Responsive image
博碩士論文 etd-0113118-124105 詳細資訊
Title page for etd-0113118-124105
論文名稱
Title
以SSR分析油杉屬之遺傳多樣性及族群結構
Genetic diversity and structure of the Keteleeria species (Pinaceae) using SSR analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-11-27
繳交日期
Date of Submission
2018-02-13
關鍵字
Keywords
冰河時期避難所、遺傳歧異度、基因交流、瓶頸效應、微衛星分子標誌、油杉屬
refugia, gene flow, genetic diversity, Keteleeria, microsatellite markers
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
本研究根據Ho等人 (2014) 設計之16組微衛星基因座 (SSR) 分子標記進行油杉屬物種族群遺傳分析,共計獲得874個樣本之等位基因資訊,檢測物種間與
族群間的遺傳變異、遺傳分化及族群結構、及物種間基因交流的程度。
結果顯示油杉屬各物種遺傳歧異度皆偏低,整體結構上臺灣油杉與海南油杉等島嶼物種檢測出遺傳分化,臺灣油杉的遺傳歧異度高於大陸區系的物種,而大陸區系油杉族群遺傳分化程度較低,在使用STRUCTURE軟體進行分配分析結果顯示油杉屬共區分為5種分群,臺灣油杉佔有2種獨立類型的分群基因型,另外3種分群基因型為大陸區系之成分,結合地理分布可分為東部類群(江南油杉、油杉、海南油杉、黃枝油杉、柔毛油杉、矩鱗油杉、短果油杉)與西部類群(鐵堅油杉、雲南油杉及旱地油杉),而分布於貴州省及廣西省(東、西類群之間)的青岩油
杉、黃枝油杉及柔毛油杉則共享東、西類群的遺傳組成。
透過基因交流檢測並配合族群結構及現今的地理分布加上過去分歧時間及擴張時間的證據,推論油杉屬在經歷第四紀冰期-間冰期循環的歷史,貴州及廣西是油杉屬物種多樣性最高的區域,推測在上新世以前中國華南西側未發生地質劇烈抬升,油杉屬推測是先藉由東向西擴張,而在東、西類群發生地理隔離以前,仍可於貴州、廣西一帶進行基因交流,直到上新世晚期青藏高原和喜馬拉雅山劇烈隆升後,基因交流被地理屏障所阻隔,使西部類群與少量的東部類群形成地理上的隔離,加上更新世以來歷經4次較大型的冰期,致使油杉族群向暖濕山區尋往避難所,推測此時期於雲貴高原以東的地區少部分物種經由南嶺再向東擴張並與絕大部分的東部類群進行複雜的交流,因此沿著南嶺的柔毛油杉及黃枝油杉呈現混合著東、西類群的基因交流,遺傳組成複雜,直到末次盛冰期後,臺灣與中國大陸的陸橋消失,臺灣油杉因長時間的地理隔離下缺少了基因交流的機會而發展成獨樹一幟的基因型並明顯分化。
Abstract
In this study, 16 polymorphic microsatellite markers designed by Ho et al. (2014) were used to analyze the Keteleeria in the Taiwan and South China, obtaining genetic information from 874 individuals by using evolutionary software to test the genetic diversity within taxon, degree of gene flow, and genetic differentiation between taxa.
In general, the 12 species of Keteleeria possessed low levels of genetic diversity. These species which distributed in the island, including K. formosana and K. hainanensis, have genetically differentiated between mainland species. The genetic diversity of K. formosana is higher than others, while the level of genetic differentiation of Keteleeria in China groups is low. In the result of STRUCTURE, there are five genotypes of Keteleeria; two for K. formosana in Taiwan Island and three for Keteleeria in mainland China. Through geographical distribution, there are eastern groups (K. cyclolepis、K. fortunei、K. hainanensis、K. calcarea、K. pubescens、K. oblonga、K. roulletii) and western groups (K. evelyniana、K. xerophila、K. davidiana), while K. davidiana var. chien-peii、K. calcarea and K. pubescens distributed in Guizhou and Guangxi share the genetic composition of eastern and western group.
Before Pliocene, Keteleeria was speculated to expand from east to west when dramatic geographical uplifting didn’t happen in Southern China; eastern groups and western groups were still able to conduct gene flow until the Qinghai-Tibet Plateau and Himalayas intensively rose in late Pliocene. Gene flow was blocked by barriers and separated the western and eastern groups. Moreover, due to the four major ice age in Pleistocene, Keteleeria had moved toward warm and humid refuge. It was speculated that a few groups of east Yunnan-Guizhou Plateau expanded through Nanling toward east and conducted another gene flow with eastern groups. Therefore, K. pubescens and K. calcarea in Nanling showed complicated genetic composition for the gene flow between east and west groups. After the Last Glacial Maximum, K. formosana had differentiated to a unique genotype due to the lack of gene flow.
目次 Table of Contents
中文摘要............................................................................................................................I
Abstract.............................................................................................................................II
目錄.................................................................................................................................III
表次..................................................................................................................................V
圖次.................................................................................................................................VI
第一章 前言.....................................................................................................................1
1.1 大陸植物區系在氣候及地質歷史影響下發展之過程................................1
1.2中國-臺灣植物間斷分布格局及避難所(refugia)效應之關聯....................2
1.3油杉屬的起源與現今分布格局.............................................................3
1.4 微演化(Microevolution)造成族群結構改變之機制.........................................6
1.5 利用微衛星分子標記技術(SSR)研究族群之遺傳結構及動態訊息............8
1.6 研究動機與目的..............................................................................................10
第二章 材料與方法.......................................................................................................11
2.1研究材料樣本製備及方法...............................................................................11
2.1.1油杉屬採集地區及前置處理................................................................12
2.1.2 DNA萃取及保存................................................................................12
2.1.3聚合酶連鎖反應(Polymerase Chian Reaction, PCR) ...........................12
2.1.4膠體電泳(Gel Electrophoresis) .............................................................13
2.2遺傳演化軟體分析及檢驗...............................................................................14
2.2.1基因座中性檢測....................................................................................14
2.2.2遺傳多樣性檢測(genetic diversity test) ...............................................15
2.2.3族群結構檢測(Assignment test) ...........................................................16
2.2.4族群間基因交流檢測............................................................................18
2.2.5瓶頸效應檢測(Bottleneck test) ............................................................21
第三章 結果...................................................................................................................23
3.1 油杉屬的地理分布特性..................................................................................23
3.2 遺傳歧異度分析結果......................................................................................24
3.3 族群結構分析結果..........................................................................................24
3.4 MIGRATE-N分析結果..................................................................................27
3.5 族群間基因交流(IMa)分析結果.....................................................................29
3.6 瓶頸效應分析結果........................................................................................35
第四章 討論...................................................................................................................36
4.1 油杉屬遺傳多樣性的探討..............................................................................36
4.2 油杉屬族群結構的探討..................................................................................38
4.3從族群結構、基因交流及種間分化探討油杉屬近代過往之族群動態.........41
第五章 結論...................................................................................................................46
第六章 參考文獻...........................................................................................................48
參考文獻 References
王文采 (1992)。東亞植物區系的一些分布式樣和遷移路線。植物分類學報 30(1): 1-24。
王荷生 (1979)。中國植物區系的基本特徵。地理學報(3), 224-237。
王荷生 (2000)。中國松科植物的分布型和區系分析。植物研究 20(1), 12-19。
牟鳳娟、段勝芝、字雪松、李一果 (2016)。旱地油杉種子型態及散布特徵研究。 西南林業大學學報6: 29-33。
吳征鎰、孫航、周浙昆、彭華、李德銖 (2005)。中國植物區系中的特有性及其起 源和分化。雲南植物研究27(6): 577-604。
吳根耀、王曉鵬、鍾大賚 (1999)。藏東南地區早白堊世的安第斯型弧火山岩。岩 石學報15(3): 422-429。
吳根耀 (2002)。燕山運動和中國大陸晚中生代的活化。地質科學37(4): 453-461。
吳根耀 (2007)。試論郯城—盧江斷裂帶的行程、演化及其性質42(1), 160-175。
李楠 (1995)。論松科植物的地理分布、起源和擴散。植物分類學報33(2): 105-130。
洪崇勝、謝凱旋 (2007)。臺灣第四紀磁生物地層及蓬萊造山運動事件。經濟部中央地質調查所特刊。
陳冬梅、康宏樟、劉春江 (2011)。中國大陸第四纪冰期潛在植物避難所研究進展。植物研究 31(5): 623-632。
孫航 (2002)。古地中海退卻與喜馬拉雅-横斷山的隆起在中國喜馬拉雅成分及高山植物區系的形成與發展上的意義。雲南植物研究24(3), 273-288。
孫航、李志敏 (2003)。古地中海植物區系在青藏高原隆起後的演變和發展。地球科學進展18(6): 852-862。
薛纪如、火樹華(1981)。我國油杉一新種-旱地油杉。雲南植物研究3(2), 249-250。
謝偉玲、柴勝丰、蔣運生、唐健民、陳宗游、鄒蓉、韋霄 (2017)。黄枝油杉遺傳 多樣性的 ISSR 分析。廣西植物, 37(1), 36-41。
鍾振德, 簡慶德, 洪西洲。(2016)。油杉引種與臺灣油杉之結實。林業研究專訊, 23(5), 35-38。
Cox, C. B., Moore (2005),呂光洋、鄭勝華、林登秋、徐堉峰 譯(2007)。生物地理學─ 從生態及演化的角度來探討。臺灣,台北。藝軒圖書出版社。
Molles Jr, M. C. (2015),金恆鑣等譯(2017)。生態學概念與應用7e。臺灣,臺北。 美商麥格羅,希爾國際股份有限公司。
Adugna, Asfaw, & Endashaw Bekele (2015). Assessment of recent bottlenecks and
estimation of effective population size in the Ethiopian wild sorghum using
simple sequence repeat allele diversity and mutation models. Plant Genetic
Resources, 13(3), 274-281.
Antao, T., Lopes, A., Lopes, R. J., Beja-Pereira, A., & Luikart, G. (2008). LOSITAN: a
workbench to detect molecular adaptation based on a FST-outlier method. BMC
Bioinformatics, 9(1), 323.
An, Z. (2000). The history and variability of the East Asian paleomonsoon climate.
Quaternary Science Reviews, 19(1), 171-187.
An, Z., Wang, S., Wu, X., Chen, M., Sun, D., Liu, X., & Zhou, J. (1999). Eolian
evidence from the Chinese Loess Plateau: the onset of the late Cenozoic Great
Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift
forcing. Science in China Series D: Earth Sciences, 42(3), 258-271.
Avise, J. C., Walker, D., & Johns, G. C. (1998). Speciation durations and Pleistocene
effects on vertebrate phylogeography. Proceedings of the Royal Society of
London B: Biological Sciences, 265(1407), 1707-1712.
Bai, W. N., Liao, W. J., & Zhang, D. Y. (2010). Nuclear and chloroplast DNA
phylogeography reveal two refuge areas with asymmetrical gene flow in a
temperate walnut tree from East Asia. New Phytologist, 188(3), 892-901.
Balloux, F., & Lugon‐Moulin, N. (2002). The estimation of population differentiation
with microsatellite markers. Molecular Ecology, 11(2), 155-165.

Bartish, I. V., Jeppsson, N., & Nybom, H. (1999). Population genetic structure in the
dioecious pioneer plant species Hippophae rhamnoides investigated by random
amplified polymorphic DNA (RAPD) markers. Molecular Ecology, 8(5),
791-802.
Beaumont, M. A. (2005). Adaptation and speciation: what can FST tell us?. Trends in
Ecology & Evolution, 20(8), 435-440.
Beerli, P., & Palczewski, M. (2010). Unified framework to evaluate panmixia and
migration direction among multiple sampling locations. Genetics, 185(1),
313-326.
Blokhina, N. I., & Klimova, R. S. (2000). Keteleeria from the Tertiary deposits of the
middle Sikhote Alin (Primorye). PaleontologicheskiiI Zhur nal, (1),
99-106.
Blokhina, N. I., Afonin, M. A., & Popov, A. M. (2006). Fossil wood of Keteleerioxylon
kamtschatkiense sp. nov.(Pinaceae) from the Cretaceous of the Northwestern
Kamchatka Peninsula. Paleontological Journal, 40(6), 678-686.
Brown, R. W. (1935). Miocene leaves, fruits, and seeds from Idaho, Oregon, and
Washington. Journal of Paleontology, 572-587.
Busch, J. D., Waser, P. M., & DeWOODY, J. A. (2007). Recent demographic
bottlenecks are not accompanied by a genetic signature in banner‐tailed
kangaroo rats (Dipodomys spectabilis). Molecular Ecology, 16(12), 2450-2462.
Chan, Y. L., Anderson, C. N., & Hadly, E. A. (2006). Bayesian estimation of the timing
and severity of a population bottleneck from ancient DNA. PLoS Genetics, 2(4),
e59.
Chapuis, M. P., & Estoup, A. (2006). Microsatellite null alleles and estimation of
population differentiation. Molecular biology and evolution, 24(3), 621-631.
Chen, J. Y. (2007a). On peroxidase isoenzymes of plants in genus of Keteleeria. Journal of Southwest Forestry College, 27(2), 44-49.
Chen, JY. (2007b). Study on the Thin-layer Chromatography of Flavonoid Extracted from Genus of Keteleeria. Journal of Southwest Forestry College 27(3):37-40.
Chou, S. Y. (2014). Genetic divergence between Keteleeria species (Pinaceae) using
multilocus analysis. National Sun Yat-sen University, Biological Sciences.
Chou, Y. W., Thomas, P. I., Ge, X. J., LePage, B. A., & Wang, C. N. (2011). Refugia and
phylogeography of Taiwania in East Asia. Journal of Biogeography, 38(10),
1992-2005.
Chung, J. D., Lin, T. P., Tan, Y. C., Lin, M. Y., & Hwang, S. Y. (2004). Genetic diversity
and biogeography of Cunninghamia konishii (Cupressaceae), an island species
in Taiwan: a comparison with Cunninghamia lanceolata, a mainland species in
China. Molecular Phylogenetics and Evolution, 33(3), 791-801.
Comes, H. P., & Kadereit, J. W. (1998). The effect of Quaternary climatic changes on
plant distribution and evolution. Trends in Plant Science, 3(11), 432-438.
Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for
detecting recent population bottlenecks from allele frequency data. Genetics
, 144(4), 2001-2014.
Cvrčková, H., Máchová, P., & Malá, J. (2015). Use of nuclear microsatellite loci for
evaluating genetic diversity among selected populations of Abies alba Mill. in
the Czech Republic. Journal of Forest Science, 61(8), 345-351.
Dou, J. J., Zhou, R. C., Tang, A. J., Ge, X. J., & Wu, W. (2013). Development and
characterization of nine microsatellites for an endangered tree, Pinus wangii
(Pinaceae). Applications in plant sciences, 1(2), 1200134.
Du, Y., Zou, X., Xu, Y., Guo, X., Li, S., Zhang, X. & Guo, S. (2016). Microsatellite
Loci Analysis Reveals Post-bottleneck Recovery of Genetic Diversity in the
Tibetan Antelope. Scientific Reports, 6.
Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to
define the genetic structure of populations. Molecular Ecology, 11(12),
2571-2581.
Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for visualizing
STRUCTURE output and implementing the Evanno method. Conservation
genetics resources, 4(2), 359-361. Web site: http://taylor0.biology.ucla.edu
/structureHarvester/
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs
to perform population genetics analyses under Linux and Windows. Molecular
Ecology Resources, 10(3), 564-567.
Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure
using multilocus genotype data: linked loci and correlated allele frequencies.
Genetics, 164(4), 1567-1587.
Farjon, A. (1989). A second revision of the genus Keteleeria Carrière. Notes of the
Royal Botanical Garden of Edinburgh, 46, 81-99.
Farjon, A. (1990). Pinaceae. Drawings and descriptions of the genera Abies, Cedrus,
Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and
Picea. Koeltz scientific books.
Farjon, A. (2001). World checklist and bibliography of conifers. Royal Botanic Gardens.
Farjon, A. (2010). A Handbook of the World's Conifers (2 vols.) (Vol. 1). Brill.
Feng, X., Wang, Y., & Gong, X. (2014). Genetic diversity, genetic structure and
demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA
sequences and SSR markers. BMC Plant Biology, 14(1), 187.
Ferguson, D. K. (1967). On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 3, 73-110.
Florin, R. (1963). The distribution of conifer and taxad genera in time and space. Acta
Hort. Bergiani, 20, 121-312.
Fu, L. G., Li, N, Mill, RR. (1999). Flora of China, vol. 4. -Pinaceae Science Press,
Beijing & Missouri Botanical Garden Press, St. Louis. Web site:
http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=117075
Fluch, S., Burg, A., Kopecky, D., Homolka, A., Spiess, N., & Vendramin, G. G. (2011).
Characterization of variable EST SSR markers for Norway spruce (Picea abies
L.). BMC Research Notes, 4(1), 401.
Ge, Z. W., Smith, M. E., Zhang, Q. Y., & Yang, Z. L. (2012). Two species of the Asian
endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts
in southwestern China. Mycorrhiza, 22(5), 403-408.
Gitzendanner, M. A., & Soltis, P. S. (2000). Patterns of genetic variation in rare and
widespread plant congeners. American Journal of Botany, 87(6), 783-792.
Hasegawa, M., Kishino, H., & Yano, T. A. (1985). Dating of the human-ape splitting by
a molecular clock of mitochondrial DNA. Journal of Molecular
Evolution, 22(2), 160-174.
Havill, N. P., Campbell, C. S., Vining, T. F., LePage, B., Bayer, R. J., & Donoghue, M.
J. (2008). Phylogeny and biogeography of Tsuga (Pinaceae) inferred from
nuclear ribosomal ITS and chloroplast DNA sequence data. Systematic Botany
, 33(3), 478-789.
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary.
Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 359(1442), 183-195.
Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological journal
of the Linnean Society, 68(1-2), 87-112.
Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and
the Indian Ocean. Tectonophysics, 570, 1-41.
Hantke, R. (1973). Ketelleria hoehnei KIRCHH., ein Zapfenrest aus der Unteren
Süsswassermolasse des Buechbergs (Kt. Schwyz). Birkhäuser.
Hartl, D. L., Clark, A. G., & Clark, A. G. (1997). Principles of population genetics (Vol.
116). Sinauer Associates, Sunderland, Massachusetts.
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789),
907-913.
Hey, J., & Nielsen, R. (2004). Multilocus methods for estimating population sizes,
migration rates and divergence time, with applications to the divergence of
Drosophila pseudoobscura and D. persimilis. Genetics, 167(2), 747-760.
Hey, J., & Nielsen, R. (2007). Integration within the Felsenstein equation for improved
Markov chain Monte Carlo methods in population genetics. Proceedings of the
National Academy of Sciences, 104(8), 2785-2790.
Ho, C. S., Shih, H. C., Liu, H. Y., Chiu, S. T., Chen, M. H., Ju, L. P. & Chiang, Y. C.
(2014). Development and characterization of 16 polymorphic microsatellite markers from Taiwan cow-tail fir, Keteleeria davidiana var. formosana (Pinaceae)and cross-species amplification in other Keteleeria taxa. BMC
Research Notes, 7(1), 255.
Hong, Y. P., Ahn, J. Y., Kim, Y. M., Yang, B. H., & Song, J. H. (2011). Genetic variation
of nSSR markers in natural populations of Abies koreana and Abies nephrolepis
in South Korea. Journal of Korean Forest Society, 100(4), 577-584.
Hsu, R., & Wolf, J. H. (2009). Diversity and phytogeography of vascular epiphytes in a tropical–subtropical transition island, Taiwan. Flora-Morphology, Distribution,
Functional Ecology of Plants, 204(8), 612-627.
Huang, S. S., Hwang, S. Y., & Lin, T. P. (2002). Spatial pattern of chloroplast DNA
variation of Cyclobalanopsis glauca in Taiwan and East Asia. Molecular
Ecology, 11(11), 2349-2358.
Huang, S. F., Hwang, S. Y., Wang, J. C., & Lin, T. P. (2004). Phylogeography of
Trochodendron aralioides (Trochodendraceae) in Taiwan and its adjacent
areas. Journal of Biogeography, 31(8), 1251-1259.
Huang, C. C., Hsu, T. W., Wang, H. V., Liu, Z. H., Chen, Y. Y., Chiu, C. T. & Chiang,
T. Y. (2016). Multilocus analyses reveal postglacial demographic shrinkage of
Juniperus morrisonicola (Cupressaceae), a dominant alpine species in Taiwan.
PloS One, 11(8), e0161713.
Josserand, S. A., Potter, K. M., Echt, C. S., & Nelson, C. D. (2008). Isolation and
characterization of microsatellite markers for Carolina hemlock (Tsuga
caroliniana). Molecular Ecology Resources, 8(6), 1371-1374.
Kamoi, Y., Kobayashi, I., & Suzuki, K. (1978). The middle Miocene Osudo fossil flora
in the northern part of Niigata Prefecture. Journal of the Geological Society of
Japan, 84, 15-21.
Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite
population due to steady flux of mutations. Genetics, 61(4), 893.
Kimura, M. (1996). Quaternary paleogeography of the Ryukyu Arc. Journal of
Geography (Chigaku Zasshi), 105(3), 259-285.
Kimura, M., & Ohta, T. (1978). Stepwise mutation model and distribution of allelic
frequencies in a finite population. Proceedings of the National Academy of
Sciences, 75(6), 2868-2872.
Kirchheimer, F. (1942). Zur Kenntnis der Alttertiärflora von Wiesa bei Kamenz
(Sachsen). Planta, 32(4), 418-446.
Kräusel, R. (1938). Die tertiäre Flora der Hydrobienkalke von Mainz-Kastel.
Palaeontologische Zeitschrift, 20(1), 9-103.
Kuchma, O., Vornam, B., & Finkeldey, R. (2011). Mutation rates in Scots pine (Pinus
sylvestris L.) from the Chernobyl exclusion zone evaluated with amplified
fragment-length polymorphisms (AFLPs) and microsatellite markers. Mutation
Research/Genetic Toxicology and Environmental Mutagenesis, 725(1), 29-35.
Kunzmann, L, Mai, H-D. 2005. Die Koniferen der Mastixioideen-Flora von Wiesa
bei Kamenz (Sachsen, Miozän) unter bes. Berücksichtigung der Nadelblätter.
Palaeontographica Abteilung B, 67-135.

Kovach, M. J., & McCouch, S. R. (2008). Leveraging natural diversity: back through
the bottleneck. Current Opinion in Plant Biology, 11(2), 193-200.
Lakhanpal, R. N. (1958). The Rujada flora of west central Oregon: Univ. of Calif. Pub.
Geological Science, vol, 35. University of California Press.
Lawler, R. R. (2008). Testing for a historical population bottleneck in wild Verreaux's
sifaka (Propithecus verreauxi verreauxi) using microsatellite data. American
Journal of Primatology, 70(10), 990-994.
LePage, B. A. (1999). The evolution, biogeography and palaeoecology of the
Pinaceae based on fossil and extant representatives. In IV International Conifer
Conference 615 , 29-52.
LePage, B. A., & Basinger, J. F. (1995). Evolutionary history of the genus Pseudolarix
Gordon (Pinaceae). International Journal of Plant Sciences, 156(6), 910-950.
Levin, D. A. (1975). Genic heterozygosity and protein polymorphism among local
populations of Oenothera biennis. Genetics, 79(3), 477-491.
Li, G. P., & Huang, Q. C. (2006). Ontogeny of pollen and pollination in Keteleeria
fortune. Scientia Silvae Sinicae, 42(5), 42-47.
Lin, C. P., Huang, J. P., Wu, C. S., Hsu, C. Y., & Chaw, S. M. (2010). Comparative
chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies.
Genome Biology and Evolution, 2, 504-517.
Liu, Y. S., & Basinger, J. F. (2000). Fossil Cathaya (Pinaceae) pollen from the Canadian
high arctic. International Journal of Plant Sciences, 161(5), 829-847.
Lockwood, J. L., Hoopes, M. F., & Marchetti, M. P. (2013). Invasion Ecology. John
Wiley & Sons, New York.
Louy, D., Habel, J. C., Abadjiev, S., & Schmitt, T. (2013). Genetic legacy from past
panmixia: high genetic variability and low differentiation in disjunct populations
of the Eastern Large Heath butterfly. Biological Journal of the Linnean Society,
110(2), 281-290.
Luikart, G., Allendorf, F. W., Cornuet, J. M., & Sherwin, W. B. (1998a). Distortion of
allele frequency distributions provides a test for recent population bottlenecks.
Journal of Heredity, 89(3), 238-247.
Luikart, G., & Cornuet, J. M. (1998b). Empirical evaluation of a test for identifying
recently bottlenecked populations from allele frequency data. Conservation
Biology, 12(1), 228-237.
Mai, D. H. (1964). Die Mastixioideen-Floren im Tertiär der Oberlausitz.
Paläontologische Abhandlungen 2(1), 1–192.
Mai, D. H. (1997). Die oberoligozänen Floren am Nordrand der sächsischen Lausitz.
Palaeontographica Abteilung B, 1-124.
Martínez, A., Manunza, A., Delgado, J. V., Landi, V., Adebambo, A., Ismaila, M. &
Galal, S. (2016). Detecting the existence of gene flow between Spanish and
North African goats through a coalescent approach. Scientific Reports, 6.
Maruyama, T., & Fuerst, P. A. (1985). Population bottlenecks and nonequilibrium
models in population genetics. II. Number of alleles in a small population that
was formed by a recent bottleneck. Genetics, 111(3), 675-689.
Mayr, E. (1970). Populations, species, and evolution: an abridgment of animal species
and evolution. Harvard University Press New York, USA.
McKinnon, J. S., Mori, S., Blackman, B. K., David, L., Kingsley, D. M., Jamieson, L.
& Schluter, D. (2004). Evidence for ecology's role in speciation. Nature,
429(6989), 294-298.
Medlyn, D. A., & Tidwell, W. D. (1979). A review of the genus Protopiceoxylon with
emphasis on North American species. Canadian Journal of Botany, 57(13),
1451-1463.
Miki, S. (1941). On the change of flora in Eastern Asia since Tertiary period (1). The
clay or lignite beds flora in Japan with special reference to the Pinus trifolia beds
in Central Hondo. Japanese Journal of Botany, 11, 237-303.
Miki, S. (1957). Pinaceae of Japan with special reference to its remains. Journal of the
Institute of Polytechnics, Osaka City Univ. Series D 8:221–272.
Miller, C. N. (1976). Early evolution in the Pinaceae. Review of Palaeobotany and
Palynology, 21(1), 101-117.
Monmonier, M. S. (1973). Maximum‐difference barriers: An alternative numerical
regionalization method. Geographical Analysis, 5(3), 245-261.
Moore, S. S., Sargeant, L. L., King, T. J., Mattick, J. S., Georges, M., & Hetzel, D. J. S.
(1991). The conservation of dinucleotide microsatellites among mammalian
genomes allows the use of heterologous PCR primer pairs in closely related
species. Genomics, 10(3), 654-660.
Morton, N. E., Miki, C., & Yee, S. (1968). Bioassay of population structure under
isolation by distance. American Journal of Human Genetics, 20(5), 411.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of
the National Academy of Sciences, 70(12), 3321-3323.
Nei, M. (1975). Molecular population genetics and evolution. North-Holland Publishing
Company, Amsterdam.
Nielsen, R., & Wakeley, J. (2001). Distinguishing migration from isolation: a Markov
chain Monte Carlo approach. Genetics, 158(2), 885-896.
Northrup, C. J., Royden, L. H., & Burchfiel, B. C. (1995). Motion of the Pacific plate
relative to Eurasia and its potential relation to Cenozoic extension along the
eastern margin of Eurasia. Geology, 23(8), 719-722.
Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel.
Population genetic software for teaching and research. Molecular Ecology
Resources, 6(1), 288-295.
Petit, RJ., Aguinagalde, I., de Beaulieu, JL., Bittkau, C., Brewer, S., Cheddadi, R.,
Mohanty, A. (2003). Glacial refugia: hotspots but not melting pots of genetic
diversity. Science, 300(5625), 1563-1565.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure
using multilocus genotype data. Genetics, 155(2), 945-959.
Pritcharda, J. K., Wena, X., & Falushb, D. (2009). Documentation for structure
software: Version 2.3.
https://web.stanford.edu/group/pritchardlab/structure_software/release_versions/
v2.3.4/html/structure.html
Pritchard, J. K., Pickrell, J. K., & Coop, G. (2010). The genetics of human adaptation:
hard sweeps, soft sweeps, and polygenic adaptation. Current Biology, 20(4),
R208-R215.
Ran, J. H., Shen, T. T., Liu, W. J., Wang, P. P., & Wang, X. Q. (2015). Mitochondrial
introgression and complex biogeographic history of the genus Picea. Molecular
Phylogenetics and Evolution, 93, 63-76.
Reece, J. B., Wasserman, S. A., Urry, L. A., Cain, M. L., Minorsky, P. V., & Jackson, R.
B. (2015). Biologia de Campbell. Boston, MA: Benjamin Cummings.
Schlötterer, C., Ritter, R., Harr, B., & Brem, G. (1998). High mutation rate of a long
microsatellite allele in Drosophila melanogaster provides evidence for
allele-specific mutation rates. Molecular Biology and Evolution, 15(10),
1269-1274.
Shea, K. L. (1990). Genetic variation between and within populations of Engelmann
spruce and subalpine fir. Genome, 33(1), 1-8.
Shih, F. L., Hwang, S. Y., Cheng, Y. P., Lee, P. F., & Lin, T. P. (2007). Uniform genetic
diversity, low differentiation, and neutral evolution characterize contemporary
refuge populations of Taiwan fir (Abies kawakamii, Pinaceae). American
Journal of Botany, 94(2), 194-202.
Slarkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and
Systematics, 16(1), 393-430.
Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution, 39(1), 53-65.
Sun, Y., Abbott, R. J., Li, L., Li, L., Zou, J., & Liu, J. (2014). Evolutionary history of
purple cone spruce (Picea purpurea) in the Qinghai–Tibet Plateau: homoploid
hybrid origin and Pleistocene expansion. Molecular Ecology, 23(2), 343-359.
Tachida, H., & Iizuka, M. (1992). Persistence of repeated sequences that evolve by
replication slippage. Genetics, 131(2), 471-478.
Tanai, T. (1963). Miocene floras of southwestern Hokkaido, Japan. Tertiary floras of
Japan, Miocene floras (Collaborating Association Commemorating the 80th
Anniversary of the Geological Survey o, 1-27.
Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components
of eukaryotic genomes. Nucleic Acids Research, 12(10), 4127-4138.
Thuillet, A. C., Bataillon, T., Poirier, S., Santoni, S., & David, J. L. (2005). Estimation
of long-term effective population sizes through the history of durum wheat using
microsatellite data. Genetics, 169(3), 1589-1599.
Tiffney, B. H. (1985). The Eocene North Atlantic land bridge: its importance in Tertiary
and modern phytogeography of the Northern Hemisphere. Journal of the Arnold
Arboretum, 66(2), 243-273.
Uchiyama, K., Fujii, S., Ishizuka, W., Goto, S., & Tsumura, Y. (2013). Development of
32 EST-SSR markers for Abies firma (Pinaceae) and their transferability to
related species. Applications in Plant Sciences, 1(2), 1200464.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., & Shipley, P. (2004). MICRO‐
CHECKER: software for identifying and correcting genotyping errors in
microsatellite data. Molecular Ecology Resources, 4(3), 535-538.
Voronoï, G. (1908). Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres
primitifs. Journal für die reine und angewandte Mathematik, 134, 198-287.
Wu, G. Y. (1998). Early Paleozoic accretion and amalgamation in a Gondwana-
originated China. Acta-universitatis Carolinae Geologica, (3/4), 501-508.
Wang, C. Y., Ma, S. B., Lu, J., & Dang, C. L. (2012). Ecological and geographical
distribution of keteleeria and its systematic evolution in china. Guihaia
32:612-616.
Wang, H. W., & Ge, S. (2006). Phylogeography of the endangered Cathaya
argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and
nuclear DNA. Molecular Ecology, 15(13), 4109-4122.
Wang, M. L., Zhu, C., Barkley, N. A., Chen, Z., Erpelding, J. E., Murray, S. C. & Yu,
J. (2009). Genetic diversity and population structure analysis of accessions in the
US historic sweet sorghum collection. Theoretical and Applied Genetics, 120(1),
13-23.
Wang, W. T. (1989). Notes on disjunction in the flora of China. Bulletin of Botanical
Research, 9(1), 1-16.
Wang, Y. F., Xiang, Q. P., Ferguson, D. K., Zastawniak, E., Yang, J., & Li, C. S. (2006).
A new species of Keteleeria (Pinaceae) in the Shanwang Miocene flora of China
and its phytogeographic connection with North America. Taxon, 55(1), 165-171.
Wen, J., Nie, Z. L., & Ickert‐Bond, S. M. (2016). Intercontinental disjunctions between
eastern Asia and western North America in vascular plants highlight the
biogeographic importance of the Bering land bridge from late Cretaceous to
Neogene. Journal of Systematics and Evolution, 54(5), 469-490.
Wolf, P. G., Sheffield, E., & Haufler, C. H. (1991). Estimates of gene flow,
genetic substructure and population heterogeneity in bracken (Pteridium
aquilinum). Biological Journal of the Linnean Society, 42(4), 407-423.
Womble, W. H. (1951). Differential systematics. Science, 114(2961), 315-322.
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114.
Wright, S. (1949). The genetical structure of populations. Annals of Human Genetics
, 15(1), 323-354.

Xiang, Q. P., Wei, R., Shao, Y. Z., Yang, Z. Y., Wang, X. Q., & Zhang, X. C. (2015).
Phylogenetic relationships, possible ancient hybridization, and biogeographic
history of Abies (Pinaceae) based on data from nuclear, plastid, and
mitochondrial genomes. Molecular Phylogenetics and Evolution, 82, 1-14.
Ye, J. F., Chen, Z. D., Liu, B., Qin, H. N., & Yang, Y. (2012). Disjunct distribution of vascular plants between southwestern area and Taiwan area in China. Biodiversity Science, 20, 482-494.
Yin, A. (2010). Cenozoic tectonic evolution of Asia: A preliminary synthesis.
Tectonophysics, 488(1), 293-325.
Zeng, W. B. (1993). The passageway of the flora migration on both sides of the Taiwan Strait in Pleistocene epoch. Acta Botanica Yunnanica, 16, 107-110.
Zheng, B., Xu, Q., & Shen, Y. (2002). The relationship between climate change and
Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and
speculation. Quaternary International, 97, 93-101.
Zhuo, Z., Baoyin, Y., & Petit-Maire, N. (1998). Paleoenvironments in China during the
Last Glacial Maximum and the Holocene optimum. Episodes-Newsmagazine of
the International Union of Geological Sciences, 21(3), 152-158.
Zhisheng, A., Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian
monsoons and phased uplift of the Himalaya–Tibetan plateau since Late
Miocene times. Nature, 411(6833), 62-66.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.39.23
論文開放下載的時間是 校外不公開

Your IP address is 13.58.39.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code