Responsive image
博碩士論文 etd-0114114-150454 詳細資訊
Title page for etd-0114114-150454
論文名稱
Title
使用奈米金和奈米銀搭配石墨烯增強拉曼光譜法進行非破壞性的水果和蔬菜的新鮮度偵測之研究
Nondestructive detection of the freshness of fruits and vegetables using nano gold and silver mediated Graphene Enhanced Raman Spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-21
繳交日期
Date of Submission
2014-02-14
關鍵字
Keywords
銀奈米粒子、金奈米粒子、水果蔬菜新鮮度、石墨烯奈米片、非破壞性偵測、表面增強拉曼光譜法、拉曼光譜儀
silver nanoparticles, gold nanoparticles, Raman spectroscopy, SERS, Nondestructive detection, Graphene nanosheets, fruit vegetables freshness
統計
Statistics
本論文已被瀏覽 5719 次,被下載 235
The thesis/dissertation has been browsed 5719 times, has been downloaded 235 times.
中文摘要
拉曼光譜儀 (Raman Spectroscopy) 可廣泛應用於各領域,為具有巨大潛力的分析工具。拉曼光譜儀在各領域皆有顯著的貢獻,包括醫藥、材料科學、地球科學、寶石學、法醫學、奈米技術、藝術、半導體技術,及目前日益重要的生物科學領域也具有顯著的成果。應用奈米技術的表面增強拉曼散射光譜法 (surface enhanced Raman spectroscopy,SERS) 可顯著增加此分析工具的偵測靈敏度。而在我們的研究中運用攜帶型的拉曼系統進行水果及蔬菜的新鮮度評估。使用奈米金及奈米銀搭配石墨烯片的奈米物質,可作為表面增強拉曼散射光譜系統的探針,並用於偵測水果和蔬菜的新鮮度。而奈米金或奈米銀搭配石墨烯片的研究結果顯示,使用奈米金搭配石墨烯片的成效較佳。此方法較合適的命名為 “表面增強拉曼散射微滴法 (SERS microdrop method)”,即取10 μL的奈米物質溶液點在水果表面上,並以玻璃片覆蓋後,用拉曼探針進行偵測之方法。本研究使用之5種蔬果樣品為蓮霧、檸檬、番茄、辣椒、胡蘿蔔。並將新鮮的 (從市場購買) 和冷藏後的水果和蔬菜在不同的時間點進行偵測,偵測時間範圍從1天到2週。結果顯示拉曼光譜訊號會隨儲存時間而增加,且發現長期儲存於冷藏庫後會有特定的訊號峰出現。本文中的水果和蔬菜的研究結果顯示,辣椒在冷藏庫中儲存2週後的影響較小。此研究顯示在冷藏庫中儲存短期 (1週) 的蔬果,仍會受到影響,應盡量避免儲存。我們探討了蔬果在冷藏條件下的變化,並確認用奈米金增強GERS (graphene enhanced Raman Sectroscopy) 的方法的應用性,可成功評估蔬果的新鮮度。
Abstract
Raman Spectroscopy is expanding its horizons into widespread applications as an analytical tool with immense potential. Raman has made distinct landmarks in the areas of pharmaceuticals, materials science, geosciences and gemology, forensics, nanotechnology, art and heritage, semiconductors technology and last but not the least in the surging field of biosciences too. The introduction of nanotechnology for surface enhanced Raman spectroscopy (SERS) application has led to a significant upgradation in the detection sensitivity of this tool. In the current work we demonstrate the use of a portable Raman system for assessing the freshness of fruits and vegetables. A dual nanoplatform has been used involving the use of nano gold/nanosilver seeded Graphene sheets as the SERS system for probing the freshness of fruits and vegetables. The use of nanogold versus nanosilver in combination with graphene was studied and the results showed that compared to nanosilver, nanogold seeded graphene nanosheet yielded better results. Also, a suitable method, named ‘SERS microdrop method’, whereby 10 µL of the nanoparticle system was placed on the fruit surface, covered with a glass slip and then probed using the Raman probe has been reported. Fruits and vegetables like Wax apple, Lemon, Tomato, Red Pepper and Carrot were studied. Market fresh (bought from the fresh market) and refrigerated fruits and vegetables were probed at various time intervals ranging from 1 day to 2 weeks and the results presented in this paper. The results signify that the Raman signals increase with storage and certain peaks were found to appear with long term storage in the refrigerator. This study demonstrates that the quality of fruits and vegetables under even short term (1 week) storage even under cold storage conditions is impacted and should be avoided as much as possible. We discuss the changes effected on the fruits and vegetables under refrigeration and confirm the applicability of using nanogold enabled graphene enhanced Raman spectroscopy (GERS) as a successful platform for assessing the freshness of fruits and vegetables.
目次 Table of Contents
論文審定書…………………………………………………….....................................i
誌謝................................................................................................................................ii
摘要………………………………………………………………………………..….iii
Abstract……………………………………………………………………….……...iv
目錄…………………...................................................................................................vi
圖次...............................................................................................................................ix
表次............................................................................................................................xxv
第 一 章 序論..............................................................................................................1
1.1 前言………………………………………………………………………….....1
1.2 散射原理……………………………………………………………………….1
1.3 拉曼光譜儀…………………………………………………….………………2
1.3.1 拉曼散射理論…………………………………………………..…………4
1.3.2 古典力學解釋拉曼散射現象………………………………………..……6
1.3.3 表面增強拉曼散射光譜……………………………………………..……9
1.3.4 表面增強拉曼散射光譜法 (SERS) 增強機制…………………………11
1.3.4.1 化學增強效應 (chemical enhancement effect) …………………… 11
1.3.4.2 電磁增強效應 (electromagnetic enhancement effect) …………..…13
1.3.5 表面增強拉曼散射光譜法偵測單分子的應用…………………………19
1.4 奈米粒子………………………………………………...……………………20
1.4.1 奈米材料…………………………………………………………………22
1.5 儀器原理………………………………………………………….......………26
1.5.1 傅立葉轉換紅外線吸收光譜儀 (Fourier Transform-Infrared spectroscopy) ……………………………………………………………...……26
1.5.2 紫外光/可見光光譜儀 (Ultraviolet-visible spectroscopy, UV-Vis spectroscopy) …………………………………………………………………...29
1.5.3 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) ………30
1.5.4 掃描式電子顯微鏡 (Scanning Electron Microscopy,SEM) ………...…31
1.6 表面增強拉曼活性基材…………………………………...…………………31
1.6.1 金屬溶膠 (metallic colloid) 作為SERS 活性基材……………………33
1.6.2 二維平面SERS 活性基材………………………………………………33
1.7 影響SERS增強效應的因素…………………………………………………33
1.8 過去水果和蔬菜研究方法……………………………………………...……36
1.9 研究動機…………………………………………………………...…………37
第 二 章 材料與方法…………………………………………………..………..…38
2.1 材料…………………………………………………………………...………38
2.2 儀器和方法……………………………………………………………...……38
2.2.1 UV光譜儀、螢光光譜儀、FT-IR光譜儀和TEM的測量…………...……38
2.2.2 石墨烯 (graphene) 的製備……………………………………...………39
2.2.3 穩定石墨烯 (stable graphene) 溶液的製備……………………………39
2.2.4 金奈米粒子 (gold nanoparticles) 的製備…............................................40
2.2.5 在石墨烯奈米片 (graphene nanosheets) 上,原位 (In situ) 合成金奈米粒子……………………………………………………………………………..40
2.2.6 銀奈米粒子 (silver nanoparticle) 的製備……........................................40
2.2.7 在石墨烯奈米片 (graphene nanosheets) 上,原位 (In situ) 合成銀奈米粒子……………………………………………………………………………..43
2.2.8 使用奈米金或奈米銀搭配石墨烯增強拉曼光譜方法評估水果的新鮮度……………………………………………………………………………......43
2.2.8.1 方法A -固定化SERS基材 (immobilized SERS substrate) 的方法……………………………………………………………………………..43
2.2.8.2 方法B - SERS微滴 (SERS microdrop) 的方法…………..............43
2.2.8.3 樣品測試………….............................................................................44
第 三 章 結果與討論…………................................................................................45
3.1 金奈米粒子、石墨烯和金/石墨烯的奈米複合材料的特徵化………............45
3.2 銀和銀@石墨烯奈米複合材料 (silver@graphene nanocomposite) 的特徵化..............................................................................................................................53
3.3 探測方法的最佳化………………...................................................................60
3.3.1 傳統的拉曼光譜和金/銀搭配GERS (Au/Ag mediated GERS) 的比較………………………………………………………………………………..60
3.3.2 蔬菜和水果的主要拉曼散射特徵峰的探討…………............................73
3.4 金/銀搭配GERS (Au/Ag mediated GERS) 的機制探討…………................76
第 四 章 總結…………............................................................................................77
第 五 章 參考文獻………………………................................................................78
參考文獻 References
1. Abbott, J.A. “Quality measurement of fruits and vegetables." Postharvest Biology and Technology. 1999, 15, 207-225.
2. http://en.wikipedia.org/wiki/Scattering
3. Le Ru, E.C.; Etchegoin, P.G. Principles of Surface‐Enhanced Raman Spectroscopy: and related plasmonic effects: Elsevier Science. 2008.
4. Ferraro, J.R.; Nakamoto, K.; Brown, C.W. Introductory raman spectroscopy: Academic Pr. 2003.
5. http://en.wikipedia.org/wiki/File:Ramanscattering.svg
6. McCreery, R.L. Raman spectroscopy for chemical analysis: Wiley‐Interscience. 2000, 157-157.
7. Smith, E.; Dent, G.; Wiley, J. Modern Raman spectroscopy: a practical approach: Wiley Online Library. 2005.
8. Fleischmann, M.; Hendra, P.; McQuillan, A. "Raman spectra of pyridine adsorbed at a silver electrode." Chemical Physics Letters. 1974, 26, 163‐166.
9. Kneipp, K.; Moskovits, M.; Kneipp, H., Eds. Surface-Enhanced Raman Scattering: Physics and Applications: Topics in Applied Physics. 2006, 103-103.
10. Lee, P.; Meisel, D. "Adsorption and surface‐enhanced Raman of dyes on silver and gold sols." The Journal of Physical Chemistry. 1982, 86, 3391‐3395.
11. Albrecht, M.G.; Creighton, J.A. "Anomalously intense Raman spectra of pyridine at a silver electrode." Journal of the American Chemical Society. 1977, 99, 5215‐5217.
12. Kneipp, K.; Moskovits, M.; Kneipp, H. "Surface‐enhanced Raman scattering." Physics Today. 2007, 60, 40-40.
13. Jeanmaire, D.L.; Van Duyne, R.P. "Surface raman spectroelectrochemistry:: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1977, 84, 1‐20.
14. Thompson, D.G.; Enright, A.; Faulds, K.; Smith, W.E.; Graham, D. "Ultrasensitive DNA Detection Using Oligonucleotide−Silver Nanoparticle Conjugates." Analytical Chemistry. 2008, 80, 2805‐2810.
15. Lee, S.J.; Baik, J.M.; Moskovits, M. "Polarization‐dependent surface‐enhanced Raman scattering from a silver‐nanoparticle‐decorated single silver nanowire." Nano letters. 2008, 8, 3244‐3247.
16. Pan, S.; Wang, Z.; Rothberg, L.J. "Enhancement of Adsorbed Dye Monolayer Fluorescence by a Silver Nanoparticle Overlayer." The Journal of Physical Chemistry B. 2006, 110, 17383‐17387.
17. Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. “SERS: Materials, applications, and the future.” Materials today.2012, 15, 16-25.
18. Brolo, A.G.; Irish, D.E.; Smith, B.D. "Applications of surface enhanced Raman scattering to the study of metal‐adsorbate interactions." Journal of Molecular Structure. 1997, 405, 29‐44.
19. Otto, A.; Lust, M.; Pucci, A.; Meyer, G. "“SERS active sites”, facts, and open questions." Canadian Journal of Analytical Sciences and Spectroscopy. 2007, 52, 150-171.
20. Brolo, A.G.; Irish, D.E.; Smith, B.D. "Applications of surface enhanced Raman scattering to the study of metal‐adsorbate interactions." Journal of Molecular Structure. 1997, 405, 29‐44.
21. Bohren, C.; Huffman, D. Absorption and Scattering of Light by Small Particles: Wiley. 1983.
22. 吳民耀.; 劉威志. “表面電漿子理論與模擬.” 物理雙月刊. 2006, 28, 486-496.
23. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. "Surface‐enhanced Raman scattering and biophysics." Journal of Physics: Condensed Matter. 2002, 14, 597-597.
24. Yang, H.; Yang, Y.; Zou, S. "In Situ Surface‐Enhanced Raman Spectroscopic Studies of CO Adsorption and Methanol Oxidation on Ru‐Modified Pt Surfaces." The Journal of Physical Chemistry C. 2007, 111, 19058‐19065.
25. Fang, P.‐P.; Duan, S.; Lin, X.‐D.; Anema, J. R.; Li, J.‐F.; Buriez, O.; Ding, Y.; Fan, F.‐R.; Wu, D.‐Y.; Ren, B.; Wang, Z.L.; Amatore, C.; Tian, Z.‐Q. "Tailoring Au‐core Pd‐shell Pt‐cluster nanoparticles for enhanced electrocatalytic activity." Chemical Science. 2011, 2, 531‐539.
26. http://en.wikipedia.org/wiki/Nanoparticle
27. http://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Mesoporous_Silica_Nanoparticle.jpg/400px-Mesoporous_Silica_Nanoparticle.jpg
28. http://web1.nsc.gov.tw/ct.aspx?xItem=10204&ctNode=40&mp=1
29. http://zh.wikipedia.org/wiki/纳米技术
30. http://web1.nsc.gov.tw/ct.aspx?xItem=10204&ctNode=40&mp=1
31. http://zh.wikipedia.org/zh-tw/量子点
32. http://northbeggar.wordpress.com/2009/10/04/exciton/
33. http://en.wikipedia.org/wiki/Exciton
34. http://simple.wikipedia.org/wiki/Nanotechnology
35. http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch7.htm
36. http://www.sciencedirect.com/science/article/pii/S0920586110005365
37. http://ir.lib.pccu.edu.tw/bitstream/987654321/890/1/902415H034.pdf
38. Abdelhamid, H.N.; Wu, H.-F. ”Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria.” J. Mater. Chem. B. 2013, 1, 3950-3961.
39. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. ”Electric Field Effect inAtomically Thin Carbon Films.” Science. 2004, 306, 666-669.
40. 羅聖全. ”研發奈米科技的基本工具之一電子顯微鏡介紹–TEM.” 小奈米大世界. 2003.
41. 鄭信民.; 林麗娟. ”場發射掃描式電子顯微鏡分析技術應用簡介.”工業材料雜誌. 2003, 201, 109-116.
42. García‐Rodríguez, F.J.; González‐Hernández, J.; Pérez‐Robles, F.; Vorobiev, Y.V.; Manzano‐Ramírez, A.; Jiménez‐Sandoval, S.; Chao, B.S. "Sol–gel SiO2 films containing colloidal copper particles for surface‐enhanced raman scattering of graphite." Journal of Raman Spectroscopy. 1998, 29, 763‐771.
43. Zawada, K.; Bukowska, J. "Surface‐enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface." Surface science. 2002, 507, 34‐39.
44. Coyle, C.M.; Chumanov, G.; Jagodzinski, P.W. "Surface‐enhanced Raman spectra of the reduction product of 4‐cyanopyridine on copper colloids." Journal of Raman Spectroscopy. 1998, 29, 757‐762.
45. Rivas, L.; Sanchez‐Cortes, S.; García‐Ramos, J.V.; Morcillo, G. "Mixed Silver/Gold Colloids: A Study of Their Formation, Morphology, and Surface‐Enhanced Raman Activity." Langmuir. 2000, 16, 9722‐9728.
46. Chen, L.; Han, X.; Yang, J.; Zhou, J.; Song, W.; Zhao, B.; Xu, W.; Ozaki, Y. "Detection of proteins on Silica–Silver Core–Shell substrates by surface‐enhanced Raman spectroscopy." Journal of Colloid and Interface Science. 2011, 360, 482‐487.
47. Sai. V.V.R.; Gangadean, D.; Niraula, I.; Jabal, J.M.F.; Corti, G.; McIlroy, D.N.; Eric Aston, D.; Branen, J.R.; Hrdlicka, P.J. "Silica Nanosprings Coated with Noble Metal Nanoparticles: Highly Active SERS Substrates." The Journal of Physical Chemistry C. 2010, 115, 453‐459.
48. Chen, J.; Zheng, X.; Wang, H.; Zheng, W. "Graphene oxide‐Ag nanocomposite: In situ photochemical synthesis and application as a surface‐enhanced Raman scattering substrate." Thin Solid Films. 2011, 520, 179‐185.
49. Ngo, Y.H.; Li, D.; Simon, G.P.; Garnier, G. "Paper surfaces functionalized by nanoparticles." Advances in Colloid and Interface Science. 2011, 163, 23‐38.
50. Mack, N.H.; Bailey, J.A.; Doorn, S.K.; Chen, C.‐A.; Gau, H.‐M.; Xu, P.; Williams, D.J.; Akhadov, E.A.; Wang, H.‐L. "Mechanistic Study of Silver Nanoparticle Formation on Conducting Polymer Surfaces." Langmuir. 2011, 27, 4979‐4985.
51. Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. “SERS: Materials, applications, and the future.” Materials today. 2012, 15, 16-25.
52. Creighton, J.A.; Blatchford, C.G.; Albrecht, M.G. "Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength." Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. 1979, 75, 790‐798.
53. Ahern, A.M.; Garrell, R.L. "In situ photoreduced silver nitrate as a substrate for surface‐enhanced Raman spectroscopy." Analytical Chemistry. 1987, 59, 2813‐2816.
54. Bercegol, H.; Boerio, F.J. "Enhanced Raman Spectroscopy at a Nonmetallic Surface 1. Spacer Layers of Alkyl Mercaptans on Silver Island Films." Langmuir. 1994, 10, 3684‐3692.
55. Mallory, G.O.; Hajdu, J.B. Electroless plating: fundamentals and applications: William Andrew. 1990.
56. Yang, J.; Chen, S.‐H. "Development of Electrode‐less Plating Method for Silver Film Preparations for Surface‐Enhanced Infrared Absorption Measurements." Appl. Spectrosc. 2001, 55, 399‐406.
57. Roth, P.G.; Venkatachalam, R.S.; Boerio, F.J. "Surface‐enhanced Raman scattering from p‐nitrobenzoic acid." The Journal of Chemical Physics. 1986, 85, 1150‐1155.
58. Sun, S.; Birke, R.L.; Lombardi, J.R.; Leung, K.P.; Genack, A.Z. "Photolysis of p‐nitrobenzoic acid on roughened silver surfaces." The Journal of Physical Chemistry. 1988, 92, 5965‐5972.
59. Aroca, R.F.; Alvarez‐Puebla, R.A.; Pieczonka, N.; Sanchez‐Cortez, S.; Garcia‐Ramos, J.V. "Surface‐enhanced Raman scattering on colloidal nanostructures." Advances in Colloid and Interface Science. 2005, 116, 45‐61.
60. Moskovits, M.; Suh, J. "Surface geometry change in 2‐naphthoic acid adsorbed on silver." The Journal of Physical Chemistry. 1988, 92, 6327‐6329.
61. Kazim, S.; Pfleger, J.; Procházka, M.; Bondarev, D.; Vohlídal, J. "Colloidal systems of silver nanoparticles and high‐regioregular cationic polythiophene with ionic‐liquid‐like pendant groups: Optical properties and SERS." Journal of Colloid and Interface Science. 2011, 354, 611‐619.
62. Dull, G.G.; Iwamoto, M.; Kawano, S. Jr. (Eds.). “Non-destructive Quality Evaluation of Horticultural Crops. Proceedings International Symposium Non Destructive Quality Evaluation of Horticultural Crops.” International Horticultural Congress. 1996, 26-26.
63. Chen, P.; Sun, Z. “A review of nondestructive methods for quality evaluation and sorting of agricultural products.” J. Agric. Eng. Res. 1991, 49, 85-98.
64. Brown, G.K.; Sarig, Y. Jr. (Eds.). “Nondestructive Tech-nologies for Quality Evaluation of Fruits and Vegetables.” Proceedings International Workshop. 1994, 15-19.
65. Chen, P. “Quality evaluation technology for agricultural products.” Proceedings International Conference Agricultural Machinery Engineering. 1996, 1, 171-204.
66. Nakaji, K.; Sugiura, Y.; Chuma, Y. “Delayed light emission of green tea as ameans of quality evaluation.” J. Soc. Agric. Mach. 1978, 4, 483-490.
67. Chuma, Y.; Nakaji, K. “Delayed light emission as a means of color sorting of plant products.” Food Process Engineering. 1979, 1, 314-319.
68. Chuma, Y.; Nakaji, K.; Ohura, M. “Maturity evaluation of bananas by delayed light emission.” Trans. Am. Soc. Agric. Eng. 1980, 4, 1043-1047.
69. Abbott, J.A. “Quality measurement by delayed light emission and fluorescence.” Proceedings International Symposium on Nondestructive Quality Evaluation of Horticultural Crops. 1996, 24-33.
70. Akimoto, K.; McClure, W.F.; Shimizu, K. “Non-destructive evaluation of vegetable and fruit quality by visible light and MRI.” Proceedings Automation and Robotics in Bioproduction and Processing. 1995, 117-124.
71. Chen, P.; McCarthy, M.J.; Kauten, R. “NMR for internal quality evaluation of fruits and vegetables.” Trans. Am. Soc. Agric. Eng. 1989, 32, 1747-1753.
72. Clark, C.J.; Hockings, P.D.; Joyce, D.C.; Mazucco, R.A. “Application of magnetic resonance imaging to preand post-harvest studies of fruit and vegetables.” Postharvest Biol. Technol. 1997, 11, 1-21.
73. Zhang, P.X.; Zhou, X.F.; Cheng, Andrew Y.S.; Fang, Y. “Raman Spectra from Pesticides on the Surface of Fruits.” Journal of Physics: Conference Series. 2006, 28, 7-11.
74. Hummers, W.S.; Offeman, R.E. “Preparation of Graphitic Oxide.” J. Am. Chem. Soc. 1958, 80, 1339-1339.
75. Abdelhamid, H.N.; Wu, H.-F. “A mthod to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors.” Anal. Chim. Acta. 2012, 751, 94-104.
76. Frens, G. “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.” Phys. Sci. 1973, 241, 20-22.
77. Lee, P.C.; Meisel, D. “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols.” J. Phys. Chem. 1982, 17, 3391-3395.
78. Pedro, A.M.K.; Ferreira, M.M.C. “Simultaneously calibrating solids, sugars and acidity of tomato products using PLS2 and NIR spectroscopy. “ Anal. Chim. Acta. 2007, 595, 221-221.
79. Schulz, H.; Baranska, M. “Identification and quantification of valuable plant substances by IR and Raman spectroscopy.” Vib. Spectrosc. 2007, 43, 13-13.
80. Twardowski, J.; Anzenbacher, P. “Raman and IR Spectroscopy in Biology and Biochemistry.” Polish Scientific Publishers. 1994, 269-269.
81. Woolley, P.S.; Keely, B.J.; Hester, R.E. “Surface-enhanced resonance Raman spectroscopic identification ofchlorophyll a allomers.” J. Chem. Soc., Perkin Trans. 2. 1997, 1731-1734.
82. Perng, J.H.; Bocian, D.F. “Resonance Raman spectra of chlorin and chlorophyll radical anions.” J. Phys. Chem. 1992, 25, 10234-10240.
83. Zeiri, L. “SERS of plant material.” J. Raman Spectrosc. 2007, 38, 950-955.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code