Responsive image
博碩士論文 etd-0116116-115734 詳細資訊
Title page for etd-0116116-115734
論文名稱
Title
一種將Yee網格與Lebedev網格結合使用在時域有限差分方法上分析各項異性介質的連結方法
A Method of Combination of Yee Grid and Lebedev Grid to Analysis Anisotropic Materials with FDTD Method.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-02-16
繳交日期
Date of Submission
2016-02-16
關鍵字
Keywords
電磁干擾、各向異性介質、Lebedev網格、時域有限差分法
FDTD, Lebedev grid, anisotropic, Electromagnetic Interference
統計
Statistics
本論文已被瀏覽 5691 次,被下載 109
The thesis/dissertation has been browsed 5691 times, has been downloaded 109 times.
中文摘要
設計師設計產品時,除了要盡量避免訊號失真外,有時也會刻意將輸入的訊號以非常態方式傳播。例如軍用飛機可以在機身表面塗上特殊材料,能令電磁輻射碰觸至機身時造成不正常的反射及散射,使得雷達欲偵測其動向時無法獲得預想中的資訊。這種特殊塗料就是俗稱的隱形材料,而各向異性介質便是其中一種原料選擇。
FDTD是常用分析電磁波的時域演算法,但由於常用的Yee網格在各向異性介質的分析上有些劣勢,而在相同問題上能有較好表現的Lebedev網格因此慢慢地被重視。不過Lebedev除了善於處理各向異性介質外,必須承擔很多數值上的缺點,例如較大的數值色散和複雜地波源激發等。
因此,本文提出了一種結合以上提及兩種網格的方法,以達到在模擬各向異性介質問題時能夠同時擁有Yee網格的高效率與Lebedev的準確率,進而能更有效且準確地處理各向異性介質問題。
Abstract
When designers design products, they will avoid the distortion of signal as possible. However, they sometimes may make input signal propagate in unusual form. For instance, military airplanes can be coated with special material on the body surface, and it cannot cause normal reflection and scattering when radiations touch on the body surface. Therefore, radars will not receive expected information to predict their movements. This special material is commonly known as invisible material, and anisotropic material is one of the choice of materials.
FDTD is widely used in analysis of electromagnetic wave. Since there are a few disadvantages on the analysis of anisotropic material with Yee’s grid, Lebedev grid becomes famous because of its better results on the same issue. However, except the advantages, Lebedev grid may face a lot of trouble, such as bigger numerical distortion and complicated excitation.
As a result, this thesis will provide a method which combines two kinds of grid that have been mentioned above to have both of their advantages and achieve higher accuracy and efficiency. Therefore, the issue of anisotropic material can be solved more efficiently and accurately.
目次 Table of Contents
目錄
論文審定書+i
誌謝+ii
中文摘要+iii
英文摘要+iv
目錄+v
圖表目錄+vii
第一章 緒論+1
1.1研究目的與方法+1
1.2 論文大綱+3
第二章 FDTD演算法+4
2.1 FDTD介紹+4
2.1.1 FDTD公式推導+4
2.2 數值色散與穩定準則+8
2.3 吸收邊界+8
2.4 FDTD模擬+10
2.5 FDTD方法處理各向異性介質+11
第三章 Lebedev網格+16
3.1 選用Lebedev網格的原因+16
3.2 Lebedev網格介紹+17
3.3 Lebedev網格內波源的分散式激發+18
第四章 Yee網格與Lebedev網格的連結+23
4.1 兩種網格的優劣比較+23
4.2 結合使用的基本配置+23
4.3 結合使用的互相耦合+24
4.3.1 Yee網格中的電磁場透過磁場耦合至Lebedev網格+26
4.3.2 Lebedev網格中的電磁場透過電場耦合至Yee網格+27
4.4 運用與步驟+28
第五章 結合後的應用與模擬+29
5.1 平面波激發+29
5.2 方法穩定性測試+31
5.3 準確率與共振頻率+35
5.4 介質層結構模擬+37


圖表目錄
圖2-1 FDTD-Yee網格中最小單位網格電磁場配置圖+7
圖2-2 電磁場一維空間與時間運算示意圖+7
圖2-3 吸收邊界示意圖+9
圖2-4 APML空間示意圖+10
圖3-1 六角網格式意圖+16
圖3-2 Lebedev網格式意圖+17
圖3-3 Lebedev網格內磁場環積分示意圖+19
圖3-4 Lebedev網格內波源的分散式激發+20
圖3-5 Lebedev網格內波源的單點激發結果+21
圖3-6 Lebedev網格內波源的分散式激發結果+21
圖4-1 兩種網格結合運用配置圖+24
圖4-2 當k=2n.時 在連結面x=x0上的場量分布圖+25
圖4-3 當k=2n+1.時 在連結面x=x0上的場量分布圖+25
圖5-1 平面波激發是意圖+29
圖5-2 在時間步階n=110時Yee網格區域全波波形+30
圖5-3 在時間步階n=110時Lebedev網格區域全波波形+30
圖5-4 在時間步階n=110時全波波型+31
圖5-5 單純Yee網格之共振腔模型結構示意圖+32
圖5-6 兩種網格結合使用之共振腔模型示意圖+33
圖5-7 連結後模擬共振腔在Yee網格區域的時域波形+34
圖5-8 連結後模擬共振腔在Lebedev網格區域的時域波形+35
圖5-9 共振腔頻率響應圖+36
表5-1 共振腔的共振模態+37
圖5-10介質模擬模型示意圖+38
表5-2 介質m1之各項參數+38
圖5-11YZ方向激發之高斯波時域波形+39
圖5-12平面波入射介質m1的Y分量入射波與穿透波+41
圖5-13平面波入射介質m1的Z分量入射波與穿透波+41
參考文獻 References
[1] K. S. Yee, “Numerical solution of initial boundary value problems involoving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas and Propagat., vol. 14, no. 3, pp. 300-307, May 1966.
[2] John Schneider and Scott Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag., vol. 41, no. I , July 1993
[3] S.G.Garcia, T.M. Hung-Bao, R. G. Martin, and B. G. Olmedo, “On the application of finite methods in time domain to anisotropic dielectric waveguides,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp.2195–2206, Dec. 1996.
[4] J. Schneider and S. Hudson, “A finite-difference time-domain method applied to anisotropic material, ” IEEE Trans. Antennas Propag., vol. 41, no. 7, pp. 994–999, Jul. 1993.
[5] Marcel Nauta,, Michal Okoniewski, and Mike Potter, “FDTD method on a Lebedev grid for anisotropic materials” IEEE Trans. Antennas Propag., vol. 61, no. 6, June 2013.
[6] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagnetic Compatibility, vol. EMC-23, pp. 377-382, Nov. 1981.
[7] Z. Bi, K. Wu, C. Wu, and J. Litva, “ A dispersive boundary condition for microstrip component analysis using the FD-TD method,” IEEE Trans. Antennas and Propagat., vol. MTT-40, no. 4, pp. 774-777, Apr. 1992.
[8] O. M. Ramahi, “Complementary operators: A method to annihilate artificial reflections arising from the truncation of the computational domain in the solution of patial differential equations,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 697-704, Jul. 1995.
[9] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.
[10] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185-200, 1994.
[11] Z.S. Sacks, D.M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 1460 –1463, Dec. 1995.
[12] H.-H. Su and C.-W. Kuo, “Efficient generation of FDTD subcells using Krylov subspace technique to the wave equation” IEEE Microwave and Wireless Components Letters., vol. 17, no. 4, June 2007.
[13] C.-M. Kuo and C.-W. Kuo, “Analysis of accuracy and stability of a novel FDTD subgridding algorithm by introducing nonuniform grids to the spatial interfaces” 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Pages:133 - 133, June 2015
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code