Responsive image
博碩士論文 etd-0116101-131708 詳細資訊
Title page for etd-0116101-131708
論文名稱
Title
雙相不?袗?高能量束銲件的微觀組織與織構演化之研究
Microstructure and Texture Evolutions of High Energy Density Beam (HED) Welded Duplex Stainless Steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
190
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-12-28
繳交日期
Date of Submission
2001-01-16
關鍵字
Keywords
雙相不?袗、顯微織構、高能量束銲接
Microtexture, Duplex Stainless Steel, HED welding
統計
Statistics
本論文已被瀏覽 5728 次,被下載 1773
The thesis/dissertation has been browsed 5728 times, has been downloaded 1773 times.
中文摘要
Abstract

The evolutions of microstructure and texture in 2205 duplex stainless steel (DSS) welds produced by two high energy density (HED) processes, CO2 laser beam welding (LBW) and electron beam welding (EBW) were investigated. A variety of analytical techniques were applied for the study on microstructure and texture of the welds. In which, optical microscopy and electron microscopy were used to evaluate the detailed microstructure. X-ray diffraction (XRD) was put to investigate the crystallographic textures among the base metal, heat affected zone and fusion zone. Particular attention was focused on the determination of microtexture in HED welds by using electron backscatter diffraction (EBSD) technique. After that, an effort was put to compare the results by both of X-ray macro-texture and EBSD-microtexture.
The recorded micrographs illustrates that the HED welds are mainly composed of d-ferrite grained structure, which is further decorated with allotriomorphic and Widmanstätten austenite (g) at grain boundaries. With preheating treatment, the volume fraction of austenite in LB weld is gradually increased, and then leading to a completely different morphology. An apparent amount of transformation twins are found in g phase under TEM observations. No matter that they are Widmanstätten austenite in nonpreheated welds or blocky austenite in preheated welds, all of the transformation twins have the same {111} twin boundary. Furthermore, modulated fringes composed of ferrite, secondary austenite and amorphous phase are also found in the nonpreheated LB weld. It is ascribed to the rapid cooling effect occurred in the nonpreheated LB weld. Two chromium nitrides (CrN and Cr2N) are also identified and attributed to their different driving forces.
A remarkable texture gradient is found in the base metal along the thickness direction for both of austenite and ferrite phases in 2205 duplex stainless steel. The texture is governed separately by the {001}//ND-fibre, a-fibre, Goss and rotated cube components. Despite the analogous local texture evolutions revealing in both LB and EB welds, the global solidification textures in the two processes are considerably different. For which, the texture of LB weld is predominantly evolved with the Goss component. However, the texture of EB weld is mainly composed of the pronounced cube {001}<100>, while the Goss {011}<100> and rotated cube {001}<110> are weakened. The microtexture analysis shows that the centre region of the weld is dominated by oriented nucleation mechanism. Whereas, regions near the fusion boundaries are governed by oriented growth mechanism. The texture feature from EBSD does consist well with the XRD measured result. Moreover, the measurement of local texture from EB weld clearly indicates that a high percentage of high angle grain boundaries distributed in the crown. By contrary, a high percentage of low angle grain boundaries distributed in the root. Both of them again reflect the cooling effect of weld on the solidification mechanism. Throughout this study, the key factors to be responsible for the evolution of solidification texture of HED welded DSS are summarized. Those are thermal conductivity of the weld, turbulent flow in the molten pool, parent textures and the orientation relationship between ferrite and austenite.
Abstract
Abstract

The evolutions of microstructure and texture in 2205 duplex stainless steel (DSS) welds produced by two high energy density (HED) processes, CO2 laser beam welding (LBW) and electron beam welding (EBW) were investigated. A variety of analytical techniques were applied for the study on microstructure and texture of the welds. In which, optical microscopy and electron microscopy were used to evaluate the detailed microstructure. X-ray diffraction (XRD) was put to investigate the crystallographic textures among the base metal, heat affected zone and fusion zone. Particular attention was focused on the determination of microtexture in HED welds by using electron backscatter diffraction (EBSD) technique. After that, an effort was put to compare the results by both of X-ray macro-texture and EBSD-microtexture.
The recorded micrographs illustrates that the HED welds are mainly composed of d-ferrite grained structure, which is further decorated with allotriomorphic and Widmanst&auml;tten austenite (g) at grain boundaries. With preheating treatment, the volume fraction of austenite in LB weld is gradually increased, and then leading to a completely different morphology. An apparent amount of transformation twins are found in g phase under TEM observations. No matter that they are Widmanst&auml;tten austenite in nonpreheated welds or blocky austenite in preheated welds, all of the transformation twins have the same {111} twin boundary. Furthermore, modulated fringes composed of ferrite, secondary austenite and amorphous phase are also found in the nonpreheated LB weld. It is ascribed to the rapid cooling effect occurred in the nonpreheated LB weld. Two chromium nitrides (CrN and Cr2N) are also identified and attributed to their different driving forces.
A remarkable texture gradient is found in the base metal along the thickness direction for both of austenite and ferrite phases in 2205 duplex stainless steel. The texture is governed separately by the {001}//ND-fibre, a-fibre, Goss and rotated cube components. Despite the analogous local texture evolutions revealing in both LB and EB welds, the global solidification textures in the two processes are considerably different. For which, the texture of LB weld is predominantly evolved with the Goss component. However, the texture of EB weld is mainly composed of the pronounced cube {001}<100>, while the Goss {011}<100> and rotated cube {001}<110> are weakened. The microtexture analysis shows that the centre region of the weld is dominated by oriented nucleation mechanism. Whereas, regions near the fusion boundaries are governed by oriented growth mechanism. The texture feature from EBSD does consist well with the XRD measured result. Moreover, the measurement of local texture from EB weld clearly indicates that a high percentage of high angle grain boundaries distributed in the crown. By contrary, a high percentage of low angle grain boundaries distributed in the root. Both of them again reflect the cooling effect of weld on the solidification mechanism. Throughout this study, the key factors to be responsible for the evolution of solidification texture of HED welded DSS are summarized. Those are thermal conductivity of the weld, turbulent flow in the molten pool, parent textures and the orientation relationship between ferrite and austenite.
目次 Table of Contents
Table of Contents
Page
Abstract……………………………………………………………………………………..I
Table of Contents…………………………………………………………………..….….III
List of Tables…………………………………………………………………………......VII
List of Figures………………………………………………………………………...…VIII
Acknowledgements………………………………………………….……………….…..XV

CHAPTER 1 Introduction………………………………………………………..….....1
1.1 Background…………………………………………………………………………...1
1.2 Motivations and Objectives…………………………………………………………..3

CHAPTER 2 Literatures Review…………………………………………………....…5
2.1 Characteristics of High Energy Density Beam (HED) Welding…………………..….5
2.1.1 Laser Beam Welding (LBW) ………………………………….….…….....….5
2.1.2 Electron Beam Welding (EBW) ………………………………………..…….7
2.1.3 Formation of Keyhole in HED Welding…….………………………..…..…...9
2.2 Characteristics of Fe-Cr-Ni Duplex Stainless steel (DSS).……………………….…..9
2.3 Solidification and Crystallization Phenomena of Fusion Welds………………..…....12
2.3.1 Regions of a Fusion Weld………………………………………………..…..15
2.3.2 Epitaxial Solidification of Fusion Welds………………………………...…..17
2.3.3 Solidification Parameters and Weld Microstructures………………………..19
2.4 Microstructures in HED Welded Fe-Cr-Ni Duplex Stainless Steels………..……......25
2.5 Primary Solidification Modes of Fe-Cr-Ni Alloys….……………………………….28
2.6 Texture of Metals…………………………………………………….……..…....…..31
2.6.1 Macrotexture, Microtexture, and Mesotexture…………………...…….…....33
2.6.2 Methods for Texture Determination……………...…………………………..33
2.6.3 Microtexture Determination of Welding Using EBSD...…………..……..….38
2.6.4 Data Representation of Textures……………………………………………..39
2.7 Development of Textures in Stainless Steels…………………………..………...…...40
2.8 Anisotropy of Crystal Growth during Solidification………..………………..….…...43
2.9 Formation of Grain Boundaries during Welding…………………………..……...….47

CHAPTER 3 Experimental Procedures……………………………………...….….51
3.1 Alloy Design of Base Metal……………………………………………………..…..51
3.2 High Energy Density Beam (HED) Weldings…………………………..………...…51
3.2.1 CO2 Laser Beam Welding (LBW).……………………………………..…....51
3.2.2 Electron Beam Welding (EBW)………………………….………..……...…52
3.3 Metallography…………………………………………………………….….…...…52
3.4 TEM/AEM Observations…………………………………………………….…..….53
3.5 Textures Measurements…………………………..……………………………...…..53
3.5.1 X-ray Diffractometry for Macrotexture Measurements………………..……53
3.5.2 SEM-based Electron Backscatter Diffraction (EBSD) for Micro/MesotextureMeasurements………………...…………………..……..54
CHAPTER 4 Results……………………………………………………….…………..62
4.1 Microstructure and Texture Evolution of the DSS Base Metal…………..….……....62
4.1.1 Microstructure of the Base Metals……………………….……………...…..62
4.1.2 Textures Evolution of the Solution-treated 2205 DSS Base Metals
Measured by Conventional X-ray Diffraction…………………………..….62
4.1.3 Textures Evolution of the Solution-treated 2205 DSS Base Metals Measured by EBSD………………………………….…………..….……….…..……...73
4.2 Microstructure Changes of HED Welded DSS………………………………..….......79
4.2.1 Microstructure Changes of CO2 Laser Beam (LB) Welded 2205 DSS.…….79
4.2.2 Identification of Chrome Nitrides…………………………………….…....89
4.2.3 Microstructure Changes of Electron Beam (EB) Welded 2205 DSS…..…..99
4.3 Solidification Textures of CO2 LB Welded DSS…………………………..….….....99
4.3.1 Local Textures Evolution of CO2 LB Welded DSS….…………...…..…...104
4.3.2 Grain Boundary Mesorientation in CO2 LB Welded DSS…………….......110
4.4 Solidification Textures of EB Welded 2205 DSS…….…………………………….123
4.4.1 Macrotexture Evolution of EB Welded 2205 DSS………….…………......123
4.4.2 Local Textures Evolution of EB Welded 2205 DSS……………………….125
4.4.3 Grain Boundary Misorientation in EB Welded DSS……………….……...130

CHAPTER 5 Discussion……………………………………………………….....….132
5.1 Analysis of Parent Texture and Comparison of XRD and EBSD Measured Data
in the Solution-treated 2205 Duplex Stainless Steel………………………………..132
5.1.1 Evolution of Parent Textures in 2205 DSS Base Metal……...……….…...132
5.1.2 Comparison of Texture Data Measured by XRD and EBSD…...…….…...135
5.2 Transformation of Ferrite and Austenite in HED Welded DSS……...………...…..139
5.3 Formation of Twinnng Austenite in 2205 DSS LB Welds……..…………...….….143
5.4 Precipitation of Chromium Nitrides in CO2 LB Welded 2205 DSS…………..…..145
5.5 Texture Competition in Solidification of Cubic Metal……….………………..….151
5.6 Comparisons of Microtexture in the Welds……………………………..……..….153
5.6.1 Microtexture between Crown and Root of the Weld………………...……153
5.6.2 Microtexture between Weld Centre and Fusion Boundary...………..….…154
5.7 Factors Affecting the Texture Evolution of HED Welded DSS…………….….….160

CHAPTER 6 Conclusions……………………………………………………….….167
References………………………………………………………………….……..….169
Appendices………………………………………………………………………….…181
A.1 On the Terminology of Ferrite in Stainless Steel………………………….….….181
A.2 Rodrigues-Frank (R-F) Space for Texture Representations………………….….182
References A……………………………………….……………………………….….185
Vita…………………………………………………………………………………...XVII
參考文獻 References
References

1. H. D. Solomon and J. T. M. Devine, Duplex Austenitic-Ferritic Stainless Steels, ed. by R. A. Lula: St. Louis: American Society for Metals: (1982), 693-756.

2. R. Lagneborg, Preceedings of International Conference on Stainless Steels, ed. by K. Yokota: Chiba, Japan: The Iron and Steel Institute of Japan: (1991), 11-24.

3. J. Charles, The Third International Conference on Duplex Stainless Steels, ed. by J. Charles and S. Bernhardsson: Beaune, France: Les Editions de Physique: (1991), 3-48.

4. S. Hertzman, Scandinavian Journal of Metallurgy, 24(4), (1995), 140-146.

5. F. Dupoiron and J. P. Audouard, Scandinavian Journal of Metallurgy, 25(3), (1996), 95-102.

6. J. Street, Metal Construction, Sep., (1986), 565-569.

7. M. Liljas, The Fourth International Conference on Duplex Stainless Steels, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper V.

8. D. J. Kotecki and J. L. P. Hilkes, The Fourth International Conference on Duplex Stainless Steel, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper KVI.

9. L. van Nassau, H. Meelker, and J. Hilkes, Le Soudage dans le Monde, 31(5), (1993), 323-343.

10. J. A. Brooks, A. W. Thompson, and J. C. Williams, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 14(7), (1983), 1271-1281.

11. H. Kokawa, A. Yamamoto, and T. Kuwana, Welding Journal, 68(3), (1989), 92-s-101-s.

12. S. A. David, Welding Journal, 60(4), (1981), 63-s-71-s.

13. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 10A, (1979), 1183-1190.

14. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 11(5), (1980), 717-725.

15. N. Suutala, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 14(2), (1983), 191-197.

16. H. Hu, Texture, 1, (1974), 233-258.

17. D. Raabe and K. L&uuml;cke, Steel Research, 63(10), (1992), 457-463.

18. C. D. Singh, V. Ramaswamy, and C. Suryanarayana, Textures and Microstructures, 13, (1991), 227-241.

19. D. Raabe and K. L&uuml;cke, Materials Science and Technology, 9(4), (1993), 302-311.

20. V. I. Yushkov, et al., Materials Science and Engineering, 64, (1984), 157-169.

21. D. Raabe and K. L&uuml;cke, Materials Science Forum, 157-162, (1994), 1469-1474.

22. D. Raabe, et al., Materials Science Forum, 157-162, (1994), 1039-1044.

23. J. A. Venables and C. J. Harland, Philosophical Magazine, 27, (1973), 1193-1200.

24. D. J. Dingley and V. Randle, Journal of Materials Science, 27, (1992), 4545-4566.

25. S. A. David, J. M. Vitek, and T. L. Hebble, Welding Journal, 66(10), (1987), 289-s-300-s.

26. D. J. Kotecki, Duplex Austenitic-Ferritic Stainless Steels, ed. by R. A. Lula: St. Louis: American Society for Metals: (1982), 415-430.

27. D. J. Kotecki, Welding Journal, 65(10), (1986), 273-s-278-s.

28. J. C. Lippold, I. Varol, and W. A. B. III, The Third International Conference Duplex Stainless Steels, ed. by J. Charles and S. Bernhardsson: Beaune, France: Les Editions de Physique: (1991), 383-391.

29. Y. Arata, ICALEO '86, ed. by C. M. Banas and G. L. Whitney: Arlington: IFS Ltd. Springer-Verlag: (1986), 73-79.

30. B. C. Quigley, The Physics of Welding, Pergamon: London: (1984), 204-267.

31. G. Cam and M. Kocak, International Materials Reviews, 43(1), (1998), 1-44.

32. R. J. Conti, Welding Journal, 48(10), (1969), 800-806.

33. D. E. Passoja, Welding Journal, 45(8), (1966), 379-s-384-s.

34. C. E. Albright, et al., Welding Handbook--Welding Technology, American Welding Society: Miami: (1987), 21-22.

35. F. Matsuda, T. Hashimoto, and Y. Arata, Transactions of Japan Welding Society, 1(1), (1970), 1-14.

36. K. W. Carlson, ICALEO '85, ed. by C. Albright: San Francisco: IFS Ltd and Springer-Verlag: (1985), 49-57.

37. M. Davis, P. Kapadia, and J. Dowden, Welding Journal, 65(7), (1986), 167-s-174-s.

38. C. Lampa, et al., Journal of Physics D-Applied Physics, 30(9), (1997), 1293-1299.

39. E. A. Metzbower, Welding Journal, 69(5), (1990), 272-s-278-s.

40. D. Radaj, Heat Effects of Welding---Temperature Field, Residual Stress, Distortion, Springer-Verlag: Berlin: (1992), 92-93.

41. T. Zacharia, et al., Welding Journal, 68(12), (1989), 499-s-509-s.

42. J. R. Davis, Stainless Steels, ASM International: Materials Park: (1996), iii.

43. P. Schafmeister and R. Ergang, Arch. Eisenh&uuml;ttenwes., 12, (1939), 459-464.

44. J. A. Brooks and A. W. Thompson, International Materials Reviews, 36(1), (1991), 16-44.

45. E. Folkhard, Metallurgie der Schwei&szlig;ung Nichtrostender St&auml;hle, Springer-Verlag: Wien: (1984), 14-48.

46. J. C. Lippold, et al., The Fourth International Conference on Duplex Stainless Steel, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper 116.

47. L. van Nassau, H. Meelker, and J. Hilkes, The Third International Conference on Duplex Stainless Steels, ed. by J. Charles and S. Bernhardsson: Beaune, France: Les Editions de Physique: (1991), 303-323.

48. J. W. Christian, The Theory of Transformations in Metals and Alloys----Equilibrium and General Kinetic Theory, Pergamon Press: Oxford: (1975), 1-20.

49. P. G. Shewmon, Transformations in Metals, McGraw-Hill: New York: (1969), 156-208.

50. G. J. Davies and J. G. Garland, International Metallurgical Reviews, 20, (1975), 83-105.

51. S. A. David and J. M. Vitek, International Materials Reviews, 34(5), (1989), 213-245.

52. &Oslash;. Grong, Metallurgical Modelling of Welding, The Institute of Materials: London: (1994), 221-300.

53. W. F. Savage, E. F. Nippes, and J. S. Erickson, Welding Journal, 55(8), (1976), 213-s-221-s.

54. W. F. Savage and A. H. Aronson, Welding Journal, 45(2), (1966), 85-s-89-s.

55. W. F. Savage, C. D. Lundin, and A. H. Aronson, Welding Journal, 44(4), (1965), 175-s-181-s.

56. W. F. Savage and R. J. Hrubec, Welding Journal, 51(5), (1972), 260-s-271-s.

57. E. F. Nippes, Welding Journal, 38, (1959), 1-s-18-s.

58. M. A. Taha, et al., Metallurgical Transactions A-Physical Metallurgy and Materials Science, 13 A, (1982), 2131-2141.

59. J. W. Elmer, S. M. Allen, and T. W. Eagar, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 20 A(10), (1989), 2117-2131.

60. W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans Tech Publications: Aedermannsdorf: (1989), 21-61.

61. J. W. Rutter and B. Chalmers, Canadian Journal of Physics, 31, (1953), 15-24.

62. J. W. Elmer and T. W. Eagar, Welding Journal, 69(4), (1990), 141-s-157-s.

63. S. Katayama and A. Matsunawa, ICALEO '85, ed. by C. Albright: San Francisco: IFS Ltd and Springer-Verlag: (1985), 19-25.

64. P. A. A. Khan, T. Debroy, and S. A. David, Welding Journal, 67(1), (1988), 1-s-7-s.

65. F. Bonollo, et al., The Fourth International Conference on Duplex Stainless Steel, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper 108.

66. F. Bonollo, et al., 14th National Heat Treatment Convention, Salsomaggiore, Italy: Associazione Italiana di Metallurgia: (1993), 53-62.

67. T. Omura, et al., International Congress Stainless Steels '96, ed. by V. D. E. (VDEh): D&uuml;sseldorf: Verein Deutscher Eisenh&uuml;ttenleute (VDEh): (1996), 104-111.

68. T. Omura, et al., Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan (in Japanese), 83(9), (1997), 37-42.

69. C. P. Chen, N. J. Ho, and H. L. Huang, Taiwan International Welding Conference on Technology Advancements and New Industrial Applications in Welding, ed. by C. L. Tsai and H. L. Tsai: Taipei: ITRWL: (1998), 291-298.

70. S. Atamert and J. E. King, Acta Metallurgica et Materialia, 39(3), (1991), 273-285.

71. S. Atamert and J. E. King, The Third International Conference on Duplex Stainless Steels, ed. by J. Charles and S. Bernhardsson: Beaune, France: Les Editions de Physique: (1991), 701-710.

72. J. R. Davis, Stainless Steels, ASM International: Materials Park: (1996), 374-375.

73. T. G. Gooch, Duplex Austenitic-Ferritic Stainless Steels, ed. by R. A. Lula: St. Louis: American Society for Metals: (1982), 573-602.

74. H. Inoue, et al., ISIJ International, 35(10), (1995), 1248-1257.

75. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold: Wokingham: (1984), 263-381.

76. S. Venkataraman and J. H. Devletian, Welding Journal, 67(6), (1988), 111-s-118-s.

77. J. A. Brooks, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 22A(4), (1991), 915-926.

78. N. Suutala, S. Sivonen, and T. Moisio, Schwei&szlig;en und Schneiden, 30, (1978), 170-173.

79. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 10A, (1979), 512-514.

80. J. W. Elmer, Ph.D Thesis, Massachusetts Institute of Technology, (1988),

81. S. A. David, G. M. Goodwin, and D. N. Braski, Welding Journal, 58(11), (1979), 330-s-336-s.

82. S. A. David and J. M. Vitek, Lasers in Metallurgy, ed. by K. Mukherjee and J. Mazumder: Warrendale: AIME: (1981), 247-254.

83. J. A. Brooks, A. W. Thompson, and J. C. Williams, Physical Metallurgy of Metal Joining, ed. by R. Kossowsky and M. E. Glicksman: St. Louis: AIME: (1979), 117-136.

84. J. A. Brooks, A. W. Thompson, and J. C. Williams, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 14(1), (1983), 23-31.

85. J. A. Brooks, A. W. Thompson, and J. C. Williams, Welding Journal, 63(3), (1984), 71-s-83-s.

86. J. C. Lippold and W. F. Savage, Welding Journal, 58(12), (1979), 362-s-374-s.

87. W. B. Hutchinson, Metal Science, 8, (1974), 185-196.

88. M. Hatherly and W. B. Hutchinson, An Introduction to Textures in Metals, Institute of Metals: London: (1969), 1-5.

89. H. J. Bunge, M. Humbert, and P. I. Welch, Textures and Microstructures, 6, (1984), 81-96.

90. N. Hashimoto, N. Yoshinaga, and T. Senuma, ISIJ International, 38(6), (1998), 617-624.

91. J. Hirsch, E. Nes, and L. L&uuml;cke, Acta Metallurgica et Meterialia, 35(2), (1987), 427-438.

92. H. J. Bunge, Directional Properties of Materials, DGM Informationsgesellschaft mbH: Oberursel: (1988), 1-64.

93. S. Evanson, M. Otaka, and K. Hasegawa, Journal of Engineering Materials and Technology-Transactions of the ASME, 114(1), (1992), 41-45.

94. W. Reick, M. Pohl, and A. F. Padilha, ISIJ International, 38(6), (1998), 567-571.

95. R. W. Cahn, Phase Transformations in Materials, VCH Verlagsgesellschaft mbH: Weinheim: (1991), 430-480.

96. V. Randle, Microtexture Determination and Its Applications, The Institute of Materials: London: (1992), 1-5.

97. V. Randle, The Measurement of Grain Boundary Geometry, Institute of Physics Publishing: London: (1993), 33-62.

98. H. J. Bunge, Texture Analysis in Materials Science, Butterworths: Berlin: (1982), 1-39.

99. H. J. Bunge, International Materials Reviews, 32(6), (1987), 265-291.

100. O. Engler and G. Gottstein, Steel Research, 63(9), (1992), 413-418.

101. H. Weiland and R. Schwarzer, Experimental Techniques of Texture Analysis, ed. by H. Bunge: Oberursel: DGM: (1986), 301-313.

102. D. J. Dingley and K. Baba-kishi, Scanning Electron Microscopy, II, (1986), 383-391.

103. M. Alam, M. N. Blackman, and D. W. Pashley, Proc. Royal Society of London, 221A, (1954), 221-242.

104. C. T. Young and J. L. Lytton, Journal of Applied Physics, 43(4), (1972), 1408-1417.

105. A. Day and G. Shafirstein, Materials Science and Technology, 12(10), (1996), 873-879.

106. B. L. Adams, S. I. Wright, and K. Kunze, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 24A(4), (1993), 819-831.

107. T. A. Mason and B. L. Adams, Journal of Metals, (OCT), (1994), 43-45.

108. B. L. Adams, et al., Materials Science Forum, 157-162, (1994), 31-42.

109. K. Eloot, et al., ISIJ International, 38(6), (1998), 602-609.

110. Y. Ozaki, M. Muraki, and T. Obara, ISIJ International, 38(6), (1998), 531-538.

111. N. Yoshinaga, et al., ISIJ International, 38(6), (1998), 610-616.

112. H. Inoue, et al., Quarterly Journal of the Japan Welding Society (in Japanese), 15(1), (1997), 88-99.

113. H. Inoue, et al., Quarterly Journal of the Japan Welding Society (in Japanese), 15(1), (1997), 77-87.

114. S. I. Wright and J. D. Cotton, Textures and Microstructures, 23, (1995), 7-19.

115. A. O. Kluken, &Oslash;. Grong, and J. Hjelen, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 22A(3), (1991), 657-663.

116. H. Inoue, et al., Quarterly Journal of the Japan Welding Society (in Japanese), 15(2), (1997), 281-291.

117. C. V. Robino, J. R. Michael, and M. C. Maguire, Welding Journal, 77(11), (1998), 446-s-457-s.

118. T. W. Nelson, J. C. Lippold, and M. J. Mills, Welding Journal, 78(10), (1999), 329-s-337-s.

119. S. Henry, et al., Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 28A(1), (1997), 207-213.

120. J. Hansen, J. Pospiech, and K. L&uuml;cke, Tables for Texture Analysis of Cubic Crystals, Springer-Verlag: Berlin: (1978), 6-15.

121. V. Randle and M. Caul, Materials Science and Technology, 12(10), (1996), 844-850.

122. H. J. Bunge, Mathematische Methodern der Texture Analyse, Akademie: Berlin: (1969).

123. R. Roe, Journal of Applied Physics, 36(6), (1965), 2024-2031.

124. R. Becker and S. Panchanadeeswaran, Textures and Microstructures, 10, (1989), 167-194.

125. F. C. Frank, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 19A(3), (1988), 403-408.

126. P. Neumann, Steel Research, 62(12), (1991), 560-566.

127. V. Randle, Proc. Royal Society of London. A, 431, (1990), 61-69.

128. V. Randle and A. Day, Materials Science and Technology, 9(12), (1993), 1069-1078.

129. C. P. Chen, et al., Proceedings of the 1999 Annual Conference of the Chinese Society for Materials Science, Hsinchu, Taiwan: Chinese Society for Materials Science: (1999), A-06.

130. S. R. Goodman and H. Hu, Transactions of Metal Society, AIME, 230, (1964), 1413-1419.

131. C. Donadille, et al., Acta Metallurgica et Materialia, 37(6), (1989), 1547-1571.

132. M. J. Dickson and D. Green, Materials Science and Engineering, 4, (1969), 304-312.

133. T. S. Chou and H. K. D. H. Bhadeshia, Materials Science and Engineering A-Structural Materials, Properties, Microstructure and Processing, 189, (1994), 229-237.

134. D. B. Lewis and F. B. Pickering, Metals Technology, 10(7), (1983), 264-273.

135. R. M. Davison, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 5(11), (1974), 2287-2294.

136. D. Raabe and K. L&uuml;cke, Materials Science Forum, 157-162, (1994), 570-610.

137. W. B. Hutchinson, K. Ushioda, and G. Runnsjo, Materials Science and Technology, 1(9), (1985), 728-731.

138. N. Akdut and J. Foct, Scripta Metallurgica et Materialia, 32(1), (1995), 103-108.

139. N. Akdut and J. Foct, Scripta Metallurgica et Materialia, 32(1), (1995), 109-114.

140. A. ul-Haq, H. Weiland, and H. J. Bunge, Materials Science and Technology, 10(4), (1994), 289-298.

141. A. F. Padilha, V. Randle, and I. F. Machado, Materials Science and Technology, 15(9), (1999), 1015-1018.

142. D. Y. Li and J. A. Szpunar, Materials Science Forum, 157-162, (1994), 547-554.

143. K. E. Easterling, Materials Science and Engineering, 65, (1984), 191-198.

144. M. Rappaz, et al., Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 20A(6), (1989), 1125-1138.

145. M. Rappaz, et al., Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 21A, (1990), 1767-1782.

146. H. Gleiter and B. Chalmers, Progress in Materials Science, 16, (1972), 1-13.

147. W. T. Read, Dislocations in Crystals, McGraw-Hill: New York: (1953), 173-187.

148. D. Wolf, Materials Interfaces----Atomic-level Structure and Properties, Chapman & Hall: London: (1992), 1-57.

149. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, van Nostrand Reinhold: Amerstandam: (1984), 110-185.

150. D. K. Felbeck, Introduction to Strengthening Mechanisms, Prentice-Hall: Englewood Cliffs: (1968), 55-57.

151. V. Randle, The Measurement of Grain Boundary Geometry, Institute of Physics Publishing: London: (1993), 1-32.

152. T. Watanabe, Res Mechanica, 11, (1984), 47-84.

153. W. Rosenhaim and J. C. W. Humphrey, Journal of Iron and Steel Institute, 87, (1913), 219.

154. F. Hargreaves and R. J. Hill, Journal of Institute of Metal, 41, (1929), 257.

155. N. F. Mott, Proceedings of Physics Society, A63, (1950), 616.

156. W. L. Bragg, Proc. Royal Society of London, 52, (1940), 54-55.

157. J. M. Burgers, Proc. Royal Society of London, 52, (1940), 23-33.

158. D. G. Brandon, Acta Metallurgica, 14(11), (1966), 1479-1484.

159. W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer-Verlag: Berlin: (1970).

160. D. A. Smith and R. C. Pond, International Metals Reviews, June, (1976), 61-74.

161. J. C. Lippold, W. A. T. Clark, and M. Tumuluru, The Materials Science of Joining, TMS: Warrendale, PA: (1992), 141-146.

162. E. Scheil, Zeitschrift f&uuml;r Metallkunde, 34, (1942), 70-72.

163. J. O. Nilsson, Journal de Physique IV, 3(C7), (1994), 67-76.

164. F. B. Pickering, The Basis of Quantitative Metallography, Metal and Metallurgy Trust for the Institute of Metallurgical Technicians: London: (1976), 8-12.

165. J. Hirsch, et al., Experimental Techniques of Texture Analysis, ed. by H.-J. Bunge: Oberursel: DGM: (1986), 63-71.

166. W. Reick, M. Pohl, and A. F. Padilha, Steel Research, 67(6), (1996), 253-256.

167. C. A. Dub&egrave;, H. I. Aaronson, and R. F. Mehl, Revue de Metallurgie, 55, (1958), 201.

168. J. O. Nilsson, L. Karlsson, and J. O. Andersson, Materials Science and Technology, 11(3), (1995), 276-283.

169. H. K. D. H. Bhadeshia, L. Svensson, and B. Gretoft, Journal of Materials Science, 21, (1986), 3947-3951.

170. H. K. D. H. Bhadeshia, Materials Science and Technology, 15(1), (1999), 22-29.

171. P. Auger, et al., Materials Science and Technology, 6, (1990), 301-313.

172. V. I. Gomankov, et al., Russian Metallurgy-USSR, (2), (1989), 106-110.

173. K. Ito, et al., Journal of the Japan Institute of Metals, 58(10), (1994), 1113-1119.

174. A. Mateo, et al., Journal of Materials Science, 32, (1997), 4533-4540.

175. X. C. Jiang, et al., Journal of the Electrochemical Society, 139(4), (1992), 1001-1007.

176. J. O. Nilsson and P. Liu, Proceedings of International Conference on Stainless Steels, ed. by K. Yokota: Chiba, Japan: The Iron and Steel Institute of Japan: (1991), 1109-1116.

177. C. H. Shek, et al., Scripta Materialia, 37(4), (1997), 529-533.

178. T. Yoshimura and Y. Ishikawa, Journal of the Japan Institute of Metals, 56(8), (1992), 873-880.

179. H. Kokawa, E. Tsory, and T. H. North, ISIJ International, 35(10), (1995), 1277-1283.

180. J. O. Nilsson and A. Wilson, Materials Science and Technology, 9, (1993), 545-554.

181. M. J. Huh, et al., Scripta Materialia, 36(7), (1997), 775-781.

182. J. W. Simmons, D. G. Atteridtge, and J. C. Rawers, Corrosion, 50(7), (1994), 491-501.

183. J. Li, X. Pu, and Y. Riquier, Journal of Central South University of Technology (China) (in Chinese), 27(1), (1996), 56-60.

184. N. C. S. Srinivas and V. V. Kutumbarao, Scripta Metallurgica et Materialia, 37(3), (1997), 285-291.

185. E. I. Kivineva and N. E. Hannerz, The Fourth International Conference on Duplex Stainless Steels, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper 7.

186. R. F. A. Jargelius-Pettersson, et al., The Fourth International Conference on Duplex Stainless Steel, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper 37.

187. I. L. Dillamore, et al., Proc. Royal Society of London, 329A, (1972), 405.

188. M. Blicharski, Metal Science, 18(Feb), (1984), 99-102.

189. H. Hoffmeister and G. Lothongkum, The Fourth International Conference on Duplex Stainless Steels, ed. by T. G. Gooch: Glasgow: Woodhead: (1994), Paper 55.

190. D. J. Kotecki and T. A. Siewert, Welding Journal, 71(5), (1992), 171-s-178-s.

191. P. D. Southwick and R. W. K. Honeycombe, Metal Science, 14(July), (1980), 253-261.

192. S. Atamert and J. E. King, Zeitschrift f&uuml;r Metallkunde, 82(3), (1991), 230-239.

193. S. Atamert and J. E. King, Materials Science and Technology, 8(10), (1992), 896-911.

194. M. K. Miller, et al., Applied Surface Science, 87-8(1-4), (1995), 323-328.

195. W. C. Leslie, The Physical Metallurgy of Steels, McGraw-Hill: New York: (1981), 337-340.

196. F. Danoix, et al., Surface Science, 266(1-3), (1992), 409-415.

197. H. D. Solomon and L. M. Levinson, Acta Metallurgica, 26, (1978), 429-442.

198. H. S. Chen and D. Turnbull, Acta Metallurgica, 17(8), (1969), 1021-1031.

199. R. Stoering and H. Conrad, Acta Metallurgica, 17(8), (1969), 933-948.

200. Z. W. Hu, S. S. Hsu, and X. L. Jiang, Scripta Metallurgica et Materialia, 25(3), (1991), 645-650

201. A. Redja&iuml;mia, G. Metauer, and M. Gantois, Scripta Metallurgica et Materialia, 25(8), (1991), 1879-1882.

202. M. J. Buerger, The American Mineralogist, 30(7-8), (1945), 469-482.

203. H. K. D. H. Bhadeshia, Worked Examples in the Geometry of Crystals, The Institute of Metals: London: (1987), 16-18.

204. E. Abe, et al., Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 75(4), (1997), 975-991.

205. H. Gliter, Acta Metallurgica, 17(12), (1969), 1421-1428.

206. S. Mahajan, et al., Acta Materialia, 45(6), (1997), 2633-2638.

207. H. K. D. H. Bhadeshia, Acta Metallurgica et Materialia, 29, (1981), 1117-1130.

208. K. Ameyama, G. C. Weatherly, and K. T. Aust, Acta Metallurgica et Materialia, 40(8), (1992), 1835-1846.

209. L. Brewer and S. G. Chang, Metals Handbook, ASM: Metal Park: (1973), S421-S425.

210. S. Hertzman, W. Roberts, and M. Lindenmo, Proceedings of the International Congresson Duplex Stainless Steel, The Hague, Nederlands Instituut voor Lastechniek: (1986), 257.

211. M. Hillert, The Darken Conference, Monroeville, (1976), Aug 23-25.

212. K. A. Bywater and D. J. Dyson, Metal Science, 90, (1975), 155-162.

213. P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM: Materials Park: (1991), 2694.

214. G. A. Chadwick, Metal Science Journal, 1, (1967), 132-137

215. W. A. Tiller, Metal Science Journal, 1, (1967), 138.

216. D. Radaj, Heat Effects of Welding-----Temperature Field, Residual Stress, Distortion, Springer-Verlag: Berlin: (1992), 100-101.

217. J. C. Lippold, Taiwan International Welding Conference on Technology Advancements and New Industrial Applications in Welding, ed. by C. L. Tsai and H. L. Tsai: Taipei: ITRWL: (1998), 35-46.

218. T. Chande and J. Mazumder, Laser in Metallurgy, ed. by H. Mukherjee and J. Mazumder, The Metallurgical Society of AIME, Chicago, (1981), 165-177.

219 . Kaplan, Journal of Physics D-Applied Physics, 30, (1997), 1805-1814.

220. D. C. Brown, et al., Welding Journal, 41(6), (1962), 241-s-250-s.

221. K. C. Mills and B. J. Keene, International Materials Reviews, 35(4), (1990), 185-216.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code