Responsive image
博碩士論文 etd-0115117-215818 詳細資訊
Title page for etd-0115117-215818
論文名稱
Title
藉沃特拉方法探討金氧半場效電晶體尺寸對於弱崩潰區域非線性的影響
Study of distortion of MOSFET in the weak avalanche region under different geometry conditions using Volterra series
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-10
繳交日期
Date of Submission
2017-02-15
關鍵字
Keywords
相消機制、崩潰網路、弱崩潰、非線性、金氧半場效電晶體、沃特拉級數
avalanche network, weak avalanche, nonlinearity, cancellation mechanism, Volterra series, MOSFET
統計
Statistics
本論文已被瀏覽 5625 次,被下載 69
The thesis/dissertation has been browsed 5625 times, has been downloaded 69 times.
中文摘要
本論文目的藉沃特拉方法探討金氧半場效電晶體尺寸對於弱崩潰區域非線性的影響,首先先探討通道長度對於金氧半場效電晶體操作於飽和區和弱崩潰區的線性度之影響,接著分析閘極寬度對於線性度的影響。在考量線性度、增益、輸出功率、及效率這些條件下,分析出最佳的金氧半場效電晶體尺寸,以供電路設計者選擇電晶體尺寸之參考。在沃特拉分析中,所採用的金氧半場效電晶體非線性模型有多考慮崩潰網路,使得等效電路模型可以在弱崩潰區範圍內達到準確性。分析的偏壓範圍從飽和區到弱崩潰區,在各個偏壓點建立出等效電路模型,再將萃取出來的偏壓相依參數以多項式展開,取得沃特拉分析所需要的非線性源高階係數值。依沃特拉的基本運作從一階電路開始並逐漸往高階非線性電路求解出各階的節點響應,獲得到各階的沃特拉核,以計算出各個非線性源的貢獻量。當金氧半場效電晶體操作於弱崩潰區時,非線性失真隨著通道長度下降而下降,根據本研究的沃特拉分析結果,失真下降的原因是起因於內部非線性源崩潰電感與轉導之間的非線性相消,而崩潰電感非線性源的失真貢獻會因為通道長度越短而越明顯,導致非線性相消隨通道長度越短而越顯著,進而讓失真隨通道長度下降而降低。另一方面,崩潰電感非線性源的失真貢獻會隨著閘極寬度越小而越多,因此,崩潰電感與轉導之間的非線性相消機制會隨著閘極寬度越小而越顯著,非線性失真在閘極寬度較小的金氧半場效電晶體就會較低。
Abstract
This work analyzes the influence of geometry on distortion for MOSFETs operating in the weak avalanche region through the Volterra series method. The linearity of the MOSFETs in the saturation and weak avalanche regions is analyzed for different channel length first. Second, the linearity with respect to gate width is investigated. By compromise between linearity, gain, output power, and efficiency, a suitable geometry of the MOSFET is obtained for providing guideline of device size selection. In the presented Volterra analysis, the nonlinear model for MOSFETs incorporates with the avalanche network in order to achieve accuracy of the model in the weak avalanche region. The analyzed bias range is from the saturation to weak avalanche region. The equivalent circuit model of the MOSFETs is established at each bias point, and the polynomial coefficients of the nonlinear elements are obtained by polynomial expansion. The node voltage responses are computed from the first order to higher order and then the Volterra kernels can be obtained for nonlinear contribution determination. Nonlinear distortion decreases with reducing channel length in the weak avalanche region. This is due to internal nonlinear cancellation mechanism between the breakdown inductance and transconductance nonlinearities. The increased breakdown inductance contribution with reducing channel length leads to more obvious cancellation for short channel than the results for long channel. On the other hand, the breakdown inductance contribution increases with decreasing gate width. Therefore, obvious nonlinear cancellation between the breakdown inductance and transconductance is found as gate width decreases. Nonlinear distortion of the MOSFETs reduces for small gate width.
目次 Table of Contents
目 錄
論文審定書……………………………………..………………………. i
致謝……………………………………………..………………………. ii
中文摘要………………………………………..………………………. iii
英文摘要………………………………………..………………………. iv
目錄……………………………………………..………………………. v
圖次……………………………………………..………………………. vii
表次……………………………………………..……………………….. x
第 一 章 緒論…...………………………………………………… 1
1.1背景介紹與研究動機…………………………………………... 1
1.2論文架構…………………………………………………….. 4
第 二 章 金氧半場效電晶體游離衝撞效應……………….….. 5
2.1金氧半場效電晶體的基本動作原理……………………........ 5
2.2游離衝撞效應.............................................………………........ 6
第 三 章 高頻等效電路模型建立….……………………….…. 13
3.1簡介.….….….……………………………..……………........ 13
3.2電晶體可靠度測試…………………………………….……....... 13
3.3散射參數量測之校正……………………………….……....... 14
3.4微波參數矩陣..…………………………………….……....... 19
3.5去嵌入程序..…..…………………………………….……....... 24
3.6等效電路模型參數萃取……………………………….……...... 30
第 四 章 非線性特性與沃特拉級數分析……………….…..…..37
4.1簡介.….….….……………………………..……………........ 37
4.2非線性失真..…..…………………………………….……....... 37
4.3沃特拉級數方法…………………………………….……....... 42
4.4以沃特拉方法分析電晶體非線性失真…………….……....... 47
第 五 章 結果與討論……………………………………………... 53
5.1金氧半場效電晶體尺寸敘述……………………………......... 53
5.2電晶體操作於弱崩潰區之非線性失真與通道長度的關係.. … 54
第 六 章 結論……………………………………………………….... 71
參考文獻………………………………………………………... 73
參考文獻 References
[1] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005.
[2] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[3] R. L. Johnston, B. C. DeLoach, and B. G. Cohen, "A silicon diode microwave oscillator," The Bell System Technical Journal, vol. 44, no. 2, pp. 369-372, 1965.
[4] W. T. Read, "A proposed high-frequency, negative-resistance diode," The Bell System Technical Journal, vol. 37, no. 2, pp. 401-446, 1958.
[5] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981.
[6] G. A. M. Hurkx, P. G. M. Baltus, J. A. M. d. Boet, J. A. M. Geelen, and J. J. E. M. Hageraats, "The pn-junction as an inductive design component in silicon IC processes," in Proceedings of Bipolar/Bicmos Circuits and Technology Meeting, 1995, pp. 125-128.
[7] C. I. Lee and D. S. Pan, "Theory for high Q p-n junction avalanche inductors," Appl. Phys. Lett., vol. 89, no. 1, pp. 013501-013501-3, Jul. 2006.
[8] C. I. Lee, V. H. Ngo, and D. S. Pan, "Inductance probing into the semiconductor breakdown," Appl. Phys. Lett., vol. 89, no. 17, pp. 172112-172112-3, Oct. 2006.
[9] C. I. Lee, V. H. Ngo, and D. S. Pan, "New phenomena of mixed breakdown in silicon," phys. stat. sol., vol. 243, no. 4, pp. R25-R27, Feb. 2006.
[10] P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits. Norwell, MA: Kluwer, 1998.
[11] K. Y. Chen and C. C. Huang, "Characterisation of GaAs pseudomorphic high electron mobility transistors for Volterra-series circuit analysis," IET Microw. Antennas Propag., vol. 3, no. 2, pp. 228-234, Mar. 2009.
[12] J. W. Bandler, Q. J. Zhang, S. Ye, and S. H. Chen, "Efficient large-signal FET parameter extraction using harmonics," IEEE Trans. Microw. Theory Techn., vol. 37, no. 12, pp. 2099-2108, 1989.
[13] C.-C. Huang and H.-T. Pai, "MESFET two-dimensional nonlinear current model extraction for Volterra-series analysis," Microwave Opt. Technol. Lett., vol. 41, no. 6, pp. 461-463, Jun. 2004.
[14] S. Lee, C. S. Kim, and H. K. Yu, "A small-signal RF model and its parameter extraction for substrate effects in RF MOSFETs," IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1374-1379, Jul. 2001.
[15] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit," IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp. 1151-1159, 1988.
[16] B. Toole, C. Plett, and M. Cloutier, "RF circuit implications of moderate inversion enhanced linear region in MOSFETs," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 2, pp. 319-328, Feb. 2004.
[17] E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinugawa, Y. Katsumata, and H. Iwai, "Future perspective and scaling down roadmap for RF CMOS," in VLSI Tech. Symp., 1999, pp. 163-164.
[18] H. Wong, "A physically-based MOS transistor avalanche breakdown model," IEEE Trans. Electron Devices, vol. 42, no. 12, pp. 2197-2202, Dec. 1995.
[19] M. E. Elta and G. I. Haddad, "Mixed tunneling and avalanche mechanisms in p-n junctions and their effects on microwave transit-time devices," IEEE Trans. Electron Devices, vol. ED-25, no. 6, pp. 694-702, Jun. 1978.
[20] J. C. Mitros, "Empirical model of MOSFET breakdown voltages," IEEE Trans. Computer-Aided Design, vol. CAD-12, no. 4, pp. 511-515, Apr. 1993.
[21] C.-P. Lee, F. H. F. Chau, W. Ma, and N. L. Wang, "The safe operating area of GaAs-based heterojunction bipolar transistors," IEEE Trans. Electron Devices, vol. 53, no. 11, pp. 2681-2688, Nov. 2006.
[22] C. I. Lee, W. C. Lin, and Y. T. Lin, "Modeling inductive behavior of MOSFET scattering parameter S22 in the breakdown regime," IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 502-508, Mar. 2012.
[23] F.-C. Hsu, P.-K. Ko, S. Tam, C. Hu, and R. S. Muller, "An analytical breakdown model for short-channel MOSFET's," IEEE Trans. Electron Devices, vol. ED-29, no. 11, pp. 1735-1740, Nov. 1982.
[24] F. P. Chou, G. Y. Chen, C. W. Wang, Y. C. Liu, W. K. Huang, and Y. M. Hsin, "Silicon photodiodes in standard CMOS technology," IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 3, pp. 730-740, May/Jun. 2011.
[25] C. Enz and Y. Cheng, "MOS transistor modeling for RF IC design," IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 186-201, Feb. 2000.
[26] I. Hirano, Y. Nakasaki, S. Fukatsu, M. Goto, K. Nagatomo, S. Inumiya, K. Sekine, Y. Mitani, and K. Yamabe, "Time-dependent dielectric breakdown (TDDB) distribution in n-MOSFET with HfSiON gate dielectrics under DC and AC stressing," Microelectron. Reliability, vol. 53, no. 12, pp. 1868-1874, Dec. 2013.
[27] J.-S. Yuan and H. Tang, "CMOS RF design for reliability using adaptive gate-source biasing," IEEE Trans. Electron Devices, vol. 55, no. 9, pp. 2348-2353, Sep. 2008.
[28] J. S. Yuan, H.-D. Yen, S. Chen, R.-L. Wang, G.-W. Huang, Y. Z. Juang, C.-H. Tu, W.-K. Yeh, and J. Ma, "Experimental verification of RF stress effect on cascode class-E PA performance and reliability," IEEE Trans. Device Mater. Rel., vol. 12, no. 2, pp. 369-375, 2012.
[29] C. Yu, J.-S. Yuan, and H. Yang, "MOSFET linearity performance degradation subject to drain and gate voltage stress," IEEE Trans. Device Mater. Rel., vol. 4, no. 4, pp. 681-689, Dec. 2004.
[30] S. A. Wartenberg, RF Measurements of Die and Packages. Norwood, MA: Artech House, 2002.
[31] M. Isler and K. Schünemann, "Impact-ionization effects on the high-frequency behavior of HFETs," IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 858-863, Mar. 2004.
[32] A. M. E. Safwat and L. Hayden, "Sensitivity analysis of calibration standards for fixed probe spacing on-wafer calibration techniques [vector network analyzers]," in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 2257-2260.
[33] X. S. Loo, K. S. Yeo, and K. W. J. Chew, "THRU-based cascade de-embedding technique for on-wafer characterization of RF CMOS devices," IEEE Trans. Electron Devices, vol. 60, no. 9, pp. 2892-2899, Sep. 2013.
[34] M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization," in Proc. Bipolar Circuits and Technology Meeting, Minneapolis, MN, 1991, pp. 188-191.
[35] S. Lee and H. K. Yu, "Parameter extraction technique for the small-signal equivalent circuit model of microwave silicon MOSFETs," in Proc. High Speed Semicond. Dev. Circuits, 1997, pp. 182-191.
[36] S. Lee, "A parameter extraction method for a small-signal MOSFET model including substrate parameters," in Proc. IEEE Int. Conf. Semicond. Electron., 2002, pp. 255-260.
[37] S. S. Islam and A. F. M. Anwar, "Nonlinear analysis of GaN MESFETs with Volterra series using large-signal models including trapping effects," IEEE Trans. Microw. Theory Techn., vol. 50, no. 11, pp. 2474-2479, Nov. 2002.
[38] S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed.: Norwood, MA: Artech House, 2003.
[39] F. Giannini and G. Leuzzi, Nonlinear Microwave Circuit Design. England: John Wiley & Sons Ltd, 2004.
[40] J. H. K. Vuolevi and T. Rahkonen, "Extraction of a nonlinear AC FET model using small-signal S-parameters," IEEE Trans. Microw. Theory Techn., vol. 50, no. 5, pp. 1311-1315, May 2002.
[41] J. Vuolevi and T. Rahkonen, "Analysis of third-order intermodulation distortion in common-emitter BJT and HBT amplifiers," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no. 12, pp. 994-1001, Dec. 2003.
[42] C. I. Lee and W. C. Lin, "Investigation of geometry dependence on MOSFET linearity in the impact ionization region using Volterra series," Microelectron. Reliabil., vol. 55, no. 8, pp. 1163-1168, Jul. 2015.
[43] J. Lee, W. Kim, Y. Kim, T. Rho, and B. Kim, "Intermodulation mechanism and linearization of AlGaAs/GaAs HBTs," IEEE Trans. Microw. Theory Techn., vol. 45, no. 12, pp. 2065-2072, Dec. 1997.
[44] R. A. Minasian, "Intermodulation distortion analysis of MESFET amplifiers using the Volterra series representation," IEEE Trans. Microw. Theory Techn., vol. 28, no. 1, pp. 1-8, Jan. 1980.
[45] C.-C. Ho, C.-W. Kuo, Y.-J. Chan, W. Y. Lien, and J. C. Guo, "0.13-μm RF CMOS and varactors performance optimization by multiple gate layouts," IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2181-2185, Dec. 2004.
[46] V. I. Cojocaru, A. Bannon, and T. J. Brazil, "Enhanced prediction capabilities of harmonic and intermodulation distortion characteristics of m-Wave and mm-Wave PHEMTs via an advanced non-linear model," in 28th European Microwave Conference, 1998, pp. 334-339.
[47] A. Samelis and D. Pavlidis, "Mechanisms determining third order intermodulation distortion in AlGaAs/GaAs heterojunction bipolar transistors," IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2374-2380, Dec. 1992.
[48] A. F. Tong, W. M. Lim, C. B. Sia, K. S. Yeo, Z. L. Teng, and P. F. Ng, "RFCMOS unit width optimization technique," IEEE Trans. Microw. Theory Techn., vol. 55, no. 9, pp. 1844-1853, Sep. 2007.
[49] Int. Technol. Roadmap for Semiconductors (ITRS), 2011, System Drivers [Online]. Available: http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf
[50] Y. Sun, G. G. Fischer, and J. C. Scheytt, "A compact linear 60-GHz PA with 29.2% PAE operating at weak avalanche area in SiGe," IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2581-2589, Aug. 2012.
[51] P. Sakalas, M. Ramonas, M. Schroter, C. Jungemann, A. Shimukovitch, and W. Kraus, "Impact ionization noise in SiGe HBTs: comparison of device and compact modeling with experimental results," IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 328-336, Feb. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code