Responsive image
博碩士論文 etd-0116107-191139 詳細資訊
Title page for etd-0116107-191139
論文名稱
Title
球柵陣列封裝錫球於老化測試下之變形分析
A Study of Solder Ball Deformation for Ball Grid Array Package Under Burn-In Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-14
繳交日期
Date of Submission
2007-01-16
關鍵字
Keywords
變形、球柵陣列封裝、田口品質工程、有限元素分析、老化測試、錫球
solder ball, Burn-In, BGA, deformation, Taguchi Methods, Ansys, FEM, MiniTab, ANOVA
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
摘要

本文實際運用從世界級半導體封裝測試公司所獲得的老化測試(Burn-In)資料,從實際有限的資料當中分析造成球柵陣列封裝(BGA)錫球變形之主要原因,文中主要使用田口品質工程(Taguchi Methods)來分析取得的資料,並且廣泛使用統計商用軟體 MiniTab 14 處理資料及分析。並使用有限元素分析軟體 Ansys 8.1 做進一步錫球應力之分析。
在老化測試過程中可觀察到一些靜態加速測試所無法觀察到的半導體電性相關效應(如消耗功率),文中也會將這些特性加以分析,藉由這一系列的分析結果中,最後發現較小的錫球間距(Solder Ball Pitch)或錫球直徑(Solder Ball Diameter)在相同的老化測試條件下,會有較嚴重的變形,較長的老化測試時數(Burn-In Time)亦有較嚴重的錫球變形,在本文的取樣範圍內,產品消耗功率對錫球變形並無顯著影響。
Abstract
ABSTRACT

This thesis gathered the actual Burn-In (BI) data from one of the leading cooperation in the semiconductor industry, and analyzed the major factors’ impact on BGA package solder ball deformation. The Taguchi Method was used for these analyses, and the commercial statistic software MiniTab14 was widely used on this thesis. The solder ball stress was analized by using the commercial FEM software Ansys 8.1.
Some electrical characters (such as device power) can be only observed from Burn-In process, but not static acceleration tests. These effects were fully discussed in this thesis. The analyses got the result that the smaller solder ball pitch/solder ball diameter causes the more serious solder ball deformation under the specific socket vendor precondition. Burn-In time are also a significant factor for solder deformation. Basically the longer BI time cause the more serious solder deformation. The device power effect is not significant within the power sampling range of this thesis.
目次 Table of Contents
CONTENTS

ACKNOWLEDGEMENTS .….……………………………………. i
CONTENTS ………………………………………………………… ii
LIST OF TABLES ………………………………………………….. v
LIST OF FIGURES ………………………………………………… vii
ABSTRACT (CHINESE) …………………………………………… x
ABSTRACT (ENGLISH) …………………………………………… xi
CHAPTER 1 INTRODUCTION ……………………………………. 1
1.1 Motivation …………………………………………………. 1
1.2 Literatures Review …………………………………………. 3
1.2.1 Solder Material and Solder Joint Studies …………… 3
1.2.2 Burn-In Related Studies …………………………….. 6
1.2.3 The Studies of Burn-In Trend ……………………….. 8
1.3 Contents of the Thesis ………………………….…………… 12
CHAPTER 2 BACKGROUND OF PRODUCT FAILURE BEHAVIOR AND BURN-IN ……………………………………….. 16
2.1 The Bathtub Curve …………………………………………. 16
2.2 Infant Mortality …………………………………………….. 19
2.3 Weibull Distribution ………………………………………... 21
2.4 Burn-In ……………………………………………………... 24
2.5 Burn-In Methodolgy ………………………………………... 26
CHAPTER 3 TAGUCHI METHODS ………………………………. 40
3.1 Brief Instruction of Taguchi Methods ……………………... 40
3.2 Orthogonal Array …………………………………………... 41
3.2.1 Orthogonality ………………………………………. 43
3.2.2 Advantages of Using Orthogonal Arrays ………….. 45
3.3 Signal-to-Noise Ratio ……………………………………… 46
3.3.1 SN Ratio for Smaller Is Better ……………………... 48
3.3.2 SN Ratio for Bigger Is Better ……………………… 48
3.3.3 SN Ratio for Nominal Is Best ……………………… 49
3.4 Special Application of Taguchi Methods …………………. 50
3.4.1 Dummy Level Technique on Orthogonal Arrays ….. 50
3.4.2 Omega Transformation ……………………………. 51
CHAPTER 4 DATA COLLECTION ………………………………. 60
4.1 Factors to be Analyzed ……………….…………………… 60
4.2 Plan of Data Collection …………………………………… 61
CHAPTER 5 ANALYSIS ………………………………………….. 65
5.1 Preliminary Data Analysis ……………….………………… 65
5.1.1 Analysis of Variance ………………………………. 68
5.1.2 Contact Force Effect ……………………………….. 70
5.1.3 Device Power Effect ……………………………….. 70
5.1.4 Burn-In Time Effect ……………………………….. 71
5.2 Re-Arrange the Level of Contact Force …………………… 71
5.3 Ball Diameter and Pitch Effect ……………………………. 73
5.3.1 Focus on Single Socket Vendor …………………... 73
5.3.2 Verification Experiment …………………………… 74
5.3.3 Analysis of Variance ………………………………. 76
5.4 Omega Transformation ……………………………………. 77
5.5 Solder Ball Stress Analysis .................................................. 79
CHAPTER 6 CONCLUSIONS ……………………………………. 119
6.1 Summaries ……………………………………………….. 119
6.2 Future Prospects ………………………………………….. 121
REFERENCES …………………………………………………….. 123
參考文獻 References
REFERENCES

[1] J. Clech, “An Obstacle-Controlled Creep Model For Sn-Pb And Sn-Based Lead-Free Solders”, SMTA International Conference (SMTAI ’04), Chicago, Sept. 26-30, 2004
[2] P. Vianco, “Creep Behavior of The Ternary 95.5Sn-3.9Ag-0.6Cu Solder: Part I – As-Cast Condition”, Journal of Electronic Materials, Vol. 33, No. 11, pp. 1389-1400, 2004
[3] P. Geng, “Dynamic Test and Modeling Methodology for BGA Solder Joint Shock Reliability Evaluation”, Electronic Components and Technology Conference, Arlington, pp. 654-659, 2005
[4] J. Anttonen, T. Kangasvieri, O. Nousiainen, J. Putaala, and J. Vahakangas, “Thermo-Mechanical Modeling of Plastic-Core Solder Balls in LTCC/BGA Assemblies”, Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems Conference, pp. 1-4, 24-26, 2006
[5] V. Gektin, A. Bar-Cohen, and J. Ames, “Coffin–Manson Fatigue Model of Underfilled Flip-Chips”, IEEE Transactions On Components, Packaging, And Manufacturing Technology - Part A, Vol. 20, No. 3, pp. 317-326, 1997
[6] D. Chi and W. Kuo, “Burn-in Optimization under Reliability & Capacity Restrictions”, IEEE Transactions On Reliability, Vol. 38, No. 2, pp. 193-198, 1989
[7] H. H. Huston, M. H. Wood, and V. H. Depalma, “Burn-In Effectiveness – Theory and Measurement”, IEEE, pp. 271-276, 1991
[8] S. Tang, “New Burn-In Methodology Based On IC Attributes Family IC Burn-In Data, and Failure Mechanism Analysis”, Proceeding Annual Reliability and Maintainability Symposium, IEEE, pp. 185-190, 1996
[9] International Technology Roadmap For Semiconductors, Test And Test Equipment, Burn-In Requirements, http://www.itrs.net/, pp. 42-46, 2005
[10] H. H. Hamilton, “Thermal Aspects of Burn-In of High Power Semiconductor Devices”, ITHERM Conference, San Diego, pp. 626-634, 2002
[11] P. Tadayon, “Thermal Challenges During Microprocessor Testing”, Intel Technology Journal Q3, 2000.
[12] P. Thompson, M. Begay, S. E. Lindsey, D. R. Vanoverloop, B. Vasquez, S. Walker, and B. Williams, “Mechanical and Electrical Evaluation of a Bumped-Substrate Die-Level Burn-In Carrier”, IEEE Transactions On Components, Packing, And Manufacturing Technology - Part B, Vol. 18, NO. 2, pp. 264-268, 1995
[13] D. Gralian, “Next Generation Burn-In Development”, IEEE Transactions On Components, Packing, And Manufacturing Technology - Part B: Advanced Packaging, Vol. 17, NO. 2, pp. 190-196, 1994
[14] W. Ballouli, T. McKenzie, and N. Alizy, “Known Good Die Achieved Through Wafer Level Burn-In And Test”, Electronics Manufacturing Technology Symposium, IEEE/CPMT International, pp.153-159, 2000
[15] D. R. Conti and J. V. Horn, “Wafer Level Burn-in”, Electronic Components and Technology Conference, Las Vegas, pp. 815-821, 2000
[16] Y. Nakata, I. Miyanaga, S. Oki, and H. Fujimoto, “A Wafer-Level Burn-in Technology Using the Contactor Controlled Thermal Expansion”, Multichip Modules, Proceedings of the 1997 International Conference Osaka, pp. 259-264, 1997
[17] D. B. Tuckerman, B. Jarvis, C.. Lin, P. Patel, and M. Hunt, “A Cost-Effective Wafer-Level Burn-In Technology”, Multichip Modules, Proceedings of the 1994 International Conference, USA, pp.34-40, 1994
[18] Wikipedia , The Free Encyclopedia, Bathtub Curve, http://en.wikipedia.org/wiki/Bathtub_curve
[19] 蘇朝墩, 品質工程, pp. 1-8, pp. 38-41, pp. 52-57, pp.94-109, pp.172-177, 三民書局, 台北, 2005
[20] W. Y. Fowlkes and C. M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Addison Wesley Publishing Company, Boston, pp. 238-269, 1995
[21] 熊高生, MiniTab14資料統計與分析 - 問題導向操作型學習, ch. 3-7, ch. 28, 松崗電腦圖書資料股份有限公司, 台北, 2006
[22] J. Kuby, “Elementary Statistics”, 9th Edition, Thomson Learning, Inc. USA, pp.573-579, 2004
[23] 康淵, 陳信吉, ANSYS入門, ch. 1-8, 全華科技, 台北, 2006
[24] 康淵, ANSYS進階, ch. 5-6, 全華科技, 台北, 2006
[25] 洪慶章, 劉清吉, 郭嘉源, ANSYS教學範例, ch. 7-8, 知城出版社, 台北, 2001
[26] 劉安展, 熱膨脹係數匹配誤差對光電封裝中錫球可靠度之影響, 碩士論文, 國立中山大學機械與機電工程學系, 高雄, 2003
[27] K. L. Lawrence, “Ansys Tutorial: Release 10”, Schroff Development Crop, USA, pp. 416-428, 2006
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.0.157
論文開放下載的時間是 校外不公開

Your IP address is 3.143.0.157
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code