,” Australian Journal of Soil Research, Vol. 28, pp. 695-701 (1990).
Wilson, L. P. and E. J. Bouwer, “Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: A review,” Journal of Industrial Microbiology and Biotechnology, Vol. 18, pp. 116-130 (1997).
Xu, R. K., A. Z. Zhao, J. H. Yuan, and J. Jiang, “pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars,” Journal of Soils and Sediments, Vol. 12, pp. 494-502 (2012).
Xu, X. R., H. B. Li, and J. D. Gu, “Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1,” International Biodeterioration and Biodegradation, Vol. 55, pp. 9-15 (2005).
Xu, X. R., H. B. Li, J. D. Gu, and X. Y. Li, “Kinetics of n-butyl benzyl phthalate degradation by a pure bacterial culture from the mangrove sediment,” Journal of Hazardous Materials, Vol. 140, pp. 194-199 (2007).
Xia, X., L. Yang, Q. Bu, and R. Liu, “Levels, distribution, and health risk of phthalate esters in urban soils of Beijing, China,” Journal of Environmental Quality, Vol. 40, pp. 1643-1651 (2011).
Ye, M., S. Kim, and K. Park, “Issues in long-term protein delivery using biodegradable microparticles,” Journal of Controlled Release, Vol. 146, pp. 241-260 (2010).
Yu, J. W. and I. Neretnieks, “Theoretical evaluation of a technique for electrokinetic decontamination of soils,” Journal of Contaminant Hydrology, Vol. 26, pp. 291-299 (1997).
Yan, F. and D. Reible, “Electro-bioremediation of contaminated sediment by electrode enhanced capping,” Journal of Environmental Management, Vol. 155, pp. 154-161 (2015).
Yan, F., W. Chen, and D. Reible, “Electrochemical stimulation of PAH biodegradation in sediment,” Soil and Sediment Contamination, Vol. 24, pp. 143-156 (2015).
Yan, T., H. Zhang, D. Huang, S. Feng, M. Fujita, and X. D. Gao, “Chitosan-functionalized graphene oxide as a potential immunoadjuvant,” Nanomaterials, Vol. 7, pp. 59-69 (2017).
Yan, Z., N. Song, H. Cai, J. H. Tay, and H. Jiang, “Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide,” Journal of Hazardous Materials, Vol. 199–200, pp. 217-225 (2012).
Yang, G. C. C., C. H. Yen, and C. L. Wang, “Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City,” Journal of Hazardous Materials, Vol. 277, pp. 53-61 (2014b).
Yang, G. C. C., C. L. Wang, and Y. H. Chiu, “Occurrence and distribution of phthalate esters and pharmaceuticals in Taiwan river sediments,” Journal of Soils and Sediments, Vol. 15, pp. 198-210 (2015).
Yang, G. C. C., S. C. Huang, C. L. Wang, and Y. S. Jen, “Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite,” Chemosphere, Vol. 159, pp. 282-292 (2016b).
Yang, G. C. C., S. C. Huang, Y. S. Jen, and P. S. Tsai, “Remediation of phthalates in river sediment by integrated enhanced bioremediation,” Chemosphere, Vol. 150, pp. 576-585 (2016a).
Yang, G. C. C., S. H. Liou, and C. L. Wang, “The influences of storage and further purification on residual concentrations of pharmaceuticals and phthalate esters in drinking water,” Water, Air, and Soil Pollution, Vol. 225, pp. 1968-1979 (2014a).
Yang, G. C. C., Y. H. Chiu, and, C. L. Wang, “Integration of electrokinetic process and nano-Fe3O4/S2O82- oxidation process for remediation of phthalate esters in river sediment,” Electrochimica Acta, Vol. 181, pp. 217-227 (2015).
Yang, X. Y., C. Zhang, Z. He, X. Hu, J. Guo, Q. Zhong, J. Wang, L. Xiong, and D. Liu, “Isolation and characterization of two n-butyl benzyl phthalate degrading bacteria,” International Biodeterioration and Biodegradation, Vol. 76, pp. 8-11 (2013).
Yuan, S. Y., C. Liu, C. S. Liao, and B. V. Chang, “Occurrence and microbial degradation of phthalate esters in Taiwan river sediments,” Chemosphere, Vol. 49, pp. 1295-1299 (2002).
Yuan, S. Y., I. C. Huang, and B. V. Chang, “Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment,” Journal of Hazardous Materials, Vol. 184, pp. 826-831 (2010).
Zhao, L., H. Hou, K. Iwasaki, A. Terada, and M. Hosomi, “Removal of PCDD/Fs from contaminated sediment and released effluent gas by charcoal in a proposed cost-effective thermal treatment process,” Chemosphere, Vol. 93, pp. 1456-1463 (2013).
Zhou, D. M., L. Cang, A. N. Alshawabkeh, Y. J. Wang, and X. Z. Hao, “Pilot-scale electrokinetic treatment of a Cu contaminated red soil,” Chemosphere, Vol. 63, pp. 946-971 (2006).
Zhang, Y. H., C. M. Xue, and C. H. Guo, “Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater,” Procedia Environmental Sciences, Vol. 10, pp. 1668-1673 (2011).
Zurmühl, T., “Development of a method for the determination of phthalate esters in sewage sludge including chromatographic separation from polychlorinated biphenyls, pesticides and polyaromatic hydrocarbons,” Analyst, Vol. 115, pp. 1171-1174 (1990).
王振熙,「微膠囊與微膠囊包覆技術」,微觀化學工程專刊,第42卷,第2期,第28-40頁 (1995)。
王雅琪,「以幾丁聚醣包覆四環素對藥物控制釋放之研究」,碩士學位論文,中原大學醫學工程學系,桃園市 (2002)。
任雁琳,「四溴雙酚A在河底泥中生物降解之研究」,碩士學位論文,東吳大學微生物學系,台北市 (2010)。
行政院經濟部工業局,「工廠土壤及地下水污染整治技術手冊-生物處理技術」,台北市 (2004)。
行政院經濟部工業局,「工廠土壤及地下水污染整治技術手冊-石化業」,台北市 (2003)。
吳奎燁,「明膠與 PLGA摻混之生醫材料在藥物釋放的應用」,碩士學位論文,國立雲林科技大學化學工程與材料工程系,雲林縣 (2013)。
吳裕民,「以植生復育技術處理受戴奧辛及汞污染土壤之研究」,博士學位論文,國立中山大學海洋環境及工程學系,高雄市 (2013)。
李昱寬,「愛河沉積物中多環芳香烴化合物、鄰苯二甲酸酯類及烷基苯酚之分布」,碩士學位論文,國立高雄海洋科技大學海洋環境工程研究所,高雄市 (2012)。
李俊璋、田倩蓉及孫逸民,「103-104年度毒性化學物質環境流布背景調查計畫 (第二年)」,行政院環境保護署計畫研究報告 (2015)。
車明道、薛威
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code