Responsive image
博碩士論文 etd-0113114-163332 詳細資訊
Title page for etd-0113114-163332
論文名稱
Title
玻璃光纖研磨製程參數之研究
A Study of the Process Parameters in Grinding a Glass Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-23
繳交日期
Date of Submission
2014-02-13
關鍵字
Keywords
影像輔助、光纖、接觸點、座標轉移、接觸力、大變形懸臂樑
Vision Assistant, Coordinate Transformation, Contact Point, Glass Fiber, Large Deflection of Cantilever Beam, Contact Force
統計
Statistics
本論文已被瀏覽 5771 次,被下載 714
The thesis/dissertation has been browsed 5771 times, has been downloaded 714 times.
中文摘要
光纖微透鏡與纖核(Fiber Core)的偏心量(Offset)如果高於0.6μm,耦光效率會再降低50%。光纖研磨時的起始接觸點、以及接觸力是影響光纖端面偏心量的重要因素之一,本研究提出以影像輔助的方式尋找光纖與研磨片的起始接觸點,利用前述的方法尋找光纖起始接觸點的再現性為0.3μm。同時本文提出以大變形懸臂樑與座標轉換推算研磨進給量與接觸力的關係的數學模式,同時利用將前述的數學解析數據,與DEFORM模擬和實驗結果進行比對,求出研磨進給量與接觸力呈線性正比關係,數學解析數據與實驗結果誤差小於9%。利用此法所研磨出的光纖端面偏心量位於0.17μm到0.31μm的範圍,並可成功應用於雙變曲率光纖微透鏡的製作,使其耦光效率可高達88%。
Abstract
The offset between the center lines of the polished end-face and the fiber core has a significant effect on coupling efficiency. When the offset is more than 0.6μm, the transmitted power drops by up to 50%. The initial contact point and the contact force are two of the most important parameters that induce the offset. This study proposes an image assistant method to find the initial contact point and a mathematical model to estimate the contact force when fabricating the double-variable-curvature end-face of single-mode glass fiber. The repeatability of finding the initial contact point via the vision assistant program is 0.3μm. Based on the assumption of a large deflection, a mathematical model is developed to study the relationship between the contact force and the displacement of the lapping film. In order to verify the feasibility of the mathematical model, a testing stand is established. Experiments, as well as DEFORM simulations, are carried out and the results are compared with those from the mathematical model developed in this study. The results show the same tendency, i.e., that the contact forces are proportional almost linearly to the feed amounts of the lapping film and the errors are less than 9%. By using the method developed in this study, the offset between the grinding end-face and the center line of the fiber core is within 0.17 to 0.31μm. This method is successfully applied to fabricate the double-variable-curvature end-face of single-mode glass fiber. The coupling efficiency is up to 88%.
目次 Table of Contents
摘 要 ii
Abstract iii
謝 誌 iv
目 錄 v
圖目錄 vii
符號說明 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 11
1.4 論文架構 12
第二章 文獻回顧 15
2.1化學蝕刻法 16
2.2 熔燒抽絲法 20
2.3 雷射微加工(Laser Micromachining) 21
2.4 聚焦離子束(Focus Ion Beam) 23
2.5 研磨法 24
第三章 光纖研磨基本理論 39
3.1光纖磨削理論-Preston Equation 39
3.2 座標轉移矩陣 41
3.3 大變形懸臂樑理論 42
3.4 黃金分割法求解 46
3.5 影像輔助辨識 48
3.5.1 光纖與鏡像邊緣線的線性方程式 52
3.5.2 尋找研磨片的線性方程式 54
3.5.2.1 兩點求取直線法 54
3.5.2.2 角平分線法 55
3.5.3 尋找光纖與鏡像邊緣線的端點 55
3.5.4 求出初始接觸點與位移量 56
第四章 影像輔助研磨設備開發 57
4.1 光纖端面研磨機改良 57
4.1.1 低偏擺研磨盤 59
4.1.2 虛擬中心調整 63
4.1.3 H軸配重 66
4.2 影像擷取系統建置 67
4.2.1 影像CCD 67
4.2.2 CCD固定座與移動平台 69
4.2.3 CCD解析度測試 72
4.3 光纖位移與力量實驗平台 75
第五章 製程參數實驗 78
5.1 光纖起始接觸點重現性實驗 78
5.2 光纖位移與接觸力實驗 82
5.3 橢圓端面研磨與偏心量量測實驗 86
5.4 不同光纖切斷端面傾斜角之研磨實驗 96
5.5 圓錐形端面材料移除率之研磨實驗 106
第六章 結論與建議 111
6.1 結論 111
6.2 未來建議 113
參考文獻 114
參考文獻 References
Belkhira, N., Bouzida, D., and Heroldb V., 2009, “Wear Behavior of the Abrasive Grains Used in Optical Glass Polishing,” Journal of Materials Processing Technology, Vol. 209, pp. 6140–6145.
Bisshopp, K.E. and Drucker, D.C., 1945, “Large Deflection of Cantilever Beams,” Quarterly of Applied Mathematics, Vol. 3, pp. 272-275.
Evans, J., Paul, E., Dornfeld, D., Lucca, D., Byrne, G., Tricard, M., Klocke, F., Dambon, O., and Mullany, B., 2003, “Material Removal Mechanisms in Lapping and Polishing,” CIRP Annals, Vol. 52, pp. 611-633.
Fu, Y.Q., Ngoi, K.A., and Ong, N.S., 2000, “Diffractive Optical Elements with Continuous Relief Fabricated by Focused Ion Beam for Mono Mode Fiber Coupling,” Optics Express, Vol. 7, pp. 141-147.
Ghafoori-Shiraz, H. and Asano, T., 1986, “Microlens for Coupling a Semiconductor Laser to a Single-mode Fiber,” Optics Letters, Vol. 11, pp. 537-539.
Keiser, G., 2000, Optical Fiber Communications, McGraw Hill, New York.
Kuwahara, H., Sasaki, M., and Tokoyo, N., 1980, “Efficient Coupling from Semiconductor Lasers into Single-mode Fibers with Tapered Hemispherical Ends,” Applied Optics, Vol.19, pp. 2578-2582.
Hillerich, B., 1988, “Shape Analysis and Coupling Loss of Microlenses on Single-mode Fiber Tips,” Applied Optics, Vol.27, pp. 3102-3106.
Liu, Y.D., Tsai, Y.C., Lu, Y.K., Wang, L.J, Hsieh, M.C., Yeh, S.M., and Cheng, W.H., 2011, “New Scheme of Double-variable-curvature Microlens for Efficient Coupling High-power Lasers to Single-mode Fibers,” Journal of Lightwave Technology, Vol. 29, pp. 898-904.
Lu, Y.K., Tsai, Y.C., Liu, Y.D., Yeh, S.M., Lin, C.C., and Cheng, W.H., 2007, “Asymmetric Elliptic-cone-shaped Microlens for Efficient Coupling to High-power Laser Diodes,” Optics Express , Vol. 15, pp. 1434-1442.
Major, J.S., Plano, W.E., Welch, D.F., Wiand, G. T., and Stakelon, T. S., 1991, “Single-mode InGaAs-GaAs Laser Diodes Operating at 980 nm,” Electronics Letters, Vol. 27, pp. 539–540.
Mitch, J.H., 1989, “Method and Apparatus for Precisely Positioning Microlenses of Optical Fibers,” United States Patent, No. 4,818,263.
Modavis, R.A. and Webb, T.W., 1995, “Anamorphic Microlens for Coupling Optical Fibers to Elliptical Light Beams,” United States Patent, No. 5,455,879.
Modavis, R.A. and Webb, T.W., 1995, “Anamorphic Microlens for Laser Diode to Single-mode Fiber Coupling,” IEEE Photonics Technology Letters, Vol. 7, pp. 798 -800.``
Pan, J.J., Arnold, M.P. and Barton, J.C., 1978, “Micro Lens Formation at Optical Fiber Ends,” United States Patent, No. 4,118,270.
Presby, H.M., Benner, A.F., and Edwards, C.A., 1990, “Laser Micromachining of Efficient Fiber Microlenses,” Applied Optics, Vol. 29, pp. 2692-2695.
Presby, H.M. and Giles, C.R., 1993, “Asymmetric Fiber Microlenses for Efficient Coupling to Elliptical Laser Beams,” IEEE Photonics Technology Letters, Vol. 5, pp. 184–186.
Preston, F.W., 1927, “The Theory and Design of Plate Glass Polishing Machines,” Journal of the Society of Glass Technology, Vol. 11, pp.214-256.
Schiappellia, F. , Kumar, R., Prasciolua, M. , Cojoca, D., Cabrinia, S., Vittoriob, M.D., Visimbergab, G., Gerardinoc, A., Degiorgiodand, V., and Fabrizioa, E.D., 2004, “Efficient Fiber-to-waveguide Coupling by a Lens on the End of the Optical Fiber Fabricated by Focused Ion Beam Milling,” Microelectronic Engineering, Vol. 73-74, pp. 397-404.
Shah, V.S., Curtis, L., Vodhanel, R.S., Bour, D.P., and Young, W.C., 1990, “Efficient Power Coupling from a 980-nm, Broad-area Laser to a Single-mode Fiber Using a Wedge-shaped Fiber Endface,” Journal of Lightwave Technology, Vol. 8, pp. 1313 -1318.
Tsai, Y.C., Liu, Y.D., Cao, C.L., Lu, Y.K., and Cheng, W.H., 2008, "A New Scheme of Fiber End-face Fabrication Employing a Variable Torque Technique," Journal of Micromechanics and Microengineering, Vol. 18, 055003.
Tseng, Y.T., Hung, T.Y., Liu, J.H., and Chang, C.H., 2007, “Optical Fiber Polishing Automation with On-line Force Sensing,” International Journal of Machine Tools and Manufacture, Vol. 47, pp. 892-899.
Vanderplaats, G.N., 1984, Numerical Optimization Techniques for Engineering Design, McGraw Hill, New York.
Wong, P.K., Wang, T.H., and Ho, C.M., 2002, “Optical Fiber Tip Fabricated by Surface Tension Controlled Etching,” Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 2-6, pp. 94-97.
Yang, H.H., Huang, S.Y., Lee, C.W., Lay, T.S., and Cheng, W.H., 2004, “High-coupling Tapered Hyperbolic Fiber Microlens and Taper Asymmetry Effect,” Journal of Lightwave Technology, Vol. 22, No. 5, pp. 1395-1401.
Yeh, S.M., Lu, Y.K., Huang, S.Y., Lin, H.H., Hsieh, C.H., and Cheng, W.H., 2004, “A Novel Scheme of Lensed Fiber Employing a Quadrangular-pyramid-shaped Fiber Endface for Coupling Between High-power Laser Diodes and Single-mode Fibers,” Journal of Lightwave Technology, Vol. 22, pp. 1374-1379.
Yeh, S.M. , Huang, S.Y., Hsieh, C.H., and Cheng, W.H., 2005, “A New Scheme of Conical-wedge-shaped Fiber Endface for High-power Laser to Single Mode Fiber Coupling,” Journal of Lightwave Technology, Vol. 23, pp. 1781-1786.
Yoda, H., and Shiraishi, K., 2001, “A New Scheme of a Lensed Fiber Employing a Wedge-shaped Graded-index Fiber Tip for the Coupling Between High-power Laser Diodes and Single-mode Fibers,” Journal of Lightwave Technology, Vol. 19, pp. 1910-1917.
Yoda, H. and Shiraishi, K., 2002, “Cascaded GI-fiber Chips with a Wedge Shaped End for the Coupling between an SMF and a High-power LD with Large Astigmatism,” Journal of Lightwave Technology, Vol. 20, pp. 1545–1548.
王儷瑾,2011,雙變曲率光纖微透鏡曲率半徑及偏心量影響耦光效率之研究,碩士論文,國立中山大學光電工程學系,高雄。
呂昱寬,2003,新型四角錐形光纖透鏡,碩士論文,國立中山大學通訊工程研究所,高雄市。
林其鴻,2008,光纖研磨機加工參數之研究,碩士論文,正修科技大學機電工程學系,高雄。
林啟中,2007,非軸對稱橢圓錐光纖透鏡之研製與特性,碩士論文,國立中山大學光電工程學系,高雄。
陳世偉,2012,影像辨識技術輔助光纖研磨參數之研究,碩士論文,正修科技大學機械與機電工程學系,高雄。
陳俊宏,2010,雙變曲率光纖端面研磨之研究,碩士論文,國立中山大學機械與機電工程學系,高雄。
曹建樑,2007,扭力控制於光纖端面加工之研究,碩士論文,國立中山大學機械與機電工程學系,高雄。
楊惠民,2004,光纖光柵外部共振腔雷射研製及特性之研究,博士論文,國立中山大學光電工程學系,高雄。
葉斯銘,2006,橢圓光纖微透鏡之研究,博士論文,國立中山大學光電工程學系,高雄。
趙志豪,2005,利用化學蝕刻法製作光場匹配光纖透鏡之研究,碩士論文,國立台灣科技大學機械學系,台北。
廖偉辰,2008,研磨法於光纖端面成型之研究,碩士論文,國立中山大學機械與機電工程學系,高雄。
劉育達,2006,非對稱光纖端面加工機構設計之研究,碩士論文,國立中山大學機械與機電工程學系,高雄。
劉育達,2011,雙變曲率光纖微透鏡之研究,博士論文,國立中山大學光電工程學系,高雄。
謝銘駿,2008,雙變曲率光纖端面研磨機構設計與製造之研究,碩士論文,國立中山大學機械與機電工程學系,高雄。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code