Responsive image
博碩士論文 etd-0116103-090617 詳細資訊
Title page for etd-0116103-090617
論文名稱
Title
連續直交表應用於電力電子電路之設計
Consecutive Orthogonal Arrays on Design of Power Electronic Circuits
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-01-07
繳交日期
Date of Submission
2003-01-16
關鍵字
Keywords
自激式共振轉換器、平均效應、EMI濾波器、電子安定器、LC被動濾波器、螢光燈、電力電子、直交表
Power Electronics, Average Effect, Fluorescent Lamp, Self-Excited Resonant Inverter, Orthogonal Array, Passive LC Filter, Electronic Ballast, EMI Filter
統計
Statistics
本論文已被瀏覽 5747 次,被下載 5743
The thesis/dissertation has been browsed 5747 times, has been downloaded 5743 times.
中文摘要
本論文應用品質工程中之直交表法,發展出一個以「連續直交表」為基礎的設計方法,作為設計電力電子電路的有利工具。「連續直交表」方法將待設計之電路參數視為直交表的控制變數,以計算或實驗結果作為觀測輸出,配合電路的理論基礎與實際經驗,推導其推論法則,由變數各準位之平均效應作為判斷指標,在變數的可用範圍內進行規則性的搜尋,並將變數準位依次遞減,逐漸向所設定之目標區趨近,以搜尋出區域內之最佳組合。
「連續直交表」可用來處理四種在電力電子電路的設計中可能遇到的問題,本文以四種應用實例分別說明如何設計電路參數。首先,以「連續直交表」設計LC被動濾波器之參數,藉由此法的搜尋,可快速且有效地尋找出最佳參數組合,大幅降低計算的次數。其次,針對無法建立等效電路模型之自激式電子安定器電路,應用「連續直交表」法設計電路參數,可明確指出各變數變動對觀測目標的影響程度,進而快速搜尋到符合所需燈管功率的參數組合。再來,以設計EMI濾波器參數為例,其參數的抉擇除了可抑制EMI雜訊外,亦會造成輸入端功因變動,且兩者間有相互牴觸的現象,根據「連續直交表」法的判斷準則,可明確指出同時獲得符合EMI規範及高功因的搜尋方向,並快速搜尋到符合EMI規範及高功因的參數組合。最後,考量螢光燈電子安定器受不可控變數的影響,將環境溫度、品牌及壽命等不可控變數加入直交表中,採用最接近期望目標及最小變動量為指標,在「連續直交表」法的搜尋下,使螢光燈操作在指定的功率且最能抵抗不可控變數干擾,快速且正確地獲得螢光燈電子安定器的參數組合。
針對無法以解析方式、變數之間關係錯綜複雜、功能相互牴觸及考慮不可控變數影響之電路參數設計問題,根據「連續直交表」法的判斷流程,明確且快速地往符合期望目標的參數區域搜尋。透過模擬或實驗的結果,證實本文提出之「連續直交表」法,在設計電路參數上,確實能達到預期的效果。

Abstract
An approach with “consecutive orthogonal arrays (COA)” is proposed for solving the problems in designing power electronic circuits. This approach is conceptually based on the orthogonal array method, which has been successfully implemented in quality engineering. The circuit parameters to be determined are assigned as the controlled variables of the orthogonal arrays. Incorporating with the inferential rules, the average effects of each control variable levels are used as the indices to determine the control variable levels of the subsequent orthogonal array. By manipulating on COA, circuit parameters with the desired circuit performances can be found from an effectively reduced number of numerical calculations or experimental tests.
In this dissertation, the method with COA is implemented on solving four problems often encountered in the design of power electronic circuits. The first problem one has to deal with is to find a combination with the best performance from a great number of analyzed results. The illustrative example is the design of LC passive filters. Using COA method, the desired component values of the filter can be effectively and efficiently found with far fewer calculations. The second design problem arises from the non-linearity of circuit. An experienced engineer may be able to figure out circuit parameters with satisfactory performance based on their pre-knowledge on the circuit. Nevertheless, they are always questioned whether a better choice can be made. The typical case is the self-excited resonant electronic ballast with the non-linear characteristics of the saturated transformer and the power transistor storage-time. In this case, the average effects of COA obtained from experimental tests are used as the observational indexes to search a combination of circuit parameters for the desired lamp power. The third problem is that circuit functions are mutually exclusive. The designers are greatly perplexed to decide the circuit parameters, with which all functions should be met at the same time. The method with COA is applied to design a filter circuit to achieve the goals of low EMI noise and high power factor simultaneously. Finally, one has to cope with the effects of the uncontrolled variables, such as: ambient temperature, divergence among different manufacturers, and used hours. By applying COA with inferential rules, electronic ballasts can be robustly designed to operate fluorescent lamps at satisfied performance under the influence of these uncontrolled variables.

目次 Table of Contents
中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 X
第一章 簡介 1
1-1 研究背景與動機 1
1-2 本文大綱 5
第二章 連續直交表 7
2-1 直交表的排置 7
2-2 平均效應適用性的探討 12
2-3 多觀測目標最佳化之規劃 17
2-4 連續直交表的架構 17
2-5 連續直交表的限制 22
2-5-1 多重極值 22
2-5-2 陡峭極值 23
2-5-3 不確定觀測值 24
2-5-4 平坦高原區 25
2-6 穩健性之考量 25
第三章 LC被動濾波器 29
3-1 LC被動濾波器簡介 30
3-2 第三型LC濾波電路區段操作模式探討 33
3-3 LC被動濾波器之設計流程 37
3-4 模擬分析 40
3-5 驗證及實測結果 45
3-6 本章結論 47
第四章 自激式電子安定器 49
4-1 電子安定器基本電路架構 49
4-2 自激式串聯共振並聯負載式電子安定器 55
4-3 元件的交互影響 59
4-4 自激式電子安定器之設計流程 66
4-5 實驗數據分析 70
4-6 實測結果 79
4-7 本章結論 81
第五章 EMI濾波器設計 83
5-1 功因修正電路電磁雜訊產生原因及分類 83
5-1-1 規範 83
5-1-2 電磁雜訊量測 85
5-1-3 雜訊電流之產生 85
5-2 傳統電磁干擾濾波器設計方法 87
5-3 功因修正電路EMI濾波器之傳統設計 89
5-3-1 單級高功因電路特性及其量測 89
5-3-2 功因修正電路之EMI濾波 91
5-4 EMI濾波器之設計流程 96
5-4-1 濾波器架構與變數設定 96
5-4-2 輸出觀測值與搜尋指標 98
5-4-3 變數調整與驗證實驗 99
5-4-4 連續直交表設計流程 100
5-5 實驗數據分析 102
5-6 實測結果 108
5-7 本章結論 109
第六章 螢光燈電子安定器之穩健設計 111
6-1 螢光燈電子安定器基本電路架構 111
6-2 螢光燈燈管特性變動探討 114
6-2-1 使用時數 114
6-2-2 品牌 115
6-2-3 溫度效應 116
6-3 燈管特性變動對安定器的影響 116
6-4 電子安定器之強健設計流程 117
6-5 燈管模型與模擬電路的建立 120
6-6 模擬分析 123
6-7 實測結果 131
6-8 本章結論 133
第七章 結論與未來研究方向 135
參考文獻 137
參考文獻 References
[1] S. B. Dewan, “Optimum Input and Output Filter for a Single-Phase Rectifier Power Supply,” IEEE Trans. on Industry Applications, Vol. 17, No. 3, pp. 282-288, 1981.
[2] M. H. Kheraluwala and S. A. El-Hamamsy, “Modified Valley Fill High Power Factor Electronic Ballast for Compact Fluorescent Lamps,” IEEE Power Electronics Specialists Conference PESC’95, pp. 10-14, 1995.
[3] J. Spangler and A. K. Behera, “Power Factor Correction Techniques Used for Fluorescent Lamp Ballasts,” IEEE Industry Applications Society 1991 IAS Annual Meeting, pp. 1836-1841, 1991.
[4] W.-J. Gu and K. Harada, “Novel Self-Excited PWM Converters with Zero-Voltage-Switched Resonant Transition Using a Saturable Core,” IEEE Applied Power Electronics Conference APEC’92, pp. 58-65, 1992.
[5] T.-H. Yu, H.-M. Huang, and T.-F. Wu, “Self Excited Half-Bridge Series Resonant Parallel Loaded Fluorescent Lamp Electronic Ballasts,” IEEE Applied Power Electronics Conference APEC’95, pp. 657-664, 1995.
[6] C. S. Moo, C. R. Lee, and Y. T. Chua, “High-Power-Factor Electronic Ballast with Self-Excited Series Resonant Inverter,” IEEE Industry Applications Society 1996 IAS Annual Meeting, pp. 2136-2140, 1996.
[7] Illuminating Engineering Society of North America, IEC Lighting Handbook, Reference and Application, 1993.
[8] W. Elenbass, Fluorescent Lamps and Lighting, The MacMillan Company, New York, 1959.
[9] American National Standards for Ballasts for Ballasts for Fluorescent Lamps: Specifications, American National Standards Institute ANSI C82.1-1985.
[10] E. E. Hammer, “Fluorescent Lamp Starting Voltage Relationships at 60 Hz and High Frequency,” Journal of the Illuminating Engineering Society, pp. 36-46, Oct. 1983.
[11] E. E. Hammer and T. K. McGowan, “Characteristics of Various F40 Fluorescent Systems at 60 Hz and High Frequency,” IEEE Trans. on Industry Applications, Vol. 21, No. 1, pp. 11-16, Jan./Feb. 1985.
[12] E. E. Hammer, “High Frequency Characteristics of Fluorescent Lamps Up to 500 kHz,” Journal of the Illuminating Engineering Society, pp. 52-61, Winter 1987.
[13] A. Heidemann, S. Hien, E. Panofski, and U. Roll, “Compact Fluorescent Lamps,” IEE Proceedings- Science, Measurement and Technology, Vol. 140, No. 6, pp. 429-434, Nov. 1993.
[14] M. K. Kazimierczuk and W. Szaraniec, “Electronic Ballast for Fluorescent Lamps,” IEEE Trans. on Power Electronics, Vol. 8, No. 4, pp. 386-395, Oct. 1993.
[15] C. Licitra, L. Malesani, G. Spiazzi, P. Tenti, and A. Testa, “Single-Ended Soft-Switching Electronic Ballast with Unity Power Factor,” IEEE Trans. on Industry Applications, Vol. 29, No. 2, pp. 382-388, March/April 1993.
[16] M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Trans. on Industrial Electronics, Vol. 41, No. 4, pp. 418-425, Aug. 1994.
[17] Y. -R. Yang and C. -L. Chen, “Analysis of Self-Excited Electronic Ballasts Using BJTs/MOSFETs as Switching Devices,” IEE Proceedings- Circuits, Devices and Systems, Vol. 145, No. 2, pp. 95-104, April 1998.
[18] W. R. Alling, “Important Design Parameters for Solid-State Ballasts” IEEE Trans. on Industry Applications, Vol. 25, No. 2, pp. 203-207, March/April 1989.
[19] M. Vilathgamuwa, J. Deng, and K. J. Tseng, “EMI Suppression with Switching Frequency Modulated dc-dc Converters,” IEEE Industry Applications Magazine, Vol. 5, No. 6, pp. 27-33, Nov./Dec. 1999.
[20] O. R. Lee, EMI Filter Design, MARCEL DEKKER, INC. 1996.
[21] M. J. Nave, Power Line Filter Design for Switched-Mode Power Supplies, Van Nostrand Reinhold, New York, 1991.
[22] T. Guo, D. Y. Chen, and F. C. Lee, “Diagnosis of Power Supply Conducted EMI Using a Noise Separator,” IEEE Applied Power Electronics Conference APEC’95, pp. 259-266, 1995.
[23] C. R. Paul and K. B. Hardin, “Diagnosis and Reduction of Conducted Noise Emissions,” IEEE Trans. on Electromagnetic Compatibility, Vol. 30, No. 4, pp. 553-560, Nov. 1988.
[24] F. -Y. Shih, D. Y. Chen, Y. -P. Wu, and Y. -T. Chen, “A Procedure for Designing EMI Filters for AC Line Applications,” IEEE Trans. on Power Electronics, Vol. 11, No. 1, pp. 170-181, Jan. 1996.
[25] G. Spiazzi and J. A. Pomilio, “Interaction Between EMI Filter and Power Factor Preregulators with Average Current Control: Analysis and Design Considerations,” IEEE Trans. on Industrial Electronics, Vol. 46, No. 3, pp. 577-584, June 1999.
[26] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input Filter Design for Power Factor Correction Circuits,” IEEE Trans. on Power Electronics, Vol. 11, No. 1, pp. 199-205, Jan. 1996.
[27] R. D. Middlebrook, “Input Filter Considerations in Design and Application of Switching Regulators,” IEEE Industry Applications Society 1976 IAS Annual Meeting, pp. 366-382, 1976.
[28] R. D. Middlebrook, “Design Techniques for Preventing Input-Filter Oscillations in Switched-Mode Regulators,” Proceedings of the Power Conversion Conference PCC 1978, pp. A3-1-A3-16, 1978.
[29] C. R. Paul, Introduction to Electromagnetic Compatibility, JOHN WILEY & SONS, INC. 1992.
[30] R. Perez, Handbook of Electromagnetic Compatibility, ACADEMIC PRESS, INC. 1995.
[31] L. Tihanyi, Electromagnetic Compatibility in Power Electronics, J. K. Eckert & Company, INC. 1995.
[32] D. Zhang, D. Y. Chen, and F. C. Lee, “An Experimental Comparison of Conducted EMI Emissions,” IEEE Power Electronics Specialists Conference PESC’96, pp. 1992-1997, 1996.
[33] G. A. Hjellen, “Including Dielectric Loss in Printed Circuit Models for Improved EMI/EMC Predictions,” IEEE Trans. on Electromagnetic Compatibility, Vol. 39, No. 3, pp. 236-246, Aug. 1997.
[34] M. H. Prog, C. M. Lee, and X. Wu, “EMI Due to Electric Field Coupling on PCB,” IEEE Power Electronics Specialists Conference PESC’98, pp. 1125-1130, 1998.
[35] C. Qiao and K. M. Smedley, “A Topology Survey of Single-Stage Power Factor Corrector with a Boost Type Input Current Shaper,” IEEE Trans. on Power Electronics, Vol. 16, No. 3, pp. 360 -368, May 2001.
[36] M. Madigan, R. W. Erickson, and E. H. Ismail, “Integrated High Quality Rectifier-Regulators,” IEEE Trans. on Industrial Electronics, Vol. 46, No. 4, pp. 749 -758, Aug. 1999.
[37] M. Radecker, “Integrated Circuit Design and Application for Electronic Ballasts,” IEEE Industry Applications Society 2000 IAS Annual Meeting, pp. 3338-3345, 2000.
[38] C. S. Moo, T. F. Lin, and Y. C. Hsieh, “Single-Stage High Power Factor Electronic Ballast for Fluorescent Lamps with Constant Power Operation,” IEE Proceedings- Electric Power Applications, Vol. 148, No. 5, pp. 465-468, Sept. 2001.
[39] C. S Lin and C. L. Chen, “A Novel Single-Stage Push-Pull Electronic Ballast with High Input Power Factor,” IEEE Trans. on Industrial Electronics, Vol. 48, No. 4, pp. 770-776, Aug. 2001.
[40] T. -F. Wu, T. -H. Yu, and M. -C. Chiang, “Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor,” IEEE Trans. on Power Electronics, Vol. 13, No. 3, pp. 586-597, May 1998.
[41] C. S. Moo, Y. C. Chuang, and C. R. Lee, “A New Power-Factor- Correction Circuit for Electronic Ballasts with Series-Load Resonant Inverter,” IEEE Trans. on Power Electronics, Vol. 13, No. 2, pp. 273-278, March 1998.
[42] C. S. Moo, Y. C. Chuang, and J. C. Lee, “A New Dynamic Filter for the Electronic Ballast with the Parallel-Load Resonant Inverter,” IEEE Industry Applications Society 1995 IAS Annual Meeting, pp. 2597-2601, 1995.
[43] Y. C. Hsieh, Y. C. Chuang, and C. S. Moo, “A Power-Factor- Correction Circuit with High-Frequency Resonant Energy Tank,” 9th International Conference on Power Electronics and Motion Control EPE-PEMC 2000, pp. 2-50-2-55, 2000.
[44] J. Qian, F. C. Y. Lee, and T. Yamauchi, “Current-Source Charge- Pump Power-Factor-Correction Electronic Ballast,” IEEE Trans. on Power Electronics, Vol. 13, No. 3, pp. 564-572, May 1998.
[45] J. Qian, F. C. Lee, and N. Onishi, “New Charge Pump Power-Factor- Correction Electronic Ballast with a Wide Range of Line Input Voltage,” IEEE Trans. on Power Electronics, Vol. 14, No. 1, pp. 193-201, Jan. 1999.
[46] C. S. Moo, C. R. Lee, and T. F. Lin, “A High-Power-Factor DC-Linked Resonant Inverter,” IEEE Trans. on Industrial Electronics, Vol. 46, No. 4, pp. 814-819, Aug. 1999.
[47] H. L. Cheng, C. S. Moo, and W. M. Chen, “A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology,” IEEE International Symposium on Industrial Electronics ISIE2001, pp. 30-35, 2001.
[48] C. S. Moo, H. C. Yen, Y. C. Hsieh, and C. R. Lee, “A Fluorescent Lamp Model for High-Frequency Electronic Ballasts,” IEEE Industry Applications Society 2000 IAS Annual Meeting, pp. 3361-3366, 2000.
[49] C. S. Moo, T. F. Lin, and Y. C. Chuang, “An Electronic Ballast for Operating Fluorescent Lamps in Wide Temperature Range,” IEEE Applied Power Electronics Conference APEC 2000, pp. 577-583, 2000.
[50] M. Graovac, F. P. Dawson, M. Fila, and D. E. Cormack, “Fluorescent Lamp Cold Environment Performance Improvement,” IEEE Industry Applications Society 1998 IAS Annual Meeting, pp. 2158 -2163, 1998.
[51] R. R. Verderber, O.Morse, and F. M. Rubinstein, “Life of Fluorescent Lamps Operated at High Frequencies with Solid-State Ballasts,” IEEE Industry Applications Society 1985 IAS Annual Meeting, pp. 1724-1728, 1985.
[52] M. S. Phadke, Quality Engineering Using Robust Design, Prentice- Hall, INC., 1989.
[53] A. V. Feigenbaum, Total Quality Control, 3rd Edition, New York: McGraw Hill Book Company, 1983.
[54] V. N. Seshadri, “Application of the Taguchi Method for Facsimile Performance Characterization on AT &T International Network,” IEEE International Conference on Communication, pp. 833-835, 1988.
[55] M. Fallon, A. J. Walton, M. I. Newsam, and G. J. Gaston, “A Comparison of Taguchi Methods and Response Surface Methodology for Optimising a CMOS Process,” IEE Colloquium on Improving the Efficiency of IC Manufacturing Technology, pp. 8/1-8/4, 1995.
[56] G. Taguchi, “Quality Engineering (Taguchi methods) for the Development of Electronic Circuit Technology,” IEEE Trans. on Reliability, Vol. 44, No. 2, pp. 225-229, June 1995.
[57] M. S. Phadke, “Design Optimization, Case Studies.” Journal of AT&T Technical, Vol. 65, No. 2, pp. 51-68, March/April 1986.
[58] C. R. Rao, “Factorial Experiments Derivable from Combinational Arrangements of Arrays,” Journal of Royal Statistical Society Series B, Vol. 9, pp. 128-139, 1947.
[59] S. Salkalachen, N. H. Krishnan, S. Krishnan, H. B. Satyamurthy, and K. S. Srinivas, “Edge Passivation and Related Electrical Stability in Silicon Power Devices,” IEEE Trans. on Semiconductor Manufacturing, Vol. 3, No. 1, pp. 12-17, Feb. 1990.
[60] S. C. Tam, Y. M. Noor, and L. J. Yang, “Maximizing the Output Power of a CO2 Laser Using the Taguchi Technique,” IEEE Journal of Quantum Electronics, Vol. 29, No. 1, pp. 192-200, Jan. 1993.
[61] P. Arpaia, “Experimental Optimisation of Flexible Measurement Systems,” IEE Proceedings- Science, Measurement and Technology, Vol. 143, No. 2, pp. 77-84, March 1996.
[62] S. Lee and V. K. Madisetti, “Parameter Optimization of Robust Low-Bit-Rate Video Coders,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 9, No. 6, pp. 849-855, Sept. 1999.
[63] J. H. Lau and C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing,” IEEE Trans. on Electronics Packaging Manufacturing, Vol. 23, No. 3, pp. 219-225, July 2000.
[64] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, “A Genetic Algorithm Solution to the Unit Commitment Problem,” IEEE Trans. on Power Systems, Vol. 11, No. 1, pp. 83-92, Feb. 1996.
[65] D. C. Walters and G. B. Sheble, “Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading,” IEEE Trans. on Power Systems, Vol. 8, No. 3, pp. 1325-1332, Aug. 1993.
[66] F. Zhuang and F. D. Glaiana, “Unit Commitment by Simulated Annealing,” IEEE Trans. on Power Systems, Vol. 5, No. 1, pp. 311-318, Feb. 1990.
[67] A. H. Mantawy, Y. L. Abdel-Magid, and S. Z. Selim, “A Simulated Annealing Algorithm for Unit Commitment,” IEEE Trans. on Power Systems, Vol. 13, No. 1, pp. 197-204, Feb. 1998.
[68] 郭鑫杰,“以等高線圖形法設計LC被動濾波器”, 國立中山大學電機工程學系碩士論文,中華民國八十六年六月。
[69] C. S. Moo, C. R. Lee, and I. S. Tsai, “Characterizing and Designing LC Filters by Contour Maps, ” Proceedings of the Power Conversion Conference PCC 2002, pp. 1429-1434, 2002.
[70] Y. -R. Yang and C. -L. Chen, “Steady-State Analysis and Simulation of a BJT Self-Oscillating ZVS-CV Ballast Driven by a Saturable Transformer,” IEEE Trans. on Industrial Electronics, Vol. 46, No. 2, pp. 249-260, April 1999.
[71] C. Chin, J. Chang, and G. W. Bruning, “Analysis of the Self- Oscillating Series Resonant Inverter for Electronic Ballasts,” IEEE Trans. on Power Electronics, Vol. 14, No. 3, pp. 533-540, May 1999.
[72] J. Ribas, J. M. Alonso, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J. Cardesin, “Low-Cost Single-Stage Electronic Ballast Based on a Self-Oscillating Resonant Inverter Integrated With a Buck-Boost PFC Circuit,” IEEE Trans. on Industrial Electronics, Vol. 48, No. 6, pp. 1196-1204, Dec. 2001.
[73] T. -F. Wu, T. -H. Yu, and H. -M. Huang, “Complete Analysis and Performance-Characteristic Compromise for Self-Excited Half-Bridge Parallel Resonant Electronic Ballasts,” IEEE Power Electronics Specialists Conference PESC’94, pp. 124-131, 1994.
[74] A. R. Seidel, F. E. Bisogno, T. B. Marchesan, and R. N. do Prado, “Designing a Self-Oscillating Electronic Ballast with Bipolar Transistor,” IEEE Industry Applications Society 2002 IAS Annual Meeting, pp. 1078-1083, 2002.
[75] R. F. Pierret and G. W. Neudeck, Modular Series on Solid State Device, Volume III: The Bipolar Junction Transistor, Addision-Wesley Publishing Company, July 1983.
[76] M. A. Dalla Costa, A. R. Seidel, F. E. Bisogno, and R. N. do Prado, “Self-Oscillating Dimmable Electronic Ballast to Supply Two Independent Lamps,” IEEE Industry Applications Society 2002 IAS Annual Meeting, pp. 1059-1064, 2002.
[77] A. R. Seidel, F. E. Bisogno, R. N. Prado, H. Pinheiro, and R. K. Pavao, “Self-Oscillating Dimmable Electronic Ballast,” IEEE Industrial Electronics Society Annual Conference IECON’01, pp. 1038-1043, 2001.
[78] F. Tao, Q. Zhao, F. C. Lee, and N. Onishi, “Self-Oscillating Electronic Ballast with Dimming Control,” IEEE Power Electronics Specialists Conference PESC 2001, pp. 1818-1823, 2001.
[79] C. S. Moo, H. L. Cheng, and Y. N. Chang, “Single-Stage High-Power-Factor Dimmable Electronic Ballast with Asymmetrical Pulse-Width-Modulation for Fluorescent Lamps,” IEE Proceedings- Electric Power Applications, Vol. 148, No. 2, pp. 125-132, March 2001.
[80] E. Deng and S. Ćuk, “Negative Incremental Impedance and Stability of Fluorescent Lamps,” IEEE Applied Power Electronics Conference APEC’97, pp. 1050-1056, 1997.
[81] E. Santi, Z. Zhe, and S. Ćuk, “High Frequency Electronic Ballast Provides Line Frequency Lamp Current,” IEEE Trans. on Power Electronics, Vol. 16, No. 5, pp. 667-675, Sept. 2001.
[82] J. Ribas, J. M. Alonso, E. L. Corominas, A. J. Calleja, and M. Rico-Secades, “Design Considerations for Optimum Ignition and Dimming of Fluorescent Lamps Using a Resonant Inverter Operating Open Loop,” IEEE Industry Applications Society 1998 IAS Annual Meeting, pp. 2068-2075, 1998.
[83] 林子桐,“螢光燈溫度效應及電子安定器設計”,國立中山大學電機工程學系碩士論文,中華民國八十八年六月。
[84] C. S. Moo, Y. C. Chuang, T. H. Huang, and H. N. Chen, “Modeling of Fluorescent Lamps for Dimmable Electronic Ballasts,” IEEE Industry Applications Society 1996 IAS Annual Meeting, pp. 2231-2236, 1996.
[85] T. J. Ribarich and J. J. Ribarich, “A New Control Method for Dimmable High-Frequency Electronic Ballasts,” IEEE Industry Applications Society 1998 IAS Annual Meeting, pp. 2038-2043, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code