Responsive image
博碩士論文 etd-0115114-151453 詳細資訊
Title page for etd-0115114-151453
論文名稱
Title
大量表現大型海藻裂片石蓴 (Ulva fasciata Delile) Glutathione Reductase 提高水稻 (Oryza sativa L.) 幼苗耐鹽性之研究
Studies on the Enhancement of Salt Tolerance of Rice (Oryza sativa L.) Seedlings by Overexpression of Glutathione Reductase from Marine Macroalga Ulva fasciata Delile
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-17
繳交日期
Date of Submission
2014-02-15
關鍵字
Keywords
水稻、裂片石蓴、鹽逆境、轉殖
maximum PSII activity (Fv'/Fm'), transformation, effective PSII activity (Fv/Fm), Na+, K+, proline, catalase, ascorbate, ascorbate peroxidase, salt stress, glutathione, Ulva fasciata, glutathione reductase, rice
統計
Statistics
本論文已被瀏覽 5742 次,被下載 0
The thesis/dissertation has been browsed 5742 times, has been downloaded 0 times.
中文摘要
本研究目的探討大型海藻裂片石蓴 (Ulva fasciata Delile) glutathione reductase (UfGR; NCBI number DQ286546.1) 基因轉殖水稻台農67號 (Oryza sativa L. cv. Tainung 67, TNG67) 對於水稻鹽耐受性之影響。藉由農桿菌Ti –vector 轉殖 ubiquitin:: UfGR + 35S::GFP 後獲得 homozygous gene之 T2種子。轉殖株GR活性高於野生型有OE-UfGR-1 及OE-UfGR-3,以四葉齡水耕幼苗進行鹽處理 (150 mM NaCl) 後,存活率高於野生型。150 mM NaCl 處理下,轉殖株之effective 和 Maxium PSII 活性 (Fv/Fm、Fv'/Fm') 與chlorophyll a、chlorophyll b、及carotenoids 含量降低程度低於於野生株, 轉殖株之H2O2含量及malondialdehyde ( MDA,脂質氧化指標) 含量明顯少較於野生型而proline 含量增加則高於野生型。轉殖株GR比活性在150 mM NaCl 處理下較野生型高,轉殖株ascorbate peroxidase (APX) 及 catalase (CAT) 比活性被鹽處理促進之程度也較高,尤其是OE-UfGR-3較為明顯。轉殖株之抗氧化物glutathione (GSH) 含量、GSH/oxidized glutathione (GSSG) 比率、ascorbate (AsA) 含量、及AsA/dehydroascorbate (DHA) 比率高於野生型,但是轉殖株與野生型鹽處理之 Na+ 含量增加、K+ 含量降低、及K+/Na+ 比率降低之程度相同,因此UfGR基因大量表現於水稻可有效提高ascorbate–glutathione cycle效率,降低氧化傷害,增進耐鹽性,但是不調控K+ 及Na+之含量而提高耐鹽性。
Abstract
This study was to examine whether the Agrobacterium-mediated overexpression of a marine macroalgal glutathione reductase (UfGR; NCBI number DQ286546.1) of Ulva fasciata Delile in Japonica rice (Oryza sativa L. cv. Tainung 67, TNG67) improves the tolerance of rice to salt stress. Using the transformation of ubiquitin:: UfGR + 35S::GFP, the hydroponically grown seedling (4-leaf age) of transgenic line with homozygous gene expression (T2) were used to determine the GR activity and their responses to salt challenge (150 mM NaCl). Transgenic lines, OE-UfGR-1 and OE-UfGR-3 that GR specific activity is higher than wild type showed higher survival ratio after recovery to normal condition without NaCl. Under 150 mM NaCl conditions,the decrease in effective PSII activity (Fv/Fm), maximum PSII activity (Fv'/Fm') and the contents of chlorphyll a, chlorophyll b, and carotenoids in the transgenic lines is lower than those in wild type. Transgenic lines showed a lower H2O2 and malondialdehyde (MDA, lipid peroxidation indiicator) contents following NaCl treatment, but the increae in proline contents is higher in transgenic lines as compared to the wild type after NaCl treatment. The GR specific activity of transgenic lines could be induced under NaCl treatment and the induction is higher in transgenic lines, while the specific activity of ascorbate peroxidase (APX) and catalase (CAT) showed a similar trend. Glutathione (GSH) content, GSH/oxidized glutathione (GSSG) ratio, ascorbate (AsA) content, and AsA/dehydroascorbate (DHA) ratio were highly induced by NaCl treatment, particularly in the transgenic lines. But, the increae in Na+ content as well as the decrease in K+ contents and K+/Na+ ratio by NaCl treatment were same between wild type and transgenic lines. It could be concluded that overexpression of UfGR effectively enhances the tolerance of rice to slat stress via the enhancement of ascorbate–glutathione cycle for the reduction of oxidative damage under salt stress, but not the regulation of K+ and Na+ content.
目次 Table of Contents
目錄
論文審定書....................................................................................................................i

致謝 ii

摘要 iii

Abstract iv

目錄 v

圖目錄 vi

表目錄 xi

縮寫字對照 xv

壹、前言 1

貳、材料與方法 4

参、結果 12

肆、討論 16

參考文獻 20

附錄 66
參考文獻 References
許奕婷。(2006) 氯化鉻對水稻幼苗生理作用之影響。國立臺灣大學農藝學系博士論文。台灣,中華民國。
林傳琦。(2000) 氯化鈉對水稻幼苗生理作用之影響。國立臺灣大學生物資農藝學系博士論文。台灣,中華民國。
宋明軒。(2005)裂片石蓴protease基因表現與高鹽誘導氧化逆境及蛋白質氧化之關係。國立中山大學海洋生物研究所博士論文。台灣,中華民國
吳宗孟。(2009) 大型海藻裂片石蓴 (Ulva fasciata Delile) 過量銅毒害毒害之基因表現。國立中山大學海洋生物研究所博士論文。台灣,中華民國
康政揚。(2013) 大量表現大型海藻裂片石蓴 (Ulva fasciata Delile)
Glutathione Reductase 於水稻 (Oryza sativa L.) 提高耐冷性之研究。國立中山大學海洋生物研究所碩士論文。台灣,中華民國
林婉容。(2010) 水稻葉綠體Glutathione Reductase 3參與水稻對鹽逆境耐受性之調控。國立臺灣大學農業化學系暨研究所碩士論文。台灣,中華民國
Apel K, Hirt H. (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399
Allakhverdiev S.L., Nishiyama Y., Miyairi S., Yamamoto H., Inagaki N., Kanesaki Y., Murata (2002 ) Salt Stress Inhibits the Repair of Photodamaged Photosystem II by Suppressing the Transcription and Translation of psbAGenes in Synechocystis1. Plant physiology 130: 1443-1453
Badenhorst PW, Alan MA, Barbara I. (1998) Light regulation of native and Escherichia coli glutathione reductase in transgenic tobacco. Journal of Plant Physiology 152: 502-509
Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Molecular Biology 65: 277-284
Bates LS, Waldren RP, Teare ID. (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207
Bor M, Ozdemir F, Turkan I. (2003) The effect of salt stress on lipid peroxidation
and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science 164: 77-84
Burritt DJ, Larkindale J, Catriona L. Hurd LC. (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbusculafollowing desiccation. Planta 215: 829-838
Chalapathi Rao ASV, Reddy AR. (2008) Glutathione reductase: A putative redox regulatory system in plant cells. Sulfur Assimilation and Abiotic Stress in Plants 6 pp111-114. Nafees A. Khan,Sarvajeet Singh,Shahid Umar, eds. Springer-Verlag Berlin Heidelberg.
Chen YP, Xing LP, Wu GJ, Wang HZ, Wang XE, Cao AZ, Chen PD. (2007) Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant Cell Physiology 48: 1702-1712
Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS. (2013) Homologous expression of δ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. Journal of Plant Physiology 170: 610-618
Collen J, Davison IR. (1999) Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae). Journal of Phycology 35: 62-69
Collen J, Pinto E, Pedersen M, Colepicolo P. (2003) Induction of oxidative stress in the 15 red macroalga Gracilaria tenuistipitata by pollutant metals. Archives of Environmental Contamination and Toxicology 45: 337-342
Contreras L, Moenne A, Correa JA. (2005) Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. Journal of Phycology 41: 1184-1195
Contour-Ansel D, Torres-Franklin LM, de Carvalho MHC, D’Arcy-Lameta A, Zuily-Fodil Y. (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Annals of Botany 98: 1279-1287
Davison IR, Pearson GA. (1996) Stress tolerance in intertidal seaweeds. Journal of Phycology 32: 197-211
Demiral T, Turkan I. (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology 161: 1089-1100
Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C. (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Molecular Biology 69: 577-592
Dionisio-Sese ML, Tobita S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135: 1-9
Fadzilla NM, Finchand RP, Burdon RH. (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. Journal of Experimental Botany 48: 325-331
Foyer CH, Shigeoka S. (2011) Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiology 155: 93-100
Foster JG, Hess JL. (1980) Responses of superoxide-dismutase and glutathione-reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology 66: 482-487
Fridovich I. (1986) Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics 247: 1-11
Heldt HW. (1997) The use of energy from sunlight by photosynthesis. Plant Biochemistry and Molecular Biology 2 39-59. Hans-Walter Heldt, Fiona Heldt, eds. San Diego, California 92101-4495, USA.Elsevier Inc.
Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH. (2009a) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320: 103-115
Hong CY, Chao YY, Yang MY, Choc SC, Kao CH. (2009b) Na+ but not Cl- or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlings. Journal of Plant Physiology 166: 1598-1606
Hsu YT, Kao CH. (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell and Environment 26: 867-874
Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A. (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Reports 25: 865-876
Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K. (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiology 39: 1269-1280
Kim SY, Lim JH, Park MR, Kim YJ, Park T, Seo YW, Choi KG, Yun SJ. ( 2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology 38:218-224.
Kingsbury RW, Epstein E. (1986) Salt sensitive in wheat. Plant Physiology 80: 651-654
Kouřil R, Lazár D, Lee H, Jo J, Nauš J. (2003) Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. Photosynthetica 41: 571-578
Kotchoni SO, Gachomo EW. (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of Biosciences 31: 389-404
Laws MY, Charles SA, Hailliwel B. (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochemical Journal 210: 899-903
Logan BA, Monteiro G, Kornyeyev D, Payton P , Allen RD, Holaday AS. (2003) Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum(Malvaceae), from photoinhibition during growth under chilling conditions. American Journal of Botany 90: 1400-1403
Lu IF, Sung MS, Lee TM. (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Marine Biology 150: 1-15
Martinez CA, Maestria M, Lanib EG. (1996) In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Science 116: 177-184
Meloni DA, Oliva MA, Martinez CA, Cambraia J. (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress.Environmental and Experimental Botany 49: 69-76
Mishra P, Bhoomika K, Dubey RS. (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250: 3-19
Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410
Netondo GW, Onyango JC, Beck E. (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science 44: 806-811
Pang CH, Hang SJ, Gong ZZ, Wang BS. (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiologia Plantarum 125: 490-499
Parida AK, Das AB, Mohanty P. (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzyme. Journal of Plant Physiology 161: 531-542
Pilon-Smits EAH, Zhu YL, Sears T, Terry N. (2000) Overexpression of glutathione reductase in Brassica juncea: Effects on cadmium accumulation and tolerance. Physiologia Plantarum 110 : 455-460
Ratkevicius N, Correa JA, Moenne A. (2003) Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase. Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell and Environment 26: 1599-1608
Scandalios JG. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research 38: 995-1014
Smith IK. (1985) Stimulation of Glutathione Synthesis in Photorespiring Plants by catalase inhibitors. Plant Physioloy 79: 400-405
Stepien P, Klobus G. (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiologia Plantarum 125: 31-40
Sung MS, Hsu YT, Hsu YT, Wu TM, Lee TM. (2009) Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Marine Biotechnology 11: 199-209
Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT. (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery form moderate drought stress. Journal of Plant Physiology 165: 514-521
Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX, Zhang H. (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt tolerance. Plant Science 166: 609-616
Wu TM, Lee TM. (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47: 346-360
Wu TM, Hsu YT, Lee TM. (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Botanical Studies 50: 25-34
Wu TM, Lin WR, Kao YT ,Hsu YT, Yeh CH, Hong CY, Kao CH. (2013) Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Molecular Biology 83: 379-90
YaziciI Türkan, Sekmen AH, Demiral T. (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany 61:49-57
Yoshida S, Forno OA, Cock JH, Gomez KA. (1976) Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Manila.
Zushi K, Matsuzoe N, Kitano M. (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Scientia Horticulturae 122: 362-368
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.9.115
論文開放下載的時間是 校外不公開

Your IP address is 3.143.9.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code