Responsive image
博碩士論文 etd-0116106-200130 詳細資訊
Title page for etd-0116106-200130
論文名稱
Title
中國蘇魯超高壓變質帶東海地區榴輝岩之礦物析出物研究
Mineral precipitates in eclogites from Donghai in the Sulu ultrahigh-pressure province, eastern China
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-11-30
繳交日期
Date of Submission
2006-01-16
關鍵字
Keywords
析出物、榴輝岩、石英、角閃石、磷灰石、石膏、硬石膏、綠輝石
quartz, eclogite, omphacite, amphibole, gypsum, apatite, anhydrite, precipitate
統計
Statistics
本論文已被瀏覽 5711 次,被下載 2246
The thesis/dissertation has been browsed 5711 times, has been downloaded 2246 times.
中文摘要
本研究以中國蘇魯超高壓變質帶東海青龍山地區6個榴輝岩樣品為對象,利用光學、掃描式、穿透式電子顯微鏡(TEM)及拉曼儀鑑定岩石組織及礦物組成,並以礦物析出物為研究重點。岩象觀察發現,岩石礦物組成為石榴子石+綠輝石+角閃石+綠簾石+金紅石±石英±矽白雲母±藍晶石±柯石英假形±磷灰石±滑石,其中綠輝石、磷灰石含有平行排列之析出物。
綠輝石中經TEM觀察到單獨析出的角閃石,單獨析出之角閃石與綠輝石在結構上有良好的順構關係,兩者對應結晶軸互相平行,a、c兩軸長度對應相等,角閃石b軸為綠輝石b軸長度之兩倍,單獨析出的角閃石可能經離析作用自綠輝石中析出。
綠輝石中平行排列析出物經電子顯微分析(EPMA)及TEM電子繞射確認為石英,以石英之長軸方向與綠輝石結晶方位依TEM電子繞射圖像及相關文獻資料進行歸納,推論石英析出位置與綠輝石解理或裂理面有關。另外,石英長軸未必是石英之c軸,石英析出物周邊發現角閃石(韭閃石)與之交生,石英與角閃石之量有正相關,角閃石成分含綠輝石未有的鉀,且石英、角閃石與綠輝石三者結晶結構上無明顯關係,推論交生之石英與角閃石並非由離析作用自綠輝石中析出,而是後期反應產生。
本文提出斜輝石中石英與角閃石析出之二階段成因假設:
(I)受過高壓或超高壓變質作用岩石中之斜輝石,因高壓及高溫作用,使得超量的Si進入斜輝石中,產生Ca-Eskola端成分並具有陽離子空缺,岩石減壓初期斜輝石在解理或裂理面經離析作用(或流體滲入引發)析出微小SiO2(石英或柯石英)並在綠輝石主晶與石英析出物之間產生介面。
(II)SiO2析出後造成其周邊綠輝石成分中SiO2減少及斜輝石解理或裂理裂隙之擴大,在角閃岩相退變質時,外來流體沿裂隙進入綠輝石中發生流體+綠輝石轉變為石英+角閃石的反應,並隨反應的程度升高,角閃石與石英同步增加。
磷灰石中有兩種不同析出物出現於不同的榴輝岩中,一種為硫酸鈣(硬石膏或石膏),另一種為鐵硫化物(可能為磁黃鐵礦),其中硫酸鈣析出物以往未有相關報導。兩種析出物內之硫元素分別以氧化及還原態存在,顯示其形成時氧的逸壓不同。綜合前人與本研究在磷灰石中所發現的析出物相當多樣且均含矽酸鹽不相容元素研判,雖無法排除離析作用造成此現象之可能,但磷灰石更可能扮演矽酸鹽類礦物不相容元素匯集處,而後依所含元素種類配合相關氧化還原條件產生不同的析出物而非由離析作用造成。
Abstract
This research studies 6 eclogites from Qinglongshan Donghai in the Sulu ultrahigh-pressure (UHP) province, eastern China. Petrographic microscope, Ramam spectrometer, scanning electron microscope (SEM) and transmission electron microscope (TEM) are utilized to identify mineral compositions, microstructures and mineral precipitates. Optical observations show the eclogites with the following mineral assemblage: garnet + omphacite + amphibole + epidote + rutile ± quartz ± phengite ± kyanite ± coesite pseudomorph ± apatite ± talc. Oriented mineral precipitates are found within omphacite and within apatites.
The parallel precipitates in omphacite are quartz rods confirmed by electron probe microanalysis (EPMA) and TEM diffraction patterns. The direction of the long axes of the quartz rods seem to have relation with the cleavage and with the parting of omphacite. The direction of the long axis of quartz is not necessarily the c axis direction of quartz. Pargasite is intergrown with quartz and the amounts of both minerals seem to have a positive relation. Pargasite contain element K which is not found in omphacite and there is no obvious crystallographic relation between quartz, pargasite, and omphacite.
There is amphibole exsolved from the omphacite and the crystallographic axes of tht exsolved amphibole parallel to those of omphacite. The a and c parameters for the two phases are equal while the b parameter of the amphibole is almost twice that of omphacite.
A two-stage growth mechanism for quartz and amphibole intergrown within omphacite is proposed: (1) very fine quartz rods exsolved (or aided with infilling fluids) from a supersilicic clinopyroxene during decompression, creating grain boundaries between quartz rods and host, (2) growth of amphibole and quartz along the grain boundaries with fluid participation and an expense of omphacite during retrograde metamorphism.
There are two different precipitates within apatites in different eclogites. One of the precipitates is calcium sulfate (anhydrite or gypsum) and the other is ferrous sulfide (pyrrhotite?). There was no report about calcium sulfate within apatite in UHP rocks before. The formation of sulfide (reduced) or sulfate (oxidized) is controlled by the fugacity of oxygen. According to the previous reports and the discoveries of this research, there are many different kinds of precipitates containing silicate incompatible elements in apatites. It can’t be ruled out that the precipitates exsolved from apapites but apatites are more likely to act as sinks of silicate incompatible elements and different minerals precipitated within apatites under different redox conditions rather than exsolution processes.
目次 Table of Contents
摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
礦物或礦物群名中、英文及英文符號對照表 XIII
第一章序論 1
1-1文獻探討 1
1-1-1超高壓變質研究的開端 1
1-1-2超高壓變質作用的定義 3
1-1-3超高壓變質岩隱沒與剝露的機制 4
1-1-4超高壓變質岩之分布 6
1-1-5超高壓變質岩之礦物學研究 8
1-1-6研究區域地質概述 10
1-2研究動機與目的 14
第二章研究方法 15
2-1實驗研究流程 15
2-2實驗研究方法與原理 16
2-2-1岩石光薄片製作 16
2-2-2光學顯微鏡岩象分析 16
2-2-3掃描式電子顯微鏡觀察及微探分析 16
2-2-4拉曼光譜分析 17
2-2-5穿透式電子顯微鏡(TEM)分析 18
2-2-6電子顯微分析再計算 23
第三章研究結果 33
3-1岩象分析 36
3-1-1岩象觀察 36
3-1-2柯石英假形拉曼光譜分析 45
3-2礦物析出物分析 46
3-2-1綠輝石中石英與角閃石析出物 46
3-2-2磷灰石中透光與不透光兩種析出物 50
3-3主要礦物電子微探分析 55
3-4綠輝石中石英析出量與綠輝石端成分之估算 64
3-5穿透式電子顯微鏡分析 69
第四章討論 90
4-1綠輝石中石英析出 90
4-1-1斜輝石中具方向排列石英析出相關研究 90
4-1-2斜輝石與石英析出物之結晶構造關係 92
4-1-3斜輝石與角閃石交生機制及角閃石所含OH來源 94
4-1-4石英與角閃石交生現象 97
4-1-5斜輝石中石英析出物為離析作用產物? 98
4-2磷灰石中鐵硫化物及硫酸鈣析出 100
第五章結論 102
參考文獻 104
附錄一:TEM不同tilt angle之間夾角計算 112
附錄二:六大晶系晶面間距、晶面夾角及晶帶軸夾角計算 113
表目錄
表2-1索引綠輝石、角閃石及石英之電子繞射圖像使用之晶格參數 22
表2-2理想輝石試算結果表 28
表3-1榴輝岩礦物組成與析出物 36
表3-2硬石膏、石膏與磷灰石比較表 52
表3-3 CL001主要礦物成分分析表 55
表3-4 CL002主要礦物成分分析表 56
表3-5 CL003主要礦物成分分析表 57
表3-6 CL004主要礦物成分分析表 58
表3-7 CL005主要礦物成分分析表 59
表3-8 CL006主要礦物成分分析表 60
表3-9 綠簾石Ps值 61
表3-10 CL002之綠輝石及綠輝石加入石英析出物後成分,再將鐵分別以二價及三價計算端成分比較表 67
表3-11 CL002中綠輝石與綠輝石中與石英交生的角閃石之TEM EDS 半定量成分分析表 87
圖目錄
圖1-1超高壓及高壓變質作用溫壓範圍圖 3
圖1-2超高壓地塊的隱沒-剝露模式及概略地溫結構示意圖 5
圖1-3全球超高壓變質地塊分布圖 7
圖1-4蘇魯超高壓變質帶地質圖 10
圖2-1研究流程圖 15
圖2-2穿透式電子顯微鏡構造簡圖 18
圖2-3繞射電子束與影像成像位置示意圖 18
圖2-4三斜晶系晶格 19
圖2-5倒晶格向量g與晶面(hkl)關係圖 20
圖2-6 λL=Rd幾何關係圖 21
圖2-7中山貴儀TEM與成大地科系TEM x-tilt及y-tilt方向 22
圖2-8 (Ca+Na)B對NaB四大類角閃石分布示意圖 25
圖2-9鈣質群角閃石分類圖 26
圖2-10鈉鈣質群角閃石分類圖 27
圖2-11輝石成分Q-J圖 30
圖2-12 Quad群輝石成分分布命名圖 31
圖2-13 Na及Ca-Na群輝石成分分布命名圖 31
圖3-1 CL001外觀 33
圖3-2 CL002外觀 33
圖3-3 CL003外觀 34
圖3-4 CL004外觀 34
圖3-5 CL005外觀 35
圖3-6 CL006外觀 35
圖3-7榴輝岩薄片光學影像(一) 37
圖3-8榴輝岩背反式電子影像(一) 37
圖3-9榴輝岩薄片光學影像(二) 38
圖3-10榴輝岩背反式電子影像(二) 38
圖3-11榴輝岩薄片光學影像(三) 39
圖3-12榴輝岩薄片光學影像(四) 39
圖3-13綠輝石邊緣退變質現象(一) 40
圖3-14綠輝石邊緣退變質現象(二) 40
圖3-15綠輝石邊緣退變質現象(三) 41
圖3-16綠輝石邊緣BSE影像 41
圖3-17柯石英假形(一) 42
圖3-18柯石英假形(二) 42
圖3-19柯石英假形(三) 43
圖3-20柯石英假形(四) 43
圖3-21柯石英假形(五) 44
圖3-22柯石英假形(六) 44
圖3-23柯石英假形拉曼實驗譜線 45
圖3-24綠輝石中具方向排列之析出物 46
圖3-25綠輝石中具方向排列之析出物BSE影像 47
圖3-26綠輝石中石英與角閃石交生現象圖 47
圖3-27圖3-26紅色框線區域放大圖 48
圖3-28圖3-27視野之BSE影像 48
圖3-29綠輝石中具方向性石英析出物分布圖(一) 49
圖3-30綠輝石中具方向性石英析出物分布圖(二) 49
圖3-31磷灰石及內部透光析出物(一) 50
圖3-32磷灰石及內部透光析出物(二) 50
圖3-33磷灰石(圖3-32)與析出物BSE影像及EDS分析圖譜 51
圖3-34磷灰石及內部不透光析出物(一) 53
圖3-35磷灰石及內部不透光析出物(二) 53
圖3-36磷灰石(圖3-35)析出物BSE影像及EDS分析圖譜 54
圖3-37石榴子石成分分布圖 61
圖3-38斜輝石成分分布圖 62
圖3-39角閃石成分分布圖 63
圖3-40綠輝石中石英析出量計算過程 65
圖3-41薄化之綠輝石TEM試片光學影像 69
圖3-42a綠輝石中石英與角閃石交生之TEM明視野影像 70
圖3-42b綠輝石B=[102] TEM擇區電子繞射圖像 70
圖3-42c石英B=[302] TEM擇區電子繞射圖像 71
圖3-42d綠輝石B=[102]與石英B=[302]經tilt angle修正後立體投影圖 71
圖3-43a綠輝石中角閃石薄板與疑似石英析出物之TEM明視野影像 72
圖3-43b綠輝石B=[101] TEM擇區電子繞射圖像 73
圖3-43c角閃石B=[101] TEM擇區電子繞射圖像 73
圖3-43d綠輝石與角閃石結晶方位之立體投影圖 74
圖3-44a綠輝石中長板狀石英析出物TEM影像 75
圖3-44b綠輝石B=[-1-30] TEM電子繞射圖像 76
圖3-44c石英B=[201] TEM電子繞射圖像 76
圖3-44d角閃石B=[111] TEM電子繞射圖像 77
圖3-44e綠輝石B=[-1-30]之立體投影圖 77
圖3-45a綠輝石中石英析出物TEM影像(一) 78
圖3-45b綠輝石B=[3-16] TEM擇區電子繞射圖像 79
圖3-45c石英B=[230] TEM擇區電子繞射圖像 79
圖3-45d綠輝石B=[3-16]之立體投影圖 80
圖3-46a綠輝石中石英析出物TEM影像(二) 81
圖3-46b綠輝石B=[-1-3-1] TEM擇區電子繞射圖像 82
圖3-46c石英B=[0-3-1] TEM擇區電子繞射圖像 82
圖3-46d角閃石B=[112] TEM擇區電子繞射圖像 83
圖3-46e綠輝石B=[-1-3-1]之立體投影圖 83
圖3-47a綠輝石中石英析出物TEM影像(三) 84
圖3-47b綠輝石B=[0-10] TEM擇區電子繞射圖像 85
圖3-47c石英B=[100] TEM擇區電子繞射圖像 85
圖3-47d角閃石B=[-1-1-2] TEM擇區電子繞射圖像 86
圖3-47e綠輝石B=[0-10]之立體投影圖 86
圖3-48石英TEM EDS分析圖譜 88
圖3-49角閃石TEM EDS分析圖譜 88
圖3-50綠輝石TEM EDS分析圖譜 89
圖4-1石英析出物長軸與綠輝石之空間關係圖 92
參考文獻 References
中文部分
王璐、金振民與何謀春(2003)榴輝岩中石英出溶體的拉曼光譜學研究及其構造意義。地球科學-中國地質大學學報,第28卷,第2期,第143-150頁。
朱永峰與Massonne, H. J.(2005)磷灰石中磁黃鐵礦出溶結構的發現。岩石學報,第21卷,第2期,第405-410頁。
陳培源主編(1996),礦物學名詞,第二版,茂昌,台北市。
陳晶、許志琴、李旭平、陳志忠、李天福與陳方遠(2003)石榴石輝石岩的單斜輝石中韭閃石和鈦鐵礦出溶結構及地質意義。地質學報,第77卷,第4期,第556-565頁。
黃士龍、沈博彥、朱傚祖與余震甫(2005)六方水鋁石:首次發現於哈薩克柯斜塔地區之白片岩。中國地質學會2005年年會暨地質研討會論文集,第211頁。
蔡宗翰(2005)中國南蘇魯地區隕硫鐵(磁黃鐵礦)於磷灰石中之結晶關係研究。成功大學地球科學研究所碩士論文。
劉順生、殷秀蘭與許志琴(2003)江蘇東海預先導孔(CCSD-PP2)岩心樣中磷灰石裂變徑跡年齡測定。地質學報,第77卷,第4期,第540-543頁。
英文部分
Anthony , J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C. (1995) Handbook of mineralogy, Volume II, Silica, Silicates. Mineralogical Society of America. (http://www.minsocam.org/MSA/Handbook)
Bozhilov, K. N., Green II, H. W., and Dobrzhinetskaya, L. (1999) Clinoenstatite in the Alpe Arami peridotite: additional evidence of very high pressure. Science, 284, 128-132.
Carroll, M. R. and Webster, J. D. (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In: Carroll, M. R. and Holloway, J. R. (eds.) Volatiles in Magmas, Reviews in Mineralogy, 30, pp. 231-280, Mineralogical Society of America.
Cartigny, P., Chinn, I., Viljoen, K. S., and Robinson, D. (2004) Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds. Science, 304, 853-855.
Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107-118.
Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters, 212, 1-14.
Cong, B., Wang, Q., and Zhai, M. (1999) New data regarding hotly debated topics concerning UHP metamorphism of the Dabie-Sulu belt, east-central China. International Geology Review, 41, 827-835.
Cullity, B. D. and Stock, S. R. (2001) Elements of X-ray diffraction. 3nd ed., Prentice Hall, 664 p.
Deer, W. A., Howie, R. A., and Zussman, J. (1992) An introduction to the rock-forming minerals. 2nd ed., John Wiley & Sons, 696 p.
Dobrzhinetskaya, L., Green II, H. W., and Wang, S. (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science, 271, 1841-1846.
Dobrzhinetskaya, L. F., Schweinehage, R., Massonne, H. J., and Green, H. W. (2002) Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: evidence of deep subduction. Journal of Metamorphic Geology, 20, 481-492.
Droop, G. T. R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435.
Ernst, W. G. (2001) Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices — implications for arcs and continental growth. Physics of the Earth and Planetary Interiors, 127, 253-275.
Esawi, E. K. (2004) AMPH-CLASS: an Excel spreadsheet for the classification and nomenclature of amphiboles based on the 1997 recommendations of the International Mineralogical Association. Computers & Geosciences, 30, 753-760.
Evans, B. W., Trommsdorff, V., and Richter, W. (1979) Petrology of an eclogite-metarodingite suite at Cima di Gagnone, Ticino, Switzerland. American Mineralogist, 64, 15-31.
Gasparik, T. (1985) Experimental study of subsolidus phase-relations and mixing properties of pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2. Contributions to Mineralogy and Petrology, 89, 346-357.
Gasparik, T. (1986) Experimental study of sibsolidus phase relations and mixing properties of clinopyroxene in the silica-saturated system CaO-MgO-Al2O3-SiO2. American Mineralogist, 71, 686-693.
Gayk, T., Kleinschrodt, R., Langosh, A., and Seidel, E. (1995) Quartz exsolution in clinopyroxene of high-pressure granulite from the Münchberg Massif. European Journal of Mineralogy, 7, 1217-1220.
Gottesmann, B. and Wirth, R. (1997) Pyrrhotite inclusions in dark pigmented apatite from granitic rocks. European Journal of Mineralogy, 9, 491-500.
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. (1998) A Neo-
proterozoic Snowball Earth. Science, 281, 1342-1346.
Hoffman, P. F. and Schrag, D. P. (2002) The Snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129-155.
Hwang, S. L., Shen, P., Chu, H. T., and Yui, T. F. (2000) Nanometer-size α-PbO2-type TiO2 in garnet: a thermobarometer for ultrahigh-pressure metamorphism. Science, 288, 321-324.
Hwang, S. L., Shen, P., Chu, H. T., Yui, T. F., Liou, J. G., Sobolev, N. V., Zhang, R. Y., Shatsky, V. S., and Zayachkovsky, A. A. (2004) Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contributions to Mineralogy and Petrology, 148, 380-389.
Isaacs, A. M., Brown, P. E., Valley, J. W., Essene, E. J., and Peacor, D. R. (1981) An analytical electron microscopic study of a pyroxene-amphibole intergrowth from Lake Chatuge, Georgia. Contributions to Mineralogy and Petrology, 77, 115-120.
Jahn, B. M., Caby, R., and Monie, P. (2001) The oldest UHP eclogites of the world: age of UHP metamorphism, nature of protoliths and tectonic implications. Chemical Geology, 178, 143-158.
Katayama, I., Parkinson, C. D., Okamoto, K., Nakajima, Y., and Maruyama, S. (2000) Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan. American Mineralogist, 85, 1368-1374.
Katayama, I. and Nakashima, S. (2003) Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. American Mineralogist, 88, 229-234.
Kelley, P. M., Wauchope, C. J., and Zhang, X. (1994) Calculation of overall tilt angles for a double tilt holder in a TEM. Microscopy Research and Technique, 28, 448-451.
Klein, C. (2002) Manual of mineral science. 22nd ed., John Wiley & Sons, 641 p.
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.
Kusky, T. M., Li, J., and Tucker, R. D. (2001) The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science, 292, 1142-1145.
Leake, B. E. (1978) Nomenclature of amphiboles. American Mineralogist, 63, 1023-1052.
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Whittaker, E. J. W., and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246.
Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Feraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N., and Whittaker, E. J. W. (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. The Canadian Mineralogist, 41, 1355-1362.
Liati, A., Gebauer, D., and Wysoczanski, R. (2002) U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece); evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology, 184, 281-299.
Liou, J. G. and Zhang, R. Y. (1996) Occurrence of intergranular coesite in Sulu ultrahigh-P rocks from China: implications for fluid activity during exhumation. American Mineralogist, 81, 1217-1221.
Liou, J. G., Zhang, R. Y., and Jahn, B. M. (1997) Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos, 41, 59-78.
Liou, J. G., Zhang, R. Y., Ernst, W. G., Rumble, D., and Maruyama, S. (1998) High-pressure minerals from deeply subducted metamorphic rocks. In: Hemley, R. J. (ed.) Ultrahigh-pressure mineralogy: physics and chemistry of the Earth's deep interior, Reviews in Mineralogy, 37, pp. 33-96, Mineralogical Society of America.
Liou, J. G., Maruyama, S., Zhang, R. Y., and Ogasawara, Y. (2001) Current advance in the study of ultrahigh-pressure (UHP) metamorphism. (Abstract) In: UHPM Workshop 2001 at Waseda University, session , 56-60.
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I., and Maruyama, S. (2004) Global UHP metamorphism and continent subduction/collision: the Himalayan model. International Geology Review, 46, 1-27.
Liu, F., Xu, Z., Katayama, I., Yang, J., Maruyama, S., and Liou, J. G. (2001) Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59, 199-215.
Liu, F., Zhang, Z., Katayama, I., Xu, Z., and Maruyama, S. (2003) Ultrahigh-pressure metamorphic records hidden in zircons from amphibolites in Sulu terrane, eastern China. The Island Arc, 12, 256-267.
Liu, F., Xu, Z., and Xue, H. (2004a) Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos, 78, 411-429.
Liu, F., Xu, Z., Liou, J. G., and Song, B. (2004b) SHRIMP U-Pb ages of ultrahigh pressure and retrograde metamorphism of gneissic rocks in the southwestern Sulu terrane, eastern China. Journal of Metamorphic Geology, 22, 315-326.
Liu, F., Liou, J. G., and Xu, Z. (2005) U-Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China: new interpretation. American Mineralogist, 90, 790-800.
Long, D. A. (2002) The Raman Effect: a unified treatment of the theory of Raman scattering by molecules. John Wiley & Sons, 584 p.
MacKenzie, J. M., Canil, D., Johnston, S. T., English, J., Mihalynuk, M. G., and Grant, B. (2005) First evidence for ultrahigh-pressure garnet peridotite in the North American Cordillera. Geology, 33, 105-108.
Mao, H. K. (1971) The system jadeite (NaAlSi2O6)-anorthite (CaAl2Si2O8) at high pressures. Carnegie Institution Year Book, 69, 163-168.
Maruyama, S. and Liou, J. G. (1998) Initiation of ultrahigh-pressure metamorphism and its signifcance on the Proterozoic-Phanerozoic boundary. The Island Arc, 7, 6-35.
Maruyama, S. and Liou, J. G. (2005) From Snowball to Phaneorozic Earth. International Geology Review, 47, 775-791.
Mattinson, C. G., Zhang, R. Y., Tsujimori, T., and Liou, J. G. (2004) Epidote-rich talc-kyanite-phengite eclogites, Sulu terrane, eastern China: P-T-fO2 estimates and the significance of the epidote-talc assemblage in eclogite. American Mineralogist, 89, 1772-1783.
Morimoto, N. (1988) Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535-550.
Nesse, W. D. (1991) Introduction to optical mineralogy. 2nd ed., Oxford University Press, 335 p.
Ogasawara, Y., Fukasawa, K., and Maruyama, S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87, 454-461.
Page, F. Z., Essene, E. J., and Mukasa, S. B. (2003) Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA. Journal of Metamorphic Geology, 21, 685-698.
Page, F. Z., Essene, E. J., and Mukasa, S. B. (2005) Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, USA. American Mineralogist, 90, 1092-1099.
Papike, J. J., Ross, M., and Clark, J. R. (1969) Crystal-chemical characterization of amphiboles based on five new structure determinations. Mineralogical Society of America, Specific Paper 2, 117-136.
Parkinson, C. D., Motoki, A., Onishi, C. T., and Maruyama, S. (2001) Ultrahigh-pressure pyrope-kyanite granulites and associated eclogites in Neoproterozoic nappes of southeast Brazil: UHPM workshop 2001, abstract, Waseda University, 87-90.
Raman, C. V. and Krishnan, K. S. (1928) A new type of secondary radiation. Nature, 121, 501-502.
Rumble, D. and Yui, T. F. (1998) The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 62, 3307-3321.
Rumble, D., Giorgis, D., Ireland, T., Zhang, Z., Xu, H., Yui, T. F., Yang, J., Xu, Z., and Liou, J. G. (2002) Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 66, 2299-2306.
Schmadicke, K. and Muller, W. F. (2000) Unsual exsolution phenomena in omphacite and partial replacement of phengite by phlogopite + kyanite in an eclogite from the Erzgebirge. Contributions to Minerology and Petrology, 139, 629-642.
Skogby, H., Bell, B. R., and Rossman, G. R. (1990) Hydroxide in pyroxene: variations in the natural environment. American Mineralogist, 75, 764-774.
Smith, D. C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641-644.
Smith, P. P. K. (1977) An electron microscopic study of amphibole lamellae in augite. Contributions to Mineralogy and Petrology, 59, 317-322.
Smyth, J. R. (1980) Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites. American Mineralogist, 65, 1185-1191.
Smyth, J. R., Bell, D. R., and Rossman, G. R. (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature, 351, 732-735.
Sobolev, N. V., Kuznetsova, I. K., and Zyuzin, N. I. (1968) The petrology of grospydite xenoliths from the Zagadochnaya kimberlite pipe in Yakutia. Journal of Petrology, 9, 253-280.
Sobolev, N. V. and Shatsky, V. S. (1990) Diamond inclusions in garnet from metamorphic rocks: a new environment for diamond formation. Nature, 343, 742-746.
Song, S. G., Yang, J. S., Xu, Z. Q., Liou, J. G., and Shi, R. D. (2003) Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21, 631-644.
Song, S., Zhang, L., Chen, J., Liou, J. G., and Niu, Y. (2005) Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: implications for ultradeep-origin and hydroxyl defects in mantle garnets. American Mineralogist, 90, 814-820.
Spear, F. S. (1993) Metamorphic phase-equilibria and pressure-temperature-time paths. Mineralogical Society of America, 799 p.
Stout, J. H. (1972) Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. Journal of Petrology, 13, 99-145.
Sturm, R. (2002) PX-NOM — an interactive spreadsheet program for the computation of pyroxene analyses derived from the electron microprobe. Computers & Geosciences, 28, 473-483.
Terry, M. P. and Robinson, P. (2001) Evidence for supersilicic pyroxene in an UHP kyanite eclogite, Western Gneiss Region, Norway. Eleventh Annual V. M. Goldschmidt Conference, abstract 3842.
Terry, M. P., Bromiley, G. D., and Robinson, P. (2003) Determination of equilibrium water content and composition of omphacitic pyroxene in an UHP kyanite eclogite, Western Norway. Geophysical Research Abstracts, 5, abstract 08698.
Tindle, A. G. and Webb, P. C. (1994) PROBE-AMPH — a spreadsheet program to classify microprobe-derived amphibole analyses. Computers & Geosciences, 20, 1201-1228.
Tsai, C. H. and Liou, J. G. (2000) Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. American Mineralogist, 85, 1-8.
Van Roermund, H. L. M. and Drury, M. R. (1998) Ultra-high pressure (P > 6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from > 185 km depth. Terra Nova, 10, 295-301.
Wang, X. and Liou, J. G. (1989) The large displacement of the Tanlu fault: evidence from the distribution of coesite-bearing eclogite belt in eastern China. Eos, 70, 1312-1313.
Wood, B. J. and Henderson, C. M. B. (1978) Compositions and unit-cell parameters of synthetic non-stoichiometric tschermakitic clinopyroxenes. American Mineralogist, 63, 66-72.
Xu, S., Liu, Y., Chen, G., Compagnoni, R., Rolfo, F., Mouchun, H., and Liu, H. (2003) New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin, 48, 988-994.
Yamaguchi, Y., Akai, J., and Tomity, K. (1978) Clinoamphibole lamellae in diopside of garnet lherzolite from Alpe Arami, Bellinzona, Switzerland. Contributions to Mineralogy and Petrology, 66, 263-270.
Ye, K., Cong, B., and Ye, D. (2000a) The possible subduction of continental material to depths greater than 200 km. Nature, 407, 734-736.
Ye, K., Yao, Y., Katayama, I., Cong, B., Wang, Q., and Maruyama, S. (2000b) Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52, 157-164.
Ye, K., Liou, J. B., Cong, B., and Maruyama, S. (2001) Overpressures induced by coesite-quartz transition in zircon. American Mineralogist, 86, 1151–1155.
Yui, T. F., Rumble, D., and Lo, C. H. (1995) Unusually low δ18O ultrahigh-pressure metamorphic rocks from Su-Lu terrane, eastern China. Geochimica et Cosmochimica Acta, 59, 2859-2864.
Yui, T. F., Rumble, D., Chen, C. H., and Lo, C. H. (1997) Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China. Chemical Geology, 137, 135-147.
Yui, T. F. (1998) Ultrahigh-pressure metamorphism: an overview. Proc. Natl. Sci. Council, A, 22, 547-562.
Zhang, L., Ellis, D. J., and Jiang, W. (2002) Ultrahigh-pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. American Mineralogist, 87, 853-860.
Zhang, L., Song, S., Liou, J. G., Ai, Y., and Li , X. (2005) Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. American Mineralogist, 90, 181-186.
Zhang, R. Y., Hirajima, T., Banno, S., Cong, B., and Liou, J. G. (1995) Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. Journal of Metamorphic Geology, 13, 659-675.
Zhang, R. Y., Liou, J. G., Ernst, W. G., Coleman, R. G., Sobolev, N. V., and Shatsky, V. S. (1997) Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Metamorphic Geology, 15, 479-496.
Zhang, R. Y., Shu, J. F., Mao, H. K., and Liou, J. G. (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. American Mineralogist, 84, 564-569.
Zhang, R. Y. and Liou, J. G. (2003) Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxene. American Mineralogist, 88, 1591-1600.
Zhang, R. Y., Zhai, S. M., Fei, Y. W., and Liou, J. G. (2003) Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth and Planetary Science Letters, 216, 591-601.
Zhang, Z., Rumble, D., Liou, J. G., Xiao, Y. L., and Gao, Y. J. (2005a) Oxygen isotope geochemistry of rocks from the Pre-Pilot Hole of the Chinese Continental Scientific Drilling Project (CCSD-PPH1). American Mineralogist, 90, 857-863.
Zhang, Z., Xiao, Y., Liu, F., Liou, J. G., and Hoefs, J. (2005b) Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos, 81, 189-207.
Zheng, Y. F., Fu, B., Li, Y., Xiao, Y., and Li, S. (1998) Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters, 155, 113-129.
Zhu, Y. and Ogasawara, Y. (2002) Phlogopite and coesite exsolution from super-silicic clinopyroxene. International Geology Review, 44, 831-836.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code