Responsive image
博碩士論文 etd-0113114-131714 詳細資訊
Title page for etd-0113114-131714
論文名稱
Title
離子感測場效應電晶體與微流體晶片平面化封裝技術及其於酸鹼與流速感測之應用
Planar Packaging Technology for Integrating ISFET IC and Microfluidic Chip and Its Applications in pH and Flow Rate Measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-12-13
繳交日期
Date of Submission
2014-02-14
關鍵字
Keywords
酸鹼感測計、離子感測場效電晶體、微流道、封裝、氧氣電漿、流速計
flow meter, pH meter, oxygen plasma, packaging, ion-sensitive field effect transistors
統計
Statistics
本論文已被瀏覽 5700 次,被下載 486
The thesis/dissertation has been browsed 5700 times, has been downloaded 486 times.
中文摘要
本研究開發一個封裝製程技術,整合離子感測場效電晶體與微流體晶片,並創造出平坦化的微流道,本研究更進一步將晶片應用在酸鹼與流體流速量測。除此之外,晶片透過氧氣電漿處理,可提高酸鹼量測之效能和量測範圍。本論文提出一個創新的平面化封裝製程,將離子感測場效電晶體與微流道整合。但將電晶體晶片封裝於微流體流道內是一個挑戰,因電晶體晶片尺寸小,所以容易造成微流體流道液體洩漏。本研究開發的平面封裝製程,將晶片放置在印刷電路板所刻出的孔洞內,並用PDMS為封裝材料去做填補。結果顯示晶片和周圍PDMS的交界處,此高低落差低於5 μm,故微流體流道在平面封裝進行過程,達到密封且流體不外洩。在pH測量的研究中,使用的離子感測場效電晶體透過台積電標準製程(0.35 μm, 2P4M)製作,並成功地利用簡單的後處理,解決了自然氧化氧化鋁感測薄膜在酸鹼量測中受到破壞的問題。本研究利用氧氣電漿,增加氧化鋁層的緻密度,使pH值測量範圍獲得提升,從pH 6 ~ 8提升至pH 4 ~ 10。最佳的氧電漿處理參數為100 W且時間為20 min,量測線性度達0.9892。除此之外,在流速應用的研究中,離子感測場效電晶體與微流道的整合晶片,可用於流速緩慢之流體流速量測,流體種類包括丙酮、乙醇、甘油、去離子水和離子溶液等。結果顯示,此流速計的量測範圍在66到1700 μm/s之間,且具有不錯的再現性。本研究所開發的平面化封裝製程可以在40 min內完成,此研究提供了一種簡單而有效的封裝方法,將積體電路晶片整合至微流體系統中,並應用於pH計和流速計上。
Abstract
This study developed a fast and microfluidic planarization packaging process that integrates the microfluidic systems and solid-state ISFET. It applies not only in flow measurement, but also improves the measurements in pH by oxygen plasma treatment. This study presents a solid-state ISFET IC fabricated with an innovative planar packaging process. It is a challenge to integrate a CMOS chip with the microfluidic channel since the physical dimension of the CMOS chip may cause the leakage during packaging with microfluidic channel. This study develops a planar packaging process which uses PDMS as the adhesive to embed the IC chip in a cavity over the PCB. Result shows that the height variation between the IC chip and the surrounding PDMS was less than 5 μm such that microfluidic channel can be sealed without leakage with the developed planar package process. In this study of pH measurement, the ISFET IC was fabricated with a standard 0.35 μm 2P4M foundry process by TSMC, and it successes to use a simple post-treatment to solve the damage problem of native Al2O3 sensing membrane. Through the oxygen plasma treatment, it increases the thickness of the Al2O3 layer so that the measurement of pH range improves from pH 6~8 to pH 4~10. The best parameters of oxygen plasma treatment is that the power is 100 W for 20 minutes, and the linearity of the measurement is 0.9892. Additionally, in the study of flow rate measurement, the sealed ISFET chip is used for measuring the flow rate of solutions including acetone, ethanol, glycerol, DI water and ion solution of slow flow rate. Results show that the flow rate measurement exhibited good reproducibility in the flow rate ranging from 66 to 1700 μm/s. Moreover, the whole packaging process can be achieved in 40 min. The developed method provides a simple yet efficient method to integrate CMOS IC chip with microfluidic systems to apply in pH meter and flow meter.
目次 Table of Contents
中文摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
符號表 x
簡寫表 xi
第一章 緒論 1
1-1 前言 1
1-2 離子感測場效酸鹼感測器 2
1-2-1 ISFET離子感測場效電晶體 2
1-2-2 EGFET延伸式閘極離子感測場效電晶體 4
1-3 CMOS IC與微流體系統封裝 6
1-4 微流體流速計之介紹 9
1-5 論文架構 13
1-6 研究動機與目的 14
第二章 材料特性與理論基礎 15
2.1 離子感測場效電晶體量測原理 15
2.2 吸附鍵結與電雙層模型 16
2.3 參考電極 20
第三章 封裝製程與實驗架設 21
3.1 ISFET pH量測 21
3.1.1本研究使用之ISFET IC 21
3.1.2 CMOS ISFET之pH量測架設 23
3.2微流體系統與CMOS ISFET IC封裝製程 24
3.2.1 PDMS微流道製作 24
3.2.2 CMOS ISFET IC與微流道平坦化封裝製程 25
3.3 ISFET流速計量測 28
3.3.1本次流速計實驗使用的ISFET IC 28
3.3.2流速感測器量測架設 29
第四章 結果與討論 31
4.1 無氧電漿處理ISFET鋁感測薄膜酸鹼量測之受損分析 31
4.2氧氣電漿處理後對於ISFET鋁感測薄膜酸鹼量測影響 35
4.3氧電漿處理時間長短與酸鹼量測的關係 38
4.4 CMOS ISFET IC與微流道封裝平整度量測 44
4.5無離子極性溶液在微流體晶片內流速量測 46
4.5.1 乙醇在微流體晶片內流速量測 46
4.5.2 甘油在微流體晶片內流速量測 49
4.5.3 異丙醇、丙酮、乙二醇之流速量測 50
4.6 同參考電壓下,多種溶液流速量測比較 52
4.7 同參考電壓下,多種溶液在靜止狀態起始電流值 53
4.8 乙醇濃度測量 54
4.9 去離子水在微流體晶片內的流速量測 55
4.10 電解質溶液在微流體晶片內的流速量測 56
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 61
參考文獻 62
參考文獻 References
[1] V. Poirier, "Blood flow meter," ed: WO Patent 2,010,099,293, 2010.
[2] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," Biomedical Engineering, IEEE Transactions on, pp. 70-71, 1970.
[3] Y.L. Chin, J.C. Chou, T.P. Sun, W.Y. Chung, and S.K. Hsiung, "A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process," Sensors and Actuators B: Chemical, vol. 76, pp. 582-593, 2001.
[4] K.S. Johnson, Y.Gu, T.R. Martz, and S.C. Riser, "Development of an integrated ISFET pH sensor for high pressure applications in the deep-sea," DTIC Document2011.
[5] M.N. Niu, X.F. Ding, and Q.Y. Tong, "Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs," Sensors and actuators. B, Chemical, vol. 37, pp. 13-17, 1996.
[6] Z. Baccar, N. Jaffrezic-renault, C. martelet, H. jaffrezic, G. Marest, and A. Plantier, "K+-ISFET type microsensors fabricated by ion implantation," Materials chemistry and physics, vol. 48, pp. 56-59, 1997.
[7] D.H. Kwon, B.W. Cho, C.S. Kim, and B.K. Sohn, "Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET," Sensors and Actuators B: Chemical, vol. 34, pp. 441-445, 1996.
[8] Y. Sanada, T. Akiyama, Y. Ujihira, and E. Niki, "Preparation of Na+-selective electrodes by ion-implantation of lithium and silicon into single-crystal alumina wafer and its application to the production of ISFET," Fresenius' Journal of Analytical Chemistry, vol. 312, pp. 526-529, 1982.
[9] J. Chou and C. Weng, "Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET," Materials Chemistry and Physics, vol. 71, pp. 120-124, 2001.
[10] A. Bratov, N. Abramova, C. Domı́nguez, and A. Baldi, "Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk," Analytica chimica acta, vol. 408, pp. 57-64, 2000.
[11] S.K. Lee, YS. Sohn, and S.Y. Choi, "Fabrication Characteristics of Al2O3 pH-Ion Sensitive Field Effect Transistor Fabricated Using Atomic Layer Deposition and Sputter," Sensor Letters, vol. 9, pp. 3-6, 2011.
[12] S.K. Lee and S.Y. Choi, "Improvement of Drift Characteristic to Continuously Measure Al2O3 pH-ISFET with the Protective Structure," in Meeting Abstracts, 2010, pp. 38-38.
[13] C.E. Lue, T.C. Yu, C.M. Yang, D. G. Pijanowska, and C.S. Lai, "Optimization of urea-EnFET based on Ta2O5 layer with post annealing," Sensors, vol. 11, pp. 4562-4571, 2011.
[14] C.E. Lue, C.S. Lai, I. Wang, and C.M. Yang, "Sensitivity of trapping effect on Si3N4 sensing membrane for ion sensitive field effect transistor/reference field effect transistor pair application," Sensor Letters, vol. 8, pp. 725-729, 2010.
[15] R. R. Jarmin, L. Y. Khuan, H. Hashim, A. Ahmad, and M. Mazzuan, "A new PSpice macro model for electrolyte insulator interface based Si3N4 Field Effect transistor responsive to H+ ion concentration for biomedical sensor," in Biomedical Engineering and Sciences (IECBES), 2010 IEEE EMBS Conference on, 2010, pp. 505-508.
[16] C. Cane, A. Götz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, et al., "Multilayer ISFET membranes for microsystems applications," Sensors and Actuators B: Chemical, vol. 35, pp. 136-140, 1996.
[17] A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, "Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane," Talanta, vol. 58, pp. 351-357, 2002.
[18] B. Premanode and C. Toumazou, "A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis," Sensors and Actuators B: Chemical, vol. 120, pp. 732-735, 2007.
[19] C.S. Lee, S.K. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors, vol. 9, pp. 7111-7131, 2009.
[20] A. Topkar and R. Lal, "Effect of electrolyte exposure on silicon dioxide in electrolyte-oxide-semiconductor structures," Thin Solid Films, vol. 232, pp. 265-270, 1993.
[21] B. Liu, Y. Su, and S. Chen, "Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing," International Journal of Electronics Theoretical and Experimental, vol. 67, pp. 59-63, 1989.
[22] T. Matsuo and M. Esashi, "Methods of ISFET fabrication," Sensors and Actuators, vol. 1, pp. 77-96, 1981.
[23] L. Bousse, S. Mostarshed, B. van der Schoot, and N. De Rooij, "Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators," Sensors and Actuators B: Chemical, vol. 17, pp. 157-164, 1994.
[24] R. Smith and D. Scott, "An integrated sensor for electrochemical measurements," Biomedical Engineering, IEEE Transactions on, pp. 83-90, 1986.
[25] R. Vanhal, P. Bergveld, and J. Engbersen, "Fabrication and packaging of mesa ISFETs," Sensors and Materials, vol. 8, pp. 455-468, 1996.
[26] M. Grattarola, G. Massobrio, and S. Martinoia, "Modeling KP-Sensitive FET's with SPICE," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 39, 1992.
[27] 武世香, 虞惇, and 王貴華, "化學量傳感器," 第四講離子敏場效應電晶體及其應用 九 ISFET 的基本量測電路, 傳感器技術技術講座, 哈爾濱工業大學, 1991.
[28] S. Collins, "Practical limits for solid-state reference electrodes," Sensors and Actuators B: Chemical, vol. 10, pp. 169-178, 1993.
[29] A. Mroz, "Disposable reference electrode," Analyst, vol. 123, pp. 1373-1376, 1998.
[30] W. Olthuis, J. Luo, B. Van der Schoot, J. Bomer, and P. Bergveld, "Dynamic behaviour of ISFET-based sensor-actuator systems," Sensors and Actuators B: Chemical, vol. 1, pp. 416-420, 1990.
[31] L. Bousse, D. Hafeman, and N. Tran, "Time-dependence of the chemical response of silicon nitride surfaces," Sensors and Actuators B: Chemical, vol. 1, pp. 361-367, 1990.
[32] Y. Kato, K. Yoshikawa, and M. Kitora, "Temperature-dependent dynamic response enables the qualification and quantification of gases by a single sensor," Sensors and Actuators B: Chemical, vol. 40, pp. 33-37, 1997.
[33] W. Gui-Hua, Y. Dun, and W. Yao-Lin, "ISFET temperature characteristics," Sensors and actuators, vol. 11, pp. 221-237, 1987.
[34] L. Bousse and P. Bergveld, "The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs," Sensors and Actuators, vol. 6, pp. 65-78, 1984.
[35] T. Katsube, T. Araki, M. Hara, T. Yaji, S. Kobayashi, and K. Suzuki, "A multi-species biosensor with extended-gate field effect transistors," in Proceedings of the 6th Sensor Symposium, Tokyo, Japan, 1986, pp. 211-214.
[36] 孫台平, "Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate," 2000.
[37] Y.L. Chin, J.C. Chou, Z.C. Lei, T.P. Sun, W.Y. Chung, and S.K. Hsiung, "Titanium nitride membrane application to extended gate field effect transistor pH sensor using VLSI technology," Japanese Journal of Applied Physics, vol. 40, p. 6311, 2001.
[38] J. Stoof and J. Kebabian, "Two dopamine receptors: biochemistry, physiology and pharmacology," Life sciences, vol. 35, pp. 2281-2296, 1984.
[39] H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, "Integrated cell manipulation system—CMOS/microfluidic hybrid," Lab on a Chip, vol. 7, pp. 331-337, 2007.
[40] S.Y. Yang, F.Y. Cheng, C.S. Yeh, and G.B. Lee, "Size-controlled synthesis of gold nanoparticles using a micro-mixing system," Microfluidics and Nanofluidics, vol. 8, pp. 303-311, 2010.
[41] M.S. Munson and P. Yager, "Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer," Analytica Chimica Acta, vol. 507, pp. 63-71, 2004.
[42] S.Y. Yang, S.K. Hsiung, Y.C. Hung, C.M. Chang, T.L. Liao, and G.B. Lee, "A cell counting/sorting system incorporated with a microfabricated flow cytometer chip," Measurement Science and Technology, vol. 17, p. 2001, 2006.
[43] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006.
[44] M.U. Kopp, A.J. De Mello, and A. Manz, "Chemical amplification: continuous-flow PCR on a chip," Science, vol. 280, pp. 1046-1048, 1998.
[45] J. S. Shim, A. W. Browne, and C. H. Ahn, "An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer," Biomedical microdevices, vol. 12, pp. 949-957, 2010.
[46] W. W. Chow, K. F. Lei, G. Shi, W. J. Li, and Q. Huang, "Microfluidic channel fabrication by PDMS-interface bonding," in Microelectronics, MEMS, and Nanotechnology, 2004, pp. 141-148.
[47] P. Skafte-Pedersen, D. Sabourin, M. Dufva, and D. Snakenborg, "Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay," Lab on a Chip, vol. 9, pp. 3003-3006, 2009.
[48] J. BurmáKyong and E. KyuáLee, "Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy," Analyst, vol. 130, pp. 1009-1011, 2005.
[49] J. D. Qiu, L. Wang, R. P. Liang, and J. W. Wang, "Microchip CE analysis of amino acids on a titanium dioxide nanoparticles‐coated PDMS microfluidic device with in‐channel indirect amperometric detection," Electrophoresis, vol. 30, pp. 3472-3479, 2009.
[50] E. Ghafar-Zadeh, M. Sawan, and D. Therriault, "Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results," Sensors and Actuators A: Physical, vol. 134, pp. 27-36, 2007.
[51] Y.H. Wang, C.Y. Lee, and C.M. Chiang, "A MEMS-based air flow sensor with a free-standing micro-cantilever structure," Sensors, vol. 7, pp. 2389-2401, 2007.
[52] A. Kuoni, R. Holzherr, M. Boillat, and N. F. de Rooij, "Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor," Journal of Micromechanics and Microengineering, vol. 13, p. S103, 2003.
[53] Y. Yeh and H. Cummins, "Localized Fluid Flow Measurements with AN He-Ne Laser Spectrometer," Applied Physics Letters, vol. 4, pp. 176-178, 1964.
[54] R. Berger, C. Gerber, H. Lang, and J. Gimzewski, "Micromechanics: A toolbox for femtoscale science:“Towards a laboratory on a tip”," Microelectronic engineering, vol. 35, pp. 373-379, 1997.
[55] V. Lien and F. Vollmer, "Microfluidic flow rate detection based on integrated optical fiber cantilever," Lab on a Chip, vol. 7, pp. 1352-1356, 2007.
[56] L. Schöler, B. Lange, K. Seibel, H. Schäfer, M. Walder, N. Friedrich, et al., "Monolithically integrated micro flow sensor for lab-on-chip applications," Microelectronic engineering, vol. 78, pp. 164-170, 2005.
[57] L. Qiu, S. Hein, E. Obermeier, and A. Schubert, "Micro gas-flow sensor with integrated heat sink and flow guide," Sensors and Actuators A: Physical, vol. 54, pp. 547-551, 1996.
[58] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," J. Chem. Soc., Faraday Trans. 1, vol. 70, pp. 1807-1818, 1974.
[59] C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor," Electron Devices, IEEE Transactions on, vol. 33, pp. 8-18, 1986.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code