Responsive image
博碩士論文 etd-0116115-105446 詳細資訊
Title page for etd-0116115-105446
論文名稱
Title
利用次世代定序方法分析東沙島海域細菌菌相
Analyses of the Bacterial Communities Surrounding Dongsha Island by Next Generation Sequencing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-02-11
繳交日期
Date of Submission
2015-02-16
關鍵字
Keywords
東沙環礁國家公園、變性梯度膠體電泳、聚合酶鏈鎖反應、微生物多樣性、次世代定序
PCR, Dongsha atoll national park, DGGE, microbial diversity, next generation sequencing
統計
Statistics
本論文已被瀏覽 5739 次,被下載 0
The thesis/dissertation has been browsed 5739 times, has been downloaded 0 times.
中文摘要
在不同的環境因素下,會發展出不同的菌落型態,因此可以藉由分析菌相的組成與地區的差異性。本研究針對東沙環礁國家公園島上各區域的海水以及底沙進行採樣,探究其細菌的組成型態,除了對可培養的細菌加以分析,另外也藉由了次世代高通量定序(high-throughput sequencing)技術加以分析環境中的不可培養細菌組成加以比較。結果顯示在底沙樣品或是海水樣品皆以Gammaproteobacteria為最優勢之菌種,這和一般海域較常見之優勢菌種Alphaproteobacteria有差異,推斷可能是因為東沙環礁國家公園為一珊瑚礁資源豐富的海島地區,而Gammaproteobacteria為珊瑚礁主要之共伴微生物之一,也有可能是由陸地上被沖刷入水體中,所以才會在該地區出現Gammaproteobacteria較Alphaproteobacteria優勢的情況出現。而在底沙以及海水樣品中次要優勢的菌種分別為Bacilli及Alphaproteobacteria,Bacilli在海水環境中並非是普遍存在的菌相,可能是來自陸地上的植物有機物質。
Abstract
Microbacteria are everywhere even they can’t been seen by eyes directly. There are seventy-one percent of the earth’s surface covered by ocean. Within different location or ocean current etc. causing intense different environment. Marine bacteria have been through evolution all the time begin. We can discover the existence of bacterial no matter at the deep-sea with high pressure, or volcano on the sea-bed. There will be development different bacterial community structure according to the environmental factors. So we can analysis the relationship between the area and bacterial diversity by collecting the sample in different location. In this study, we sampled the surface seawater and the sediment from Dongsha island to research the bacterial community structure. But due to 99% of marine bacteria can not be incubated in laboratory, we use high throughput sequencing technique to analysis uncultured marine bacteria. Dongsha island doesn’t open to the public, so we infer the microbiota may be more close to the origin environment. Pass through the sequencing analysis we found that the Gammaproteobacteria is the dominant class not only in the sediment but also in seawater. But the most common dominant bacterium in the normal sea water is Alphaproteobacteria not Gammaproteobacteria. We infer that Dongsha is a island in rich of coral reef and the Gammaproteobacteria is one of the dominant bacterium associate with coral or they were been washed away from land in to aqua environment. So we can find abundance Gammaproteobacteria in our sample no matter in sediment or sea water. The subdominant bacterium is Alphaproteobacteria in seawater and Bacilli in sediment. Maybe it is come from the organic product of plant on the land by wade.
目次 Table of Contents
第一章 前言 1
1.1. 東沙島 1
1.2. 海洋細菌 2
1.3. 海洋潟湖細菌 3
1.4. 微生物多樣性 3
1.5. 16S rRNA基因之應用與特性 4
1.6. PCR-DGGE技術 5
1.6.1. 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 5
1.6.2. 變性梯度電泳(Denaturing Gradient Gel Electrophoresis, DGGE) 6
1.6.3. 利用16S rRNA 基因配合PCR-DGGE技術進行菌相分析 7
1.7. 次世代定序(Next Generation Sequencing, NGS) 7
1.8. Alpha diversity 8
1.9. 研究目的 9
第二章 實驗材料方法 10
2.1 東沙島採樣 11
2.2 細菌total genomic DNA萃取 11
2.2.1 未經培養東沙島底沙細菌DNA萃取 11
2.2.2 可培養東沙島海水細菌DNA萃取前處理 11
2.2.3 可培養東沙島底沙細菌DNA萃取前處理 12
2.2.4 可培養東沙海水/底沙細菌DNA萃取 12
2.2.5 Agarose 瓊脂膠體電泳檢視DNA 13
2.3 聚合酶鏈鎖反應(PCR)反應條件及策略 13
2.4 變性梯度電泳(Denaturing Gradient Gel Electrophoresis, DGGE) 15
2.4.1 40-60%變性梯度膠體製作 15
2.4.2 進行梯度變性電泳 16
2.4.3 SYBR green I染色 16
2.5 生化測試 16
2.6 次世代定序(Next Generation Sequencing, NGS) 18
2.7 定序、序列比對及序列提交 19
第三章 結果與討論 20
3.1 東沙島可培養菌相 20
3.1.1 底沙培養菌相分布及分析 20
3.1.2 海水培養菌相分布及分析 23
3.1.3 底沙及海水可培養菌株生化測試暨文獻比對 25
3.1.4 申請accession number 26
3.2 東沙島未經培養菌相 26
3.2.1 底沙未經培養菌相分布及分析 26
3.2.2 海水未經培養菌相分布及分析 28
3.3 次世代定序Alpha-diversity分析 30
3.4 菌相比較 31
3.4.1 底沙培養與未經培養菌相比較 31
3.4.2 海水培養與未經培養菌相比較 32
3.4.3 未經培養底沙各採樣點間比較 32
3.4.4 未經培養海水各採樣點間比較 33
3.4.5 利用QIIME比對Greengene database之統計 34
第四章 結論 35
參考文獻 38
表 49
圖 74
參考文獻 References
Alonso-Sáez L and Gasol JM (2007) Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Applied and Environmental Microbiology.. 73:3528–3535.

Andreote FD, Jime´nez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, Melo ISD (2012) The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics. PLoS ONE. 7: e38600

Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The Microbiome of the Red Sea Coral Stylophora pistillata Is Dominated by Tissue-Associated Endozoicomonas Bacteria. Applied and Environmental Microbiology. 79: 4759-4762

Beaton MJ, Roger AJ, Cavalier-Smith T (1998) Sequence Analysis of the Mitochondrial Genome of Sarcophyton glaucum: Conserved Gene Order Among Octocorals. J Mol Evol. 47:697–708

Brosius J, Palmer ML, Kennedy PJ and Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. PNAS. 75: 4801-4805

Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA and Donachie SP (2009) Microbial community structure in the North Pacific ocean. The ISME Journal. 3:1374–1386

Cerritos R, Vinuesa P, Eguiarte LE, Herrera-Estrella L, Alcaraz-Peraza LD, Arvizu-Gómez JL, Olmedo G, Ramirez E, Siefert JL, Souza V. (2008) Bacillus coahuilensis sp. nov., a moderately halophilic species from a desiccation lagoon in the Cuatro Ciénegas Valley in Coahuila, Mexico. Int J Syst Evol Microbiol. 58: 919-23

Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW, Wagner-Döbler I. (2007) Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol. 57: 1209-16.

Cho BC and Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332:441 – 443

Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology. 65: 3192-204.

Devine SP, Pelletreau KN and Rumpho ME (2012) 16S rDNA-Based Metagenomic Analysis of Bacterial Diversity Associated With Two Populations of the Kleptoplastic Sea Slug Elysia chlorotica and Its Algal Prey Vaucheria litorea. Biol. Bull. 223: 138–154.

Efron B, Halloran E And Holmes S (1996) Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA. 93: 7085–7090

Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities. PLoS ONE. 2: e667.

Fairbridge RW. (1968) Lagoon (Coral-Reef Type): The Encyclopedia of Geomorphology. Encyclopedia of Earth Sciences Series. 3: 594-598

Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R and Gilbert JA (2012) Evidence for a persistent microbial seed bank throughout the global ocean. PNAS. 110: 4651–4655

Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D and Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nature Geoscience. 4:372–375

Giovannelli D, d'Errico G, Manini E, Yakimov M and Vetriani C (2013) Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Frontiers in Microbiology. 4: 184

Gram L, Melchiorsen J, Bruhn JB (2010) Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms.Mar Biotechnol (NY). 12: 439-51.

Hardoim CCP and Costa R (2014) Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Molecular Ecology. 23: 3097–3112

Hawksworth DL, Mound LA (1991) Biodiversity of Microorganisms and Invertebrates : Its Role in Sustainable Agriculture. CAB International. P.17-30

Headd B and Engel AS (2014) Biogeographic congruency among bacterial communities from terrestrial sulfidic springs. Frontiers in Microbiology. 5: 473

Hill TCJ, Walsh KA, Harris JA, Moett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology 43: 1-11

Huang K, Zhang XX, Shi P, Wu B, Ren H (2014) A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing. Ecotoxicology and Environmental Safety. 109: 15–21

Hugenholtz P and Huber T (2003) Chimeric 16S rDNA sequences of diverse origin A82are accumulating in the public databases. International Journal of Systematic and Evolutionary Microbiology. 53: 289–293

Jannasch HW, and Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science. 229: 717–725.

Kennedy J, Flemer B, Jackson SA, Morrissey JP, O’Gara F, Dobson ADW (2014) Evidence of a Putative Deep Sea Specific Microbiome in Marine Sponges. PLoS ONE 9: e91092
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing-based diversity studies. Nucleic Acids Research. 41: 1-11

Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Frontiers in Plant Science. 5(216): 2

Lebaron P, Servais P, Roussellie M, Courties C, Vives-ego J, Uyzer G, Ernard L, Guindulain T, Schafer H, Stackebrandt E (1999) Chancres in bacterial communitv structure in seawater mesocosms differing in their nutrient status. Aquat Microb Ecol. 19: 255-267

Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A and Qian PY (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. The ISME Journal. 5: 650–664

Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T and Hentschel U (2014) Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Molecular Ecology. 23: 1348–1363

Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73: 127-141.

Muyzer G, Teske A, Wirsen CO, Jannasch HW. (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol. 164: 165–172.

Muyzer G, Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 59: 695-700.

Nikolausz M, Sipos R, Re´ve´sz S, Sze´kely A, Ma´rialigeti K (2005) Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiology Letters. 244: 385–390

Nold SC, Zhou J, Devol AH, Tiedje JM. (2000) Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria. Appl Environ Microbiol. 66: 4532-4535.

Oren A. (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 4: 2.

Petursdottir SK, Bjornsdottir SH, Hreggvidsson GO, Hjorleifsdottir S, Kristjansson JK. (2009) Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon. FEMS Microbiol Ecol. 70: 425-432.

Plominsky AM, Delherbe N, Ugalde JA, Allen EE, Blanchet M, Ikeda P, Santibañez F, Hanselmann K, Ulloa O, Iglesia RDL, Dassow PV, Astorga M, Gálvez MJ, González ML, Henríquez-Castillo C, Vaulot D, Santos ALD, Engh GVD, Gimpel C, Bertoglio F, Delgado Y, Docmac F, Elizondo-Patrone C, Narváez S, Sorroche F, Rojas-Herrera M, Trefault N (2014) Metagenome Sequencing of the Microbial Community of a Solar Saltern Crystallizer Pond at Cáhuil Lagoon, Chile. Genome Announc. 2: e01172-14.

Pylro VS, Roesch LFW, Morais DK, Clark IM, Hirsch PR, Tótola MR (2014) Data analysis for 16S microbial profiling from different benchtop sequencing platforms. Journal of Microbiological Methods. 107: 30–37

Reinthaler T, Teira E, Sintes E (2006) Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH) Protocol for Bacteria and Archaea. Appl Environ Microbiol. 72: 918–922.

Rohwer F, Breitbart M, Jara J, Azam F, and Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastrea franksi. Coral Reefs. 20:85-91.

Rohwer F, Breitbart M, Jara JA, Azam, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs. 20:85-91

Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N (2014) Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp ( Penaeus monodon ). PLoS ONE. 9: e91853
Satyanarayana T, Raghukumar C and Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Current Science. 89: 78–90.

Shiah HK (1999) Die1 cycles of heterotrophic bacterioplankton abundance and production in the ocean surface waters. AME. 17:239-246

Simon C and Daniel R (2011) Metagenomic analyses: past and future trends. Applied and Environmental Microbiology. 77: 1153–1161.

Simon C, Wiezer A, Strittmatter AW and Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Applied and Environmental Microbiology. 75: 7519–7526.

Smith E M, Giorgio PAD (2003) Low fractions of active bacteria in natural aquatic communities? Aquat. Microb. Ecol. 31:203–220.

Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere. Proc Natl Acad Sci U S A. 103:12115-12120.

Stackebrandt E and Schumann P (2006) Introduction to the Taxonomy of Actinobacteria. The Prokaryotes. 3: 297-321

Stevenson RE (1968) Lagoon: In Fairbridge, R.W.(eds.): The Encyclopedia of Geomorphology. Encyclopedia of Earth Sciences Series. 3: 590-594

Strahler AN and Strahler AJ (1978) Modern physical geography. John Wiley and Sons, New York. Page 520

Sun Z, Liu W, Bao Q, Zhang J, Hou Q, Kwok L, Sun T and Zhang H (2014) Investigation of bacterial and fungal diversity in tarag using high-throughput sequencing. J. Dairy Sci. 97: 1-12

Sunagawa S, Woodley CM (2010) Threatened Corals Provide Underexplored Microbial Habitats. PLoS ONE. 5: e9554.

Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next Generation Sequencing. PLoS ONE. 9: e105592

Takaku H, Kodaira S, Kimoto A, Nashimoto M, Takagi M. (2006) Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J Biosci Bioeng. 101:42-50.

Weinbauer MG, Kerros ME, Motegi C, Wilhartitz IC, Rassoulzadegan F, Jean-Pascal T, Xavier M. (2010) Bacterial community composition and potential controlling mechanisms along a trophic gradient in a barrier reef system. Aquatic Microbial Ecology. 60: 15-28

Whitman WB, Coleman DC and Wiebe WJ. (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA. 95: 6578-6583.

Woese CR (1987). Bacterial evolution. Microbiological reviews. 51: 221–71

Yokokawa T and Nagata T (2005) Growth and Grazing Mortality Rates of Phylogenetic Groups of Bacterioplankton in Coastal Marine Environments. Applied and Environmental Microbiology. 71: 6799–6807.

Zhang J, Wang J, Fang C, Song F, Xin Y, Qu L and Ding K (2010) Bacillus oceanisediminis sp. nov., isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology. 60: 2924–2929

Zhang Y, Jiao N, Cottrell MT, Kirchman DL (2006) Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. AME. 43:233-241

Zhang Y, Jiao N, Sun Z, Hu A, Zheng Q (2011) Phylogenetic diversity of bacterial communities in South China Sea mesoscale cyclonic eddy perturbations. Research in Microbiology. 162: 320-329

王鑫(1988)地形學,聯經出版社,181-223頁

汪谷威,夏復國 (2011) 秋季東沙環礁及南海季菌群聚結構及空間分布,國立台灣海洋大學海洋環境化學與生態研究所

邵廣昭 (2009) 系統分類學的演進,中央研究院生物多樣性研究中心

陳陽益,王玉懷,李忠潘 (2008) 東沙內環礁海域海流、水深與棲地調查。海洋國家公園管理處委託辦理報告,高雄市

陳鴻瑜(Hurng-Yu Chen) (2013),早期南海航路與島礁之發現,國立政治大學歷史學報 ; 39 期 P25 – 92
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.166.7
論文開放下載的時間是 校外不公開

Your IP address is 3.145.166.7
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code