Responsive image
博碩士論文 etd-0115116-075905 詳細資訊
Title page for etd-0115116-075905
論文名稱
Title
評估鄰苯二甲酸酯衍生物DEHP於喜樹鹼治療人類乳腺癌 細胞之細胞模式和斑馬魚異種移殖模型之干擾效果
The disturbance effect of phthalate DEHP on camptothecin-treated human breast cancer cells in vitro and in zebrafish xenograft model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-15
繳交日期
Date of Submission
2016-02-15
關鍵字
Keywords
乳腺癌、喜樹鹼、斑馬魚異體移殖、DNA雙股斷裂、DEHP、鄰苯二甲酸二(2-乙基己基)酯、化療抗藥性、塑化劑
DNA double-strand breaks, camptothecin, Phthalate, Bis(2-ethylhexyl) phthalate, DEHP, zebrafish, chemoresistance, breast cancer
統計
Statistics
本論文已被瀏覽 5730 次,被下載 125
The thesis/dissertation has been browsed 5730 times, has been downloaded 125 times.
中文摘要
乳腺癌在全世界是女性死亡的主要原因,並且化學治療法是治療乳腺癌的主要策略之一,但是化療抗藥性常常會引起乳腺癌患者的預後能力差而導致效果不佳。塑化劑衍生物已經被證明會影響基因的表現,且被認為可能影響細胞對於基因毒性的敏感性和DNA修復的能力。近年來已經證實鄰苯二甲酸酯DEHP暴露跟乳腺癌細胞的化療抗藥性有密切相關。由於DEHP使乳腺癌獲得化療抗藥性的機制尚未清楚,因此在本論文中,我們探討DEHP是否會使乳腺癌產生化療抗藥性。初步研究結果顯示DEHP對於乳腺癌細胞MCF-7會干擾喜樹鹼 (CPT) 所誘導的DNA損傷。更進一步分析發現,以DEHP前處理會顯著降低CPT導致MCF-7細胞內DNA雙鏈斷裂(DSB)標誌,包括γH2AX和ATM受磷酸化的程度。同樣地,斑馬魚異種移殖實驗結果也證實DEHP會干擾CPT誘導的抗乳腺癌之效果。因此,我們根據目前結果推測DEHP可能透過抑制CPT所誘導DNA損傷而增加乳腺癌對CPT的化療抗藥性。
Abstract
Breast cancer is a leading cause of death in women worldwide, and chemotherapy is one of the primary strategies for breast cancer treatment. However, the chemoresistance often causes the poor prognosis of breast cancer patients. Phthalate derivatives have been shown to affect the expression of genes, and could take effects on genotoxic sensitivity and the ability of DNA repair in cells. Recent evidence suggested that phthalate exposure may be closely correlated with the chemoresistance of breast cancer cells. However, the underlying mechanism that phthalate causes chemoresistance is largely unclear. In the study, we investigated whether phthalates affect the chemoresistance by reinforcing the ability of DNA repair. Our results showed that phthalate Bis(2-ethylhexyl) phthalate (DEHP) attenuates the camptothecin (CPT)-induced DNA damage in breast cancer cells MCF-7. Moreover, phthalate DEHP pre-treatment significantly inhibits the two hallmarks of double-strand breaks (DSB) of DNA, including γH2AX and the phosphorylation of ATM, which were significantly reduced in CPT-treated MCF-7 cells. Consistently, the results of zebrafish xenograft assay confirmed the protective effect of DEHP on CPT-induced cytotoxicity of breast cancer. Accordingly, our present work suggests that phthalate DEHP may affect the anti-breast cancer effect of CPT through attenuating the induction of DNA damage.
目次 Table of Contents
國立中山大學研究生學位論文審定書 i
國立中山大學博碩士論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
縮寫表 ix
中英文對照表 x
第一章、 背景介紹 1
壹、乳腺癌分類 (Classification of breast cancer) 1
貳、乳腺癌之治療和瓶頸 2
參、鄰苯二甲酸酯與乳腺癌治療之關係 2
肆、已知抗藥性( Chemoresistance) 產生的途徑 4
伍、喜樹鹼 (Camptothecin) 背景介紹 6
陸、斑馬魚模式 (Zebrafish model) 介紹 7
柒、研究動機 9
第二章、 材料與方法 10
(一) 藥物來源 (Source of Phthalate and CPT) 10
(二) 細胞株與細胞培養 (Cell lines and cell culture) 10
(三) 篩選藥物濃度以細胞計數分析 (Selection of drug concentration in cell proliferation assay) 11
(四) 細胞內生性活性氧測試 (Intracellular reactive oxygen species generation assay) 11
(五) 彗星試驗 (Comet assay) 12
(六) γH2AX之免疫螢光染色 (Immunofluorescence of γH2AX assay) 13
(七) 以流式細胞儀偵測DNA斷裂與修補標誌物之分析 (Flow cytomerer-based detection of DNA damage and repair marker assay) 14
(八) 西方墨點法 (Western blot assay) 15
細胞樣品製備 15
西方墨點法 15
(九) 斑馬魚飼養與相關實驗 17
斑馬魚種飼養 17
斑馬魚胚胎取得 17
人類乳腺癌細胞異體移殖之斑馬魚模式 (Zebrafish human breast cancer xenografts model) 17
斑馬魚藥物處理 18
數據統計分析 18
第三章、 實驗結果 19
DEHP暴露對乳腺癌細胞株之影響 19
(一) 選擇適合的CPT藥物濃度 19
(二) 選擇適合的DEHP藥物濃度 19
(三) 確認暴露DEHP是否干擾CPT對乳腺癌細胞產生之細胞毒性及細胞凋亡相關蛋白質之變化 20
(四) 處理DEHP減少活性氧自由基 20
(五) DEHP干擾CPT誘導DNA損傷 21
(六) DEHP干擾CPT誘導DNA損傷的路徑 22
(七) DEHP干擾CPT所產生DNA損傷相關蛋白質之變化 23
(八) 以斑馬魚異體移殖模型探討DEHP干擾CPT對MCF-7乳腺癌細胞的毒殺能力 23
斑馬魚對於CPT耐受性之毒性測試 23
利用斑馬魚模式評估DEHP是否會干擾CPT藥物測試 23
第四章、 討論 25
第五章、 結論 30
圖 一.決定CPT藥物使用之濃度 32
圖 二. 單獨先暴露DEHP對兩株乳腺癌細胞是否產生細胞毒性以及觀察DEHP是否干擾CPT對於細胞毒殺能力 34
圖 三. DEHP干擾CPT在乳腺癌細胞之內生性活性氧測試 (ROS) 36
圖 四. DEHP干擾CPT誘導DNA損傷 38
圖 五. 利用γH2AX的活化評估DEHP干擾CPT所產生DNA損傷 39
圖 六. DEHP干擾CPT誘導DNA損傷的路徑 42
圖 七. 利用ATM/ATR評估DEHP干擾CPT所產生DNA損傷 45
圖 八. DEHP干擾CPT所產生DNA損傷相關蛋白質改變情形 47
圖 九. 利用斑馬魚模式驗證DEHP對CPT產生的干擾現象 49
圖 十. DEHP透過干擾CPT藥物所產生DNA損傷可能的抗藥性機轉 51
附錄 52
附錄 一. 2014年美國前十大癌症死亡排名 53
附錄 二. Tamoxifen 機轉示意圖 54
附錄 三. 癌細胞產生抗藥性主要路徑之示意圖 55
附錄 四. 鄰苯二甲酸酯基本結構以及鄰苯二甲酸酯衍生物結構式 56
附錄 五. CPT和衍生物結構 57
附錄 六. SDS-PAGE配製表 59
附錄 七. CPT產生ROS導致DNA雙股斷裂損傷(DSB)反應機制圖 60
附錄 八. CPT造成癌細胞產生細胞週期停滯機制 61
附錄 九. 本論文中實驗所使用之抗體列表 62
附錄 十. 國際癌症研究署(International Agency for Research on Cancer)人類致癌因子分類表 63
參考文獻 64
參考文獻 References
1. Global Burden of Disease Cancer, C., et al., The Global Burden of Cancer 2013. JAMA Oncol, 2015. 1(4): p. 505-27.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
3. Goldhirsch, A., et al., Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol , 2011: p. mdr304.
4. Schmadeka, R., B.E. Harmon, and M. Singh, Triple-negative breast carcinoma: current and emerging concepts. Am J Clin Pathol, 2014. 141(4): p. 462-77.
5. Rakha, E.A. and I.O. Ellis, Triple-negative/basal-like breast cancer: review. Pathology, 2009. 41(1): p. 40-7.
6. Rodríguez-Pinilla, S.M., et al., Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res , 2006. 12(5): p. 1533-1539.
7. Luck, A.A., et al., The influence of basal phenotype on the metastatic pattern of breast cancer. Clin Oncol (R Coll Radiol), 2008. 20(1): p. 40-5.
8. Eroles, P., et al., Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev, 2012. 38(6): p. 698-707.
9. Reis-Filho, J.S. and L. Pusztai, Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet, 2011. 378(9805): p. 1812-23.
10. Bell, D., et al., In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med, 1999. 190(10): p. 1417-26.
11. Viedma-Rodriguez, R., et al., Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep, 2014. 32(1): p. 3-15.
12. Morani, A., M. Warner, and J.A. Gustafsson, Biological functions and clinical implications of oestrogen receptors alfa and beta in epithelial tissues. J Intern Med, 2008. 264(2): p. 128-42.
13. Sotoca, A.M., et al., Human ERα and ERβ splice variants: understanding their domain structure in relation to their biological roles in breast cancer cell proliferation. InTech: Rijeka, Croatia, 2012, 452.
14. Kim, I.Y., S.Y. Han, and A. Moon, Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells. J Toxicol Environ Health, 2004. 67(23-24): p. 2025-35.
15. Azmi, A.S., B. Bao, and F.H. Sarkar, Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev, 2013. 32(3-4): p. 623-42.
16. Chen, W.X., et al., Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One, 2014. 9(4): p. e95240.
17. Wan, H.T., et al., Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations. J Hazard Mater, 2013. 261: p. 763-9.
18. Chan, K., et al., Danish and Chinese adolescents' perceptions of healthy eating and attitudes toward regulatory measures. Young Consumers, 2011. 12(3): p. 216-228.
19. Müller, A.K., E. Nielsen, and O. Ladefoged, Human exposure to selcted phthalates in Denmark. DVFA, 2003.
20. Martino-Andrade, A.J. and I. Chahoud, Reproductive toxicity of phthalate esters. Mol Nutr Food Res, 2010. 54(1): p. 148-57.
21. Chen, M.L., et al., The internal exposure of Taiwanese to phthalate--an evidence of intensive use of plastic materials. Environ Int, 2008. 34(1): p. 79-85.
22. Kavlock, R., et al., NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol, 2002. 16(5): p. 529-653.
23. Tickner, J.A., et al., Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med, 2001. 39(1): p. 100-11.
24. DiGangi, J., Phthalates in vinyl medical products. Greenpeace USA, 1999.
25. Bonini, M., et al., Extraction and gas chromatographic evaluation of plasticizers content in food packaging films. Microchem J, 2008. 90(1): p. 31-36.
26. Heudorf, U., V. Mersch-Sundermann, and J. Angerer, Phthalates: toxicology and exposure. Int J Hyg Environ Health, 2007. 210(5): p. 623-34.
27. Harrison, N., Migration of plasticizers from cling‐film. Food Addit Contam, 1988. 5(S1): p. 493-499.
28. Thornton, J., et al., Hospitals and plastics. Dioxin prevention and medical waste incinerators. Public Health Rep, 1996. 111(4): p. 298-313.
29. Tickner, J.A., et al., Health risks posed by use of Di‐2‐ethylhexyl phthalate (DEHP) in PVC medical devices: A critical review. Am J Ind Med, 2001. 39(1): p. 100-111.
30. Brown, V.J., Dioxin exposure and cardiovascular disease: An analysis of association. Environ Health Perspect, 2008. 116(11): p. A491.
31. Isenberg, J.S., et al., Reversibility and persistence of di-2-ethylhexyl phthalate (DEHP)-and phenobarbital-induced hepatocellular changes in rodents. Toxicol Sci, 2001. 64(2): p. 192-199.
32. Kasahara, E., et al., Role of oxidative stress in germ cell apoptosis induced by di (2-ethylhexyl) phthalate. Biochem. J, 2002. 365: p. 849-856.
33. Lee, E., et al., Effect of di (n‐butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. Environ Toxicol, 2007. 22(3): p. 245-255.
34. Colon, I., et al., Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect, 2000. 108(9): p. 895-900.
35. Takeshita, A., et al., The endocrine disrupting chemical, diethylhexyl phthalate, activates MDR1 gene expression in human colon cancer LS174T cells. J Endocrinol, 2006. 190(3): p. 897-902.
36. James, N.H., A.R. Soames, and R.A. Roberts, Suppression of hepatocyte apoptosis and induction of DNA synthesis by the rat and mouse hepatocarcinogen diethylhexylphlathate (DEHP) and the mouse hepatocarcinogen 1,4-dichlorobenzene (DCB). Arch Toxicol, 1998. 72(12): p. 784-90.
37. Kang, K.-S., et al., Di-(2-ethylhexyl) phthalate-induced cell proliferation is involved in the inhibition of gap junctional intercellular communication and blockage of apoptosis in mouse Sertoli cells. J Toxicol Environ Health, 2002. 65(5-6): p. 447-459.
38. Housman, G., et al., Drug resistance in cancer: an overview. Cancers (Basel), 2014. 6(3): p. 1769-92.
39. Hara, H., G.R. Stewart, and W.W. Mohn, Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol, 2010. 76(5): p. 1516-23.
40. Kim, J.H., et al., Di(2-ethylhexyl)phthalate leached from medical PVC devices serves as a substrate and inhibitor for the P-glycoprotein. Environ Toxicol Pharmacol, 2007. 23(3): p. 272-8.
41. Aller, S.G., et al., Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009. 323(5922): p. 1718-22.
42. van Herwaarden, A.E., et al., Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis, 2006. 27(1): p. 123-30.
43. Takeshita, A., et al., Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. Eur J Endocrinol, 2001. 145(4): p. 513-7.
44. Ren, H., et al., Characterization of Peroxisome Proliferator-Activated Receptor α (PPARα)–Independent Effects of PPARα Activators in the Rodent Liver: Di-(2-ethylhexyl) phthalate Also Activates the Constitutive Activated Receptor. Toxicol Sci, 2009: p. kfp251.
45. Mathieu-Denoncourt, J., et al., Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol, 2015. 219: p. 74-88.
46. Chatonnet, P., S. Boutou, and A. Plana, Contamination of wines and spirits by phthalates: types of contaminants present, contamination sources and means of prevention. Food Addit Contam: Part A, 2014. 31(9): p. 1605-15.
47. Hauser, R. and A.M. Calafat, Phthalates and human health. Occup Environ Med, 2005. 62(11): p. 806-18.
48. Hasmall, S.C., et al., Suppression of apoptosis and induction of DNA synthesis in vitro by the phthalate plasticizers monoethylhexylphthalate (MEHP) and diisononylphthalate (DINP): a comparison of rat and human hepatocytes in vitro. Arch Toxicol, 1999. 73(8-9): p. 451-6.
49. Roberts, R.A., et al., Regulation of apoptosis by peroxisome proliferators. Toxicol Lett, 2004. 149(1-3): p. 37-41.
50. Takata, M., et al., Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J, 1998. 17(18): p. 5497-508.
51. Friedberg, E.C., et al., DNA repair and mutagenesis. ASM Press, 2005.
52. Jiang, H., et al., Oncolytic viruses and DNA-repair machinery: overcoming chemoresistance of gliomas. Expert Rev Anticancer Ther, 2006. 6(11): p. 1585-92.
53. Li, W. and D.W. Melton, Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene, 2012. 31(19): p. 2412-22.
54. Janssens, S. and J. Tschopp, Signals from within: the DNA-damage-induced NF-κB response. Cell Death Differ, 2006. 13(5): p. 773-784.
55. Schwartz, G.K. and M.A. Shah, Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol, 2005. 23(36): p. 9408-21.
56. Timur, M., S.H. Akbas, and T. Ozben, The effect of Topotecan on oxidative stress in MCF-7 human breast cancer cell line. Acta Biochim Pol, 2005. 52(4): p. 897-902.
57. Barrera, G., Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 2012. 2012: p. 137289.
58. Zhu, Y., et al., Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev, 2009. 35(7): p. 590-6.
59. Kleinsasser, N.H., et al., Comparing the genotoxic sensitivities of human peripheral blood lymphocytes and mucosa cells of the upper aerodigestive tract using the Comet assay. Mutat Res, 2000. 467(1): p. 21-30.
60. Salvatore, M., et al., Molecular link(s) between hepatoblastoma pathogenesis and exposure to di-(2-ethylhexyl)phthalate: a hypothesis. Folia Med (Plovdiv), 2008. 50(4): p. 17-23.
61. Wall, M.E. and M.C. Wani, Camptothecin. Discovery to clinic. Ann N Y Acad Sci, 1996. 803: p. 1-12.
62. Hsiang, Y.H. and L.F. Liu, Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res, 1988. 48(7): p. 1722-6.
63. Moertel, C.G., et al., Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep, 1972. 56(1): p. 95-101.
64. TEN Bokkel Huinink, W., et al., Topotecan versus paclitaxel for the treatment of recurrent epithelial ovarian cancer. J Clin Oncol, 1997. 15(6): p. 2183-93.
65. Cormio, G., et al., Long-term topotecan therapy in recurrent or persistent ovarian cancer. Eur J Gynaecol Oncol, 2011. 32(2): p. 153-5.
66. Oberhoff, C., et al., Topotecan chemotherapy in patients with breast cancer and brain metastases: results of a pilot study. Cancer Res Treat, 2001. 24(3): p. 256-60.
67. Stewart, D.J., Topotecan in the first-line treatment of small cell lung cancer. Oncologist, 2004. 9 Suppl 6: p. 33-42.
68. von Pawel, J., et al., Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol, 1999. 17(2): p. 658-67.
69. Choi, Y.H., et al., A phase I study of combination therapy with S-1 and irinotecan in patients with previously untreated metastatic or recurrent colorectal cancer. Cancer Chemoth Pharm, 2011. 68(4): p. 905-12.
70. Ma, C.X., et al., A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat, 2013. 137(2): p. 483-92.
71. Bharthuar, A., et al., Breast cancer resistance protein (BCRP) and excision repair cross complement-1 (ERCC1) expression in esophageal cancers and response to cisplatin and irinotecan based chemotherapy. J Gastrointest Oncol, 2014. 5(4): p. 253-8.
72. Liu, L.F., DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem, 1989. 58(1): p. 351-375.
73. Malik, M. and J.L. Nitiss, DNA repair functions that control sensitivity to topoisomerase-targeting drugs. Eukaryot Cell, 2004. 3(1): p. 82-90.
74. Liu, L.F., et al., Mechanism of action of camptothecin. Ann N Y Acad Sci, 2000. 922: p. 1-10.
75. Peterson, R.T., et al., Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol, 2004. 22(5): p. 595-9.
76. Stern, H.M. and L.I. Zon, Cancer genetics and drug discovery in the zebrafish. Nature Rev Cancer, 2003. 3(7): p. 533-539.
77. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nature Rev Genet, 2007. 8(5): p. 353-67.
78. Konantz, M., et al., Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci, 2012. 1266: p. 124-37.
79. Drabsch, Y., et al., Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res, 2013. 15.6: R106.
80. Wei, Y., et al., Cloning and functional characterization of PACAP‐specific receptors in zebrafish. Ann N Y Acad Sci, 1998. 865(1): p. 45-48.
81. Kari, G., U. Rodeck, and A.P. Dicker, Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther, 2007. 82(1): p. 70-80.
82. Cailleau, R., et al., Breast tumor cell lines from pleural effusions. J Natl Cancer Inst, 1974. 53(3): p. 661-74.
83. Subik, K., et al., The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Canc Basic Clin Res, 2010. 4: p. 35-41.
84. Hutchinson, L., Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clin Oncol, 2010. 7(12): p. 669-70.
85. Marques, I.J., et al., Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer, 2009. 9: p. 128.
86. Godement, P., et al., A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development, 1987. 101(4): p. 697-713.
87. Golab, J., et al., G-CSF prevents the suppression of bone marrow hematopoiesis induced by IL-12 and augments its antitumor activity in a melanoma model in mice. Ann Oncol, 1998. 9(1): p. 63-9.
88. Zon, L.I. and R.T. Peterson, In vivo drug discovery in the zebrafish. Nat Rev Drug Discov, 2005. 4(1): p. 35-44.
89. Haffter, P., et al., The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996. 123: p. 1-36.
90. Hiatt, R.A., et al., The breast cancer and the environment research centers: transdisciplinary research on the role of the environment in breast cancer etiology. Environ Health Perspect, 2009. 117(12): p. 1814-22.
91. Peakall, D.B., Phthalate esters: Occurrence and biological effects. Residue Rev, 1975. 54: p. 1-41.
92. Schulte-Hermann, R., W. Parzefall, and W. Huber, A comprehensive literature review and toxicological risk assessment of possible effects on reproduction of di (2-ethylhexyl) phthalate (DEHP) and its metabolites from PVC-containing medical devices. Prepared for the Austrian Ministry for Social Security and Generations, 2001.
93. Thomas, R., Drinking Water and Health: Volume 6. 1986.
94. Halliwell, B. and C.E. Cross, Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect, 1994. 102(Suppl 10): p. 5.
95. Li, Y., et al., Camptothecin and Fas receptor agonists synergistically induce medulloblastoma cell death: ROS-dependent mechanisms. Anticancer Drugs, 2009. 20(9): p. 770-8.
96. Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84.
97. Ray, P.D., B.W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012. 24(5): p. 981-90.
98. Ganguly, A., et al., Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species-mediated apoptotic topoisomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer Res, 2007. 67(24): p. 11848-58.
99. Chen, N.H., J.W. Liu, and J.J. Zhong, Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J Pharmacol Sci, 2008. 108(2): p. 212-6.
100. Olive, P.L. and J.P. Banath, The comet assay: a method to measure DNA damage in individual cells. Nat Protoc, 2006. 1(1): p. 23-9.
101. Gunasekarana, V., G.V. Raj, and P. Chand, A comprehensive review on clinical applications of comet assay. J Clin Diagn Res, 2015. 9(3): p. GE01-5.
102. Pilch, D.R., et al., Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol, 2003. 81(3): p. 123-9.
103. Chowdhury, D., et al., gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell, 2005. 20(5): p. 801-9.
104. Muslimovic, A., O. Hammarsten, and P. Johansson, Measurement of H2AX phosphorylation as a marker of ionizing radiation induced cell damage. InTech Open Access Publisher, 2012.
105. Myers, K., et al., ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet, 2009. 5(1): p. e1000324.
106. Pelicano, H., D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 2004. 7(2): p. 97-110.
107. Yoshiyama, K.O., K. Sakaguchi, and S. Kimura, DNA damage response in plants: conserved and variable response compared to animals. Biology (Basel), 2013. 2(4): p. 1338-56.
108. Smith, J., et al., The ATM–Chk2 and ATR–Chk1 Pathways in DNA Damage Signaling and Cancer. Adv Cancer Res, 2010. 108. C: 73-112.
109. Khalil, H., H. Tummala, and N. Zhelev, ATM in focus: A damage sensor and cancer target. Biodiscovery, 2012. 5.
110. Bartek, J. and J. Lukas, Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 2003. 3(5): p. 421-9.
111. Huang, M., et al., Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. Mol Cancer Ther, 2008. 7(6): p. 1440-1449.
112. Scott, J.L., et al., Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis, 2010. 69(8): p. 1502-10.
113. Agents Classified by the IARC Monographs. IARC, 2015. Volume 1–114.
114. Tamie, N.P., Nancy, B. Hopf PhD and Paul, A. Schulte PhD.,, Di (2-ethylhexyl) phthalate (DEHP). WHO, 2000. Vol 77
(http://monographs.iarc.fr/ENG/Publications/techrep42/).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code