Responsive image
博碩士論文 etd-0113117-143835 詳細資訊
Title page for etd-0113117-143835
論文名稱
Title
改良之十位元CMOS類比數位轉換器之設計
Design and Evaluation of an Improved 10-bit Integrating CMOS ADC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-23
繳交日期
Date of Submission
2017-05-22
關鍵字
Keywords
電壓時間轉換器、單斜率積分ADC、生醫訊號紀錄系統、低功耗電路設計、特殊應用晶片
single-slope integrating ADC, voltage-to-time converter, low power circuit design, application-specific integrated circuit (ASIC), biological-signal recording system
統計
Statistics
本論文已被瀏覽 5694 次,被下載 37
The thesis/dissertation has been browsed 5694 times, has been downloaded 37 times.
中文摘要
類比數位轉換器在現今的混合系統中,是不可或缺的一環。本篇論文呈現了一個具有中等解析度與取樣速度,及低功耗的單斜率積分ADC,其適合前端生醫訊號紀錄的相關應用。本研究專注於簡化由外部輸入的控制訊號。此外,與先前發表的單斜率積分ADC相比,類比部分中的轉換器在功耗上亦有大幅度的改進。本設計利用台積電0.18μm製程技術實現於晶片上,以驗證10位元的解析度。在40k Hz的取樣頻率下,測得的功耗為18μW,晶片核心的面積為0.06mm2。
Abstract
The analog-to-digital converter (ADC) is an essential component in modern mixed-signal system applications. This thesis presents the design and evaluation of a single-slope integrating ADC which features medium-resolution, medium-speed and low-power-consumption, suitable for application in a bio-signal acquisition front-end. The aim of this study is to simplify the external control signals and to reduce the power consumption of the analog part of the converter compared to previously reported single-slope integrating ADC. For practical evaluation the design was realized as a prototype in TSMC 1P6M 0.18μm CMOS technology proving 10 bit resolution. The measured power consumption is 18 μW when operating with 40 kHz sample-rate and the chip active area occupies 0.06 mm2
目次 Table of Contents
摘要 i
Abstract ii
Contents iii
List of Figures . v
List of Tables viii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Contributions of this thesis 4
1.3 Thesis organization 7
Chapter 2 System design 8
2.1 ADC Specification 8
2.2 Single-slope conversion principle 9
2.3 System architecture 12
2.3.1 Register circuits 13
2.3.2 Internal clock generation 14
2.3.3 Voltage-to-time converter (VTC) 15
Chapter 3 Circuit Design 16
3.1 Counter circuit design 16
3.2 Register 19
3.3 Bias circuit tree 20
3.3.1 The internal bias source 22
3.4 Reset pulse generation 24
3.5 Voltage-to-time converter 25
3.5.1 Asymmetric OTA for clock gating 32
3.5.2 Clocked comparator 34
Chapter 4 Measured Results 36
4.1.1 Counter 37
4.1.2 On-chip bandgap reference circuit 38
4.1.3 Reset-pulse-generator 40
4.1.4 Voltage-to-time converter 41
4.3 Dynamic measurement 45
4.4 Comparison 47
Chapter 5 Discussion and Conclusions 50
5.1 Conclusions 53
5.2 Future work 54
參考文獻 References
[1] Cheng-Hsun Ho, Soon-Jyh Chang, Guan-Ying Huang, and Che-Hsun Kuo, “A
3.9-fJ/c.-s. 0.5-V 10-bit 100-kS/s Low Power SAR ADC with Time-Based Fixed
Window,” in Proc. IEEE ISCAS, pp. 2345-2348, 2014.
[2] Byungsoo Chang, Joonbae Park, and Wonchan Kim, “A 1.2 GHz CMOS
Dual-Modulus Prescaler Using New Dynamic D-Type Flip-Flops,” IEEE J.
Solid-State Circuits, vol. 31, no.5, pp. 749-752, 1996.
[3] Wonjoo Yun, Sang-Hun Yoon, Jong-Wha Chong, “New High Speed Dynamic D-Type Flip Flop for Prescaler,” in Proc.IEEE ISIE 2001, vol. 1, pp. 629-631.
[4] Alexander Fish, Vladislav Mosheyev, Vitali Linkovsky, and Orly Yadid-Pecht,
“UltraL Low-Power DFF Based Shift Registers Design for CMOS Image Ssensors Applications,” in Proc. ICECS 2004, pp. 658-661.
[5] Hiroshi Hatano, Kenji Sakaue, and Kiyomi Naruke, “CMOS Shift Register
Circuits for Radiation-Tolerant VLSI's,” IEEE T. Nuclear Science,
vol. 31, no. 5, pp. 1034-1038, 1984.
[6] Wu Gao, Deyuan Gao, Christine Hu-Guo, Tingcun Wei, and Yann Hu, “Design and
Characteristics of an Integrated Multichannel Ramp ADC Using Digital DLL
Techniques for Small Animal PET Imaging,” IEEE T. Nuclear Science, vol. 58,
no. 5, pp. 2161-2168, 2011.
[7] Edgar Mauricio Camacho Galeano, Alfredo Olmos, and Andre Luis Vilas Boas
“A Very Low Power Area Effective CMOS Only Bandgap Reference,”
in Proc. SBCCI 2012, pp. 1-6.
[8] Saqib Mohamad, Fang Tangl,Amine Bermak, Abbes Amira, and Mohieddine
Benammar, “A Low Power Temperature Sensor based on a Voltage to Time Converter
Cell,” in Proc. ICM 2013, pp. 1-4.
[9] Vahid Khojasteh Lazarjan and Khosrow Hajsadeghi, “12 bits, 40MS/s, Low Power
Pipelined SAR ADC,” in Proc. MWSCAS 2014, pp. 841-844.
[10] Chandrahash Patel and Veena C.S., “Low-Power Ccomparaotr Design Based on
CMOS Dynamic Logic Circuit,” in Proc. ET2ECN 2014, pp. 1-3.
[11] Woongtaek Lim, Jongyoon Hwang, Dongjoo Kim, Shiwon Jeon, Suho Son, and
Minkyu Song, “A Low Noise CMOS Image Sensor with a 14-bit Two-Step
Single-Slope ADC and a Column Self-Calibration Technique,” in Proc. ICECS 2014, pp. 48-51.
[12] Yasuhiro Shinozuka, Kei Shiraishi, Masanori Furuta, and Tetsuro Itakura, “A
single-slope based low-noise ADC with input-signal-dependent multiple sampling
scheme for CMOS image sensors,” in Proc. IEEE ISCAS 2015, pp. 357-360.
[13] Robert Rieger and Shi-Hao Ou, “Pulse-Width-Modulating Biosignal ADC for
Rapid ASIC Design and IP Core Reuse,” IEEE Design and Test, vol. 33, no. 4, pp. 49-60, 2016.
[14] Wu Gao, Deyuan Gao, Christine Hu-Guo, Tingcun Wei, and Yann Hu, “Design and
Characteristics of an Integrated Multichannel Ramp ADC Using Digital DLL
Techniques for Small Animal PET Imaging,” IEEE T. Nuclear Science, vol. 58,
no. 5, pp. 2161-2168, 2011.
[15] Lungui Zhong, Haigang Yang, and Chong Zhang, “Design of an Embedded CMOS
CR SAR ADC for Low Power Applications in Bio-Sensor SOC,” in Proc. ASICON 2007, pp. 668-671.
[16] Yongjia Li, Duan Zhao, and Wouter A. Serdijn, “A Sub-Microwatt Asynchronous
Level-Crossing ADC for Biomedical Applications,” IEEE T. Biomedical Circuits and Systems, vol. 7, no. 2, pp. 149-157, 2013.
[17] Mohammad Taherzadeh-Sani, Reza Lotfi, and Frederic Nabki, “A 10-bit 110 kS/s
1.16 μW SAR-ADC With a Hybrid Differential/Single-Ended DAC in 180-nm
CMOS for Multichannel Biomedical Applications,” IEEE T. Circuits and Systems-II, vol. 61, no. 8, pp. 584-588, 2014.
[18] Yu-Tso Lin, Yo-Sheng Lin, Chun-Hao Chen, Hsiao-Chin Chen, Yu-Che Yang, and
Shey-Shi Lu, “A 0.5-V Biomedical System-on-a-Chip for Intrabody
Communication System,” IEEE T. Ind. Electron., vol. 58, no. 2, pp. 690-699, Feb. 2011.
[19] Yonghong Tao and Yong Lian, “A 0.8-V, 1-MS/s, 10-bit SAR ADC for
Multi-Channel Neural Recording,” IEEE T. Circuits and Systems-I, vol. 62, no. 2, pp. 366-375, 2015.
[20] Hokyu Lee, Sejin Park, Chaegang Lim, and Chulwoo Kim, “A 100-nW 9.1-ENOB
20-kS/s SAR ADC for Portable Pulse Oximeter,” IEEE T. Circuits and Systems-II,
vol. 62, no. 4, pp. 357-361, 2015.
[21] R. Jacob Baker, “Circuit Design, Layout, and Simulation,” Third Edition.
[22] B. Murmann, “Limits on ADC Power Dissipation,” in Analog Circuit Design, by
M. Steyaert, A.H.M. Roermund, J.H. van Huijsing (eds.) , Springer, 2006.
[23] John G. Webster, Medical Instrumentation - Application and Design, 3rd edition,
John Wiley & Sons, 1988.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code