Responsive image
博碩士論文 etd-0116110-162513 詳細資訊
Title page for etd-0116110-162513
論文名稱
Title
介電質常壓電漿產生器之開發及其於質譜分析之應用
Development of a DBD Plasma Generator and the Applications for Mass Spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-14
繳交日期
Date of Submission
2010-01-16
關鍵字
Keywords
介電質放電電漿、光學發射光譜儀、質譜檢測、大氣壓力游離法
none
統計
Statistics
本論文已被瀏覽 5700 次,被下載 14038
The thesis/dissertation has been browsed 5700 times, has been downloaded 14038 times.
中文摘要
電漿技術近年來運用在許多化學檢測,電漿光輝的發光性與等電位離子化的特性,便於使用光譜或質譜分析達成檢測目的,對於運用在各種化學分析的電漿裝置有非常廣泛的研究,不同類型電漿進行檢測的方案也一一被提出,且有趨於微小化的趨勢。
本研究成功研發出微型常壓介電質放電(Dielectric Barrier Discharge, DBD)電漿產生器,結合質譜儀,利用此系統進行揮發性化學樣本之質譜檢測,樣本可直接藉由電漿游離源形成離子進入質譜進行快速分析,而不需要複雜的樣本萃取處理。DBD 電漿產生器以內徑1.5 mm、外徑3.0 mm、長50 mm的玻璃管為主體,管中以一直徑1 mm的銅線作為內電極,銅箔包覆管外為外電極,電漿產生於兩電極之間約25 mm的管中區域。此電漿裝置電源使用自製電源系統提供27 kHz, 2000 V的高頻率高電壓電源,產生電漿的輸出功率需求約為2.4 W,在正常操作條件下電漿產生氣溫度維持在50oC以下。分別使用氦氣、氬氣等惰性氣體作為DBD電漿晶片之電漿氣體,並以光譜檢測(Optical emission spectroscopy, OES)氦、氬、氮、氧電漿,可得代表不同氣體能階躍升之光譜,證實DBD電漿產生器產生電漿之效能。此電漿產生器作為質譜游離源結合質譜偵測,可偵測出小分子有機化學物質,如偵測出乙醇分子量47。此外多種的中藥材料如丁香、川芎、當歸等等,亦成功使用此DBD電漿/質譜系統測出代表特性之質譜圖,並且混合三種藥材進行測試也成功的辨認出三種藥材組成。
本研究研發的介電質常壓電漿產生器,使用低功率電源,便可產生高離子濃度的常壓電漿作為質譜檢測的游離源。許多傳統質譜游離源需要在真空狀態並要求樣本的前處理,相對於傳統質譜儀的游離源,利用此電漿產生器做游離源可在大氣環境進行操作,且化學樣本可直接藉由電漿游離源產生揮發進入質譜快速分析,而不需要複雜的樣本萃取處理,可減少樣本消耗、加快檢測速度。
Abstract
none
目次 Table of Contents
目錄
目錄 I
圖目錄 IV
表目錄 VII
摘要 VIII
縮寫表 X
單位符號表 XII
第一章、 緒論 1
1.1前言與論文架構 1
1.2電漿簡介 2
1.2.1 電漿主要分類與特性 4
1.3大氣微電漿於化學檢測之回顧 11
1.3.1直流電暈放電(DC glow discharge) 11
1.3.2感應耦合電漿(Inductively Coupled Plasmas, ICP) 12
1.3.3微波電漿(Microwave induce plasmas, MIP) 14
1.3.4 電容耦合電漿(Capacitively Coupled Plasma, CCP) 16
1.3.5介電質放電電漿(Dielectric-Barrier Discharge, DBD) 18
1.4大氣質譜游離源簡介 20
1.4.1電噴灑游離法(Electrospray Ionization, ESI) 22
1.4.2 大氣壓化學游離法(Atmospheric Pressure Chemical Ionization, APCI ) 24
1.4.3 大氣壓力光游離法(Atmospheric Pressure Photoionization, APPI) 25
1.4.4 大氣壓基質輔助雷射脫附游離法 (Atmospheric Pressure Matrix-assisted Laser Desorption/Ionization, AP-MALDI) 26
1.4.5 即時直接游離法DART (Direct Analysis in Real Time) 27
1.5研究動機與目的 30
第二章、 實驗原理與方法 33
2.1介電質放電電漿特性 33
2.2質譜基本原理 35
2.3電漿游離機制 36
2.4實驗設計與方法 38
2.4.1 電源設計 39
2.4.2微電漿產生器開發 42
2.4.3光譜檢測及電漿特性 43
2.4.4 質譜檢測 44
2.5實驗設計與檢測目標 47
第三章、 微型常壓介電質放電電漿產生器之電漿特性測試 48
3.1電漿溫度與離子濃度 48
3.2發射光譜測量 52
第四章、 快速質譜檢測與中藥分析及結果討論 58
4.1單一樣本質譜檢測 58
4.2中藥材之快速質譜檢測 61
4.3複方中藥材快速質譜檢測 64
4.4結果討論 67
第五章、 結論與未來展望 69
5.1結論 69
5.2其他介電質放電電漿游離源的比較 70
5.3未來展望 73
參考文獻 74

圖目錄
圖1.1直流放電電漿電流與電壓關係圖 5
圖1.2氣體壓力、電極距離乘積與崩潰電壓之關係曲線圖 8
圖1.3汞電漿在固定電流電壓下,氣壓與電子、氣體溫度的關係圖 10
圖1.4 Eijkel等人的直流電暈放電電漿晶片 12
圖1.6 ICP電漿噴燄(Plasma Jet)架構 14
圖1.8石英晶片製作的MIP電漿檢測器 16
圖1. 9 環狀電極的微波電漿源 16
圖1.10 電容耦合微電漿晶片 17
圖1.11 micro-CCP光譜檢測架構圖 18
圖1.12 介電質放電電漿晶片 20
圖1.13 Mircohollow Cathode Discharge(MHCD)質譜檢測架構 20
圖1.15 大氣壓化學游離法示意圖 24
圖1.16 大氣壓光游離法示意圖 25
圖1.17 AP-MALDI架構 27
圖1.19 DART游離源構造圖 28
圖1.18 RF大氣電漿產生器 29
圖1.19 RF-DART系統偵測固體揮發樣本架構示意圖 30
圖2.1 介電質放電電漿的基本架構圖 34
圖2.3質譜儀基礎架構示意圖 36
圖2.4 電源設計圖 40
圖2.5 IC 555電路及其產生訊號 41
圖2.6 介電質電漿產生器架構圖 42
圖2.7 介電質電漿產生器實體圖 43
圖2.8 光學發射光譜(OES)量測架構圖 44
圖2.9 介電質電漿產生器之質譜儀檢測架構圖 45
圖2.10 介電質電漿產生器之質譜儀檢測圖 46
圖3.1 微型常壓介電質放電電漿產生器在大氣環境所產生的電漿 49
圖3.2 微型常壓介電質放電電漿產生器產生的氦氣電漿噴燄 49
圖3.3 氦氣電漿噴燄的溫度與輸出功率關係圖 50
圖3.4 微型常壓介電質放電電漿產生器於固定操作條件下的總離子層析圖 51
圖3.5 微型常壓介電質放電電漿產生器於操作條件下的質譜背景圖 52
圖3.6 在不同供應電壓下所取得的萃取離子層析圖 52
圖3.8 微型常壓介電質放電電漿產生器之空氣與氮氣光譜 54
圖3.9 微型常壓介電質放電電漿產生器測得之氧氣光譜 55
圖3.10 微型常壓介電質放電電漿產生器測得之氦氣光譜 56
圖3.11 微型常壓介電質放電電漿產生器測得之氬氣光譜 57
圖4.1 本實驗電漿游離源結合質譜系偵測乙醇的質譜圖 59
圖4.2 偵測丙酮的質譜圖 59
圖4.3 偵測咖啡因的質譜圖 60
圖4.4 磨碎的咖啡豆所測得的質譜圖 60
圖4.5 當歸之偵測訊號圖 62
圖4.6 川芎之偵測訊號圖 62
圖4.7 丁香之偵測訊號圖 63
圖4.8 肉桂之偵測訊號圖 63
圖4.9 當歸混合丁香之偵測訊號圖 65
圖4.10 當歸與丁香混合萃取溶液的偵測訊號圖 65
圖4.11 當歸、丁香與肉桂混合之偵測訊號圖 66
圖4.12 當歸、丁香、肉桂混合萃取溶液的偵測訊號圖 66
圖5.1 北京清華大學學者張新榮研究團隊研發的LTP probe 71
圖5.2 LTP probe作為質譜游離源進行即時化學分析 71
圖5.3 Franzke研究團隊研發的DBDI 72

表目錄
表3.1氮氣OES對照表 54
表3.2氧氣OES對照表 55
表3.3氦氣OES對照表 56
表3.4氬氣OES對照表 57
表5.1三種DBD游離源比較表 72
參考文獻 References
參考文獻
[1] 賴耿陽, "電漿工學的基礎," 復文書局, 2002.
[2] R. Kenneth Marcus and J. A. C. Broekaert, Glow Discharge Plasmas in Analytical Spectroscopy: John Wiley & Sons Ltd, 2003.
[3] S. P. Kuo, E. Koretzky, and L. Orlick, "Design and electrical characteristics of a modular plasma torch," Ieee Transactions on Plasma Science, vol. 27, pp. 752-758, 1999.
[4] S. P. Kuo, E. Koretzky, and R. J. Vidmar, "Temperature measurement of an atmospheric-pressure plasma torch," Review of Scientific Instruments, vol. 70, pp. 3032-3034, 1999.
[5] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," Ieee Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[6] S. P. Rainer Hippler, Martin Schmidt, Karl H. Schoenbach Low Temperature Plasma Physics: Fundamental Aspects and Applications: Wiley-VCH, 2001.
[7] J. C. T. Eijkel, H. Stoeri, and A. Manz, "An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector," Journal of Analytical Atomic Spectrometry, vol. 15, pp. 297-300, 2000.
[8] J. C. T. Eijkel, H. Stoeri, and A. Manz, "A dc microplasma on a chip employed as an optical emission detector for gas chromatography," Analytical Chemistry, vol. 72, pp. 2547-2552, 2000.
[9] F. G. Bessoth, O. P. Naji, J. C. T. Eijkel, and A. Manz, "Towards an on-chip gas chromatograph: the development of a gas injector and a dc plasma emission detector," Journal of Analytical Atomic Spectrometry, vol. 17, pp. 794-799, 2002.
[10] J. A. Hopwood, "Microfabricated inductively coupled plasma generator," Journal of Microelectromechanical Systems, vol. 9, pp. 309-313, 2000.
[11] T. Ichiki, T. Koidesawa, and Y. Horiike, "An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample," Plasma Sources Science & Technology, vol. 12, pp. S16-S20, 2003.
[12] R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, and A. L. G. a. C. E.Taylor, "Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements," Analytical Chemistry, vol. 52, pp. 2283-2289, 1980.
[13] A. Scheffer, R. Brandt, C. Engelhard, S. Evers, N. Jakubowski, and W. Buscher, "A new ion source design for inductively coupled plasma mass spectrometry (ICP-MS)," Journal of Analytical Atomic Spectrometry, vol. 21, pp. 197-200, 2006.
[14] A. M. Bilgic, U. Engel, E. Voges, M. Kuckelheim, and J. A. C. Broekaert, "A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry," Plasma Sources Science & Technology, vol. 9, pp. 1-4, 2000.
[15] F. Iza and J. A. Hopwood, "Low-power microwave plasma source based on a microstrip split-ring resonator," Ieee Transactions on Plasma Science, vol. 31, pp. 782-787, 2003.
[16] P. Read, H. Beere, L. Ebdon, M. Leizers, M. Hetheridge, and S. Rowland, "Gas chromatography microwave-induced plasma mass spectrometry (GC-MIP-MS): A multi-element analytical tool for organic geochemistry," Organic Geochemistry, vol. 26, pp. 11-17, 1997.
[17] A. Bass, C. Chevalier, and N. W. Blades, "A capacitively coupled microplasma (CC mu P) formed in a channel in a quartz wafer," Journal of Analytical Atomic Spectrometry, vol. 16, pp. 919-921, 2001.
[18] H. Yoshiki and Y. Horiike, "Capacitively coupled microplasma source on a chip at atmospheric pressure," Japanese Journal of Applied Physics Part 2-Letters, vol. 40, pp. L360-L362, 2001.
[19] M. Miclea, K. Kunze, G. Musa, J. Franzke, and K. Niemax, "The dielectric barrier discharge - a powerful microchip plasma for diode laser spectrometry," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 56, pp. 37-43, 2001.
[20] K. Kunze, M. Miclea, J. Franzke, and K. Niemax, "The dielectric barrier discharge as a detector for gas chromatography," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 58, pp. 1435-1443, 2003.
[21] A. Michels, S. Tombrink, W. Vautz, M. Miclea, and J. Franzke, "Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 62, pp. 1208-1215, 2007.
[22] O. Samek, V. Margetic, N. von Wiren, A. Michels, K. Niemax, and R. Hergenroder, "Femtosecond laser analytical mass spectrometry applied to plant samples," Applied Physics a-Materials Science & Processing, vol. 79, pp. 957-960, 2004.
[23] M. Yamashita and J. B. Fenn, "Electrospray ion source. Another variation on the free-jet theme," The Journal of Physical Chemistry, vol. 88, pp. 4451-4459, 1984.
[24] W. Henderson, B. K. Nicholson, and L. J. McCaffrey, "Applications of electrospray mass spectrometry in organometallic chemistry," Polyhedron, vol. 17, pp. 4291-4313, 1998.
[25] T. Kauppila, "Atmospheric Pressure Photoionization-Mass Spectrometry," in Faculty of Pharmacy. vol. Doctor Helsinki: University of Helsinki, 2004.
[26] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, and a. T. Yoshida, "Protein and Polymer Analysis up To m/z 100000 by Laser Ionization Time-of-Flight Mass Spectrometry," Rapid Commum. Mass Spectrom, vol. 2, p. 151, 1998.
[27] M. Karas and F. Hillenkamp, "Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons," Analytical Chemistry, vol. 60, pp. 2299-2301, 1988.
[28] R. B. Cody, J. A. Laramee, and H. D. Durst, "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions," Analytical Chemistry, vol. 77, pp. 2297-2302, 2005.
[29] R. B. Cody, J. A. Laramee , J. M. Nilles, and H. D. Durst "Direct Analysis in Real Time (DARTtm) Mass Spectrometry," JEOL News, vol. 40, pp. 8-12, 2005.
[30] 許維仁, "低溫大氣電漿系統之開分及其應用," in 機械與機電工程所. vol. 碩士 高雄: 國立中山大學, 2007.
[31] V. Karanassios, "Microplasmas for chemical analysis: analytical tools or research toys?," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 59, pp. 909-928, 2004.
[32] J. Franzke, K. Kunze, M. Miclea, and K. Niemax, "Microplasmas for analytical spectrometry," Journal of Analytical Atomic Spectrometry, vol. 18, pp. 802-807, 2003.
[33] E. H. Evans, J. A. Day, W. J. Price, C. M. M. Smith, K. Sutton, and J. F. Tyson, "Atomic spectrometry update. Advances in atomic emission, absorption and fluorescence spectrometry and related techniques," Journal of Analytical Atomic Spectrometry, vol. 18, pp. 808-833, 2003.
[34] A. Makarov, E. Denisov, A. Kholomeev, W. Baischun, O. Lange, K. Strupat, and S. Horning, "Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer," Analytical Chemistry, vol. 78, pp. 2113-2120, 2006.
[35] R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, "Ambient Mass Spectrometry." vol. 311, 2006, pp. 1566-1570.
[36] U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, vol. 23, pp. 1-46, 2003.
[37] R. M. Smith, Understanding mass spectra: a basic approach: John Wiley and Sons, 2004.
[38] 陳亮村, "開發以大氣壓力質譜法對各式樣本中揮發性成份的分析," in 化學所. vol. 碩士 高雄: 國立中山大學, 2007.
[39] B. Mitra and Y. B. Gianchandani, "The detection of chemical vapors in air using optical emission spectroscopy of pulsed microdischarges from two- and three-electrode microstructures," Ieee Sensors Journal, vol. 8, pp. 1445-1454, 2008.
[40] P. Laboratory, "NIST:Atomic Spectra Database," National Institute of Standards and Technology, USA.
[41] 鍾傳祥 and 梁頌培., "中成藥當中當歸、川芎的氣相質譜鑑別的研究," 中成藥, vol. 19, pp. 32-35, 1997.
[42] 陳飛 and 姚成., "當歸化學成分研究進展," 中醫藥研究, vol. 18, pp. 51-54, 2002.
[43] 李用珍., 劉彩虹., and 董紅軍., "當歸化學成分的研究," 實用中醫藥雜誌, vol. 20, pp. 105-106, 2004.
[44] 林茂, 朱朝德, 孫慶民, and 方起程, "當歸化學成分的研究," 藥學學報, vol. 14, pp. 529-533, 1979.
[45] 王文祥, 顧明, 蔣小崗, 顧正綸, and 范盤生, "川芎化學成分研究," 中草藥, vol. 33, pp. 4-5, 2002.
[46] 肖永慶, 李麗, 游小琳, and 谷口雅顏., "川芎化學成分研究," 中國中醫藥雜誌, vol. 27, pp. 519-522, 2002.
[47] 劉紀云, 王文彤, and 朱迺金., "川芎的研究發展," 天津藥學, vol. 3, pp. 29-33, 1991.
[48] X. Ma, S. Zhang, Z. Lin, Y. Liu, Z. Xing, C. Yang, and X. Zhang, "Real-time monitoring of chemical reactions by mass spectrometry utilizing a low-temperature plasma probe," Analyst, vol. 134, pp. 1863-1867, 2009.
[49] H. Hayen, A. Michels, and J. Franzke, "Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry," Analytical Chemistry, vol. 81, pp. 10239-10245, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code