Responsive image
博碩士論文 etd-0116117-031541 詳細資訊
Title page for etd-0116117-031541
論文名稱
Title
合金成份與退火參數對錳矽鋼表面選擇性氧化的影響
Effects of alloy composition and annealing parameters on the selective oxidation of Mn-Si steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
239
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-18
繳交日期
Date of Submission
2017-02-16
關鍵字
Keywords
Si/Mn比、合金含量、選擇性氧化、露點、Mn-Si鋼材
selective oxidation, Mn-Si steel, dew point, Si/Mn ratio, alloy content
統計
Statistics
本論文已被瀏覽 5786 次,被下載 24
The thesis/dissertation has been browsed 5786 times, has been downloaded 24 times.
中文摘要
本研究主要探討退火條件與鋼材成分對含有0.15 wt.%C的Mn-Si鋼材其選擇性氧化的影響,包含露點溫度、退火溫度、時間、Si/Mn比與Si+Mn的總含量。Mn-Si鋼材的Si/Mn比與Si+Mn總含量分別在0.5-1.3與3-9 wt.%範圍內,在N2與10%H2的保護性氣氛下,於600-800 oC範圍內退火1-60 s,並將露點氣氛控制在-70 oC、-30 oC與0 oC。使用掃描式電子顯微鏡、X光光電子能譜儀與穿透式電子顯微鏡分析選擇性氧化物的化學組成、晶體結構、分佈與形貌等。
針對1.2 wt.%Si與1.5 wt.%Mn鋼材觀察露點對選擇性氧化物的影響,在最低露點-70 oC下退火800 oC,僅觀察到外氧化發生於鋼材表面,在退火初期,表面生成非晶態薄膜狀的SiO2與透鏡狀的xMnO·SiO2 (x<0.7),隨著退火時間增加,SiO2薄膜逐漸轉變成xMnO·SiO2,然後形成結晶態的Mn2SiO4,在高露點0 oC下退火800 oC,在退火初期,表面薄膜氧化層亦由非晶態SiO2與xMnO·SiO2所組成,並能觀察到含Si氧化物生成於鋼材晶界內部,隨著退火時間增加至60 s,非晶態的xMnO·SiO2逐漸轉變成結晶態的Mn2SiO4/ MnSiO3。進一步分析1.5 wt.%Si與1.5 wt.%Mn鋼材,在露點-30 oC下,表面下約200 nm深處會內氧化形成SiO2,而在露點0 oC下,則是在約100 nm深處內氧化形成錳矽複合型氧化物(xMnO·SiO2)。對於總合金含量於3.5 wt.%以下的Mn-Si鋼材在800 oC退火,亦能觀察到在高低露點下相似於上述所描述的氧化物組成以及內外氧化的轉變。此外,表面氧化層厚度在露點-30 oC與-70 oC下會隨總合金含量增加而顯著增加,但在露點0 oC下,總合金含量影響較不顯著,氧化層厚度約維持在20 nm左右。
針對Si/Mn比與總合金含量(Si+Mn)對選擇性氧化的影響,在露點固定於-30 oC以及Si+Mn總含量固定於3 wt.%下,表面外氧化的SiO2含量會隨Si/Mn比增加而上升,反之錳矽複合性氧化物,尤其是結晶態的Mn2SiO4,則會隨Si/Mn比增加而減少。此外,在低Si/Mn比0.5的鋼材,能觀察到SiO2與錳矽複合性氧化物內氧化於鋼材內部,但在Si/Mn比1.0以上的鋼材,僅觀察到SiO2於鋼材深處。此外,在高露點0 oC下,總合金含量(Si+Mn)高於4 wt.%的鋼材表面開始生形成MnO氧化物。當降低露點至-30 oC,需要更高的Si+Mn含量(6 wt.%)才有MnO氧化物生成於鋼材表面。另針對3.0 wt.%Si與6.0 wt.%Mn的鋼材,在露點0 oC下退火,鋼材表面被厚度約40 nm以上的MnO氧化層所覆蓋。而在露點-30 oC下退火,在MnO與底材間會形成由SiO2與xMnO·SiO2所組成的氧化層,並未觀察到結晶態的Mn2SiO4/ MnSiO3於此氧化層中。
將實驗數據、熱力學計算與Wagner的內氧化模型綜合討論表面氧化物的行為,結果顯示在低露點下亦即表面溶氧的莫耳分率低,因此氧向鋼材內部擴散的流量低於鋼材合金元素錳與矽向外擴散的流量,而產生外氧化行為。從形貌上判斷SiO2薄膜因有較低表面能會優先形成於鋼材表面,之後錳在 SiO2薄膜中形成MnO與SiO2結合形成xMnO·SiO2氧化物,隨退火時間增加而逐漸轉為熱力學穩定相結晶態的Mn2SiO4/ MnSiO3。因此在低矽或錳含量(< 2 wt.% )的鋼材,其氧化物行為如下所示:
SiO2 → SiO2+ xMnO·SiO2 → xMnO·SiO2 + Mn2SiO4 → xMnO·SiO2 + Mn2SiO4/MnSiO3
如果Si+Mn含量小於4 wt.%, 高Si/Mn比會使Si向外擴散的流量增加,因此表面會形成較多的SiO2。此外,退火溫度提升會使表面氧化物(如MnO或SiO2)的溶解積(solubility product)以及鋼材內合金元素的擴散速率增加,因而促進外氧化行為發生,因此高退火溫度會加速上述在表面氧化行為的演化。
在高露點下亦即表面溶氧的莫耳分率較高,因此氧向鋼材內部擴散的流量高於鋼材合金元素錳與矽向外擴散的流量,促進內氧化行為的發生,然而從實驗結果顯示即使有內氧化形成,表面仍會形成一層約20 nm厚的氧化層。由於內氧化形成,大多數接近鋼材表面的Si原子被消耗殆盡,導致Si向外擴散的流量減少,然而Mn向外擴散流量不受影響,因此在高露點下表面氧化物的初生相為xMnO·SiO2氧化物,從形貌上判斷xMnO·SiO2氧化物為透鏡或蠕蟲狀,其表面能高於薄膜狀的SiO2氧化物,這表示xMnO·SiO2表面氧化物會有聚集的現象無法完全覆蓋底材,會有少量的鐵裸露,進而加速結晶態的Mn2SiO4/ MnSiO3形成。
此外,在Si/Mn比固定且Si+Mn含量高於4 wt.%時,氧向鋼材內部擴散的流量無法完全消耗接近鋼材表面的Si原子,因此在高Si+Mn含量鋼材表面外氧化更加嚴重,其結晶態的含Mn氧化物轉而形成MnO氧化物於鋼材表面直接進行成核成長,未觀察到Mn2SiO4/ MnSiO3生成。當露點降低時,表面MnO氧化物的含量與覆蓋面積受內氧化的影響反而降低。因此在高矽或錳含量(> 2 wt.% )的鋼材,其氧化物行為如下所示:
SiO2+ xMnO·SiO2+ MnO → xMnO·SiO2+ MnO
由實驗觀察顯示,鋼材表面結晶態的氧化物由Mn2SiO4/ MnSiO3轉變成MnO的Si與Mn各別臨界含量為2 wt.%,即為鋼材E的成分,在此鋼材表面主要生成的氧化物為xMnO·SiO2,在高露點下表面形成a-xMnO.SiO2+MnSiO3+MnO,在低露點下則轉變成a-SiO2+a-xMnO.SiO2+MnSiO3。
Abstract
The effect of annealing condition such as dew point, annealing temperature as well as soaking times, and alloy composition, including Si/Mn ratio and Si+Mn content, on the selective oxidation of Mn-Si steels containing 0.15 wt.% C were studied. Cold rolled steels of Si/Mn ratio of 0.5-1.5 and Mn+Si content in a range of 3-9 wt % were annealed in the intercritical (ferrite + austenite) range of 600-800 oC for 1-60 s in a protective atmosphere of N2+10%H2. The dew point of the atmosphere was controlled at -70 oC, -30 oC or 0 oC. The chemical composition, crystal structure, distribution and morphology of the selective oxides were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy.
The first part of the study aims at clarifying the effect of dew point on the selective oxidation of a 1.2 wt% Si-1.5 wt% Mn steel. Only external oxidation was observed for the steel annealed at 800 oC at the lowest dew point of -70 oC. Initially only amorphous film-like SiO2 and lens-shaped xMnO·SiO2 (x<0.7) were present on the surface. The SiO2 film transformed to xMnO·SiO2 and then to c-Mn2SiO4 sequentially with increasing the annealing time. Annealing at a high dew point (0 oC) resulted initially in a thin oxide layer composing of a-xMnO·SiO2 and SiO2 on the surface and Si containing oxides internally. The amorphous xMnO·SiO2 transferred to crystalline Mn2SiO4/MnSiO3 gradually with increasing the annealing time to 60 s. Further study on a 1.5 wt.% Si-1.5 wt.% Mn steel showed that SiO2 was formed internally about 200 nm below the surface at dew point -30 oC, and manganese silicates were formed internally about 100 nm below the surface at dew point 0 oC. Similar oxide evolution and external/internal transition as a function of the annealing dew point at 800 oC were also observed for steels having total alloying contents of 3.5 wt% or lower. The thickness of surface oxide layer increases substantially with increasing the total alloy content at dew point -30 oC and -70 oC, but keeps at a constant value of approximately 20 nm at dew point 0 oC.
The second part of the study aims at clarifying the effect of Si/Mn ratio, varying from 0.5 to 1.3, and the total alloy content (Si+Mn) on the selective oxidation of steels. The quantity of SiO2 formed externally increased with increasing the Si/Mn ratio, whereas that of manganese silicates decreased for steels containing approximately 3 wt.% Si+Mn. In addition, both manganese silicates and SiO2 were formed internally for the steel having a Si/Mn ratio of 0.5, but only SiO2 was observed internally for the steels having a Si/Mn ratio of 1.0 or higher. In addition, MnO started to be present on the surface of steels containing 4 wt.% Si+Mn or higher at the highest dew point of 0 oC. At dew point -30 oC, a higher Si+Mn content of 6 wt.% is needed for MnO to be present on the surface. For the steel containing 6wt.% Mn and 3 wt.% Si, the steel surface was covered by a thick layer of MnO after annealed at a dew point of 0 oC. An interfacial layer of SiO2 and xMnO.SiO2 was formed between MnO and the steel substrate after annealed at a dew point of -30 oC. Accordingly, no Mn2SiO4 to MnSiO3 were observed in the surface oxide layer for steels containing 6 wt.% Mn and 3 wt.% Si.
The third part is combined the experimental data and thermodynamics calculation as well as Wagner’s model to discuss the oxidation behavior. At low dew points, the mole fraction of dissolved oxygen (N_O^S) is low, thus the permeability (N_O^S D_O) of oxygen is lower than those of Mn and Si which causes the external oxidation occur. The SiO2 thin film first formed on the surface probably due to its low surface energy. The evolution of the surface oxides formed on the surface of the low Si or Mn (< 2 wt.%) steels is as follow:
SiO2 → SiO2 + xMnO·SiO2 → SiO2 + xMnO·SiO2 + Mn2SiO4 → xMnO·SiO2 + Mn2SiO4/MnSiO3
If the Si+Mn content is less than 4 wt.%, high Si/Mn ratio results in a high flux of Si atoms diffusing to the steel surface , thus more SiO2 would be formed. Moreover, the increase of the annealing temperature promotes the external oxidation to occur due to the decrease of critical concentrations of alloy elements and the increases of diffusivities of alloy elements to form oxides. The high annealing temperature thus prefers the external oxidation on the surface.
At high dew points, the mole fraction of dissolved oxygen (N_O^S) increases which increases the oxygen flux diffusing inward to form oxides internally. However, there is still a 20 nm thick oxide layer formed on the surface. Most of Si atoms are consumed by internal oxidation which leads to the flux of Si diffused outward to decrease, whereas the outward flux of Mn is not. Therefore, the primary phase of surface oxides is a-xMnO·SiO2. The morphology of a-xMnO·SiO2 is circular or worm-shaped, thus the surface energy should be higher than that of SiO2. This leads to holes existing in the oxide layer.
When the Si/Mn ratio is fixed and Si+Mn content is more than 4 wt. %, the dissolved oxygen inside the steel is not sufficient to consume the Si atoms in the steel completely. Therefore, the external oxidation is more serious than that of low Mn+Si content steel. The crystalline Mn-containing oxides are substituted by MnO oxides. The MnO oxides directly nucleate and grow on the surface. The quantity of MnO on the surface decreases due to the internal oxidation when the dew point increases. The evolution of the surface oxides formed on the surface of the high Si or Mn (> 2 wt.%) steels is as follow:
SiO2+ xMnO·SiO2+ MnO →xMnO·SiO2+ MnO
The key content for the transformation from Mn2SiO4/MnSiO3 to MnO is 2 wt.%Si and 2 wt.%Mn of steel E which contain the a-xMnO.SiO2+MnSiO3+MnO on the surface at high dew point and a-SiO2+a-xMnO.SiO2+MnSiO3 at low dew point.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstracts vi
Index xi
Tables xiv
Figures xvii
Chapter I – Introduction 1
Chapter II – Literature Reviews 4
2.1 The importance of ASHH in automobile lightweight 4
2.2 Development of advanced high strength steels 6
2.2.1 Dual-phase Steel (DP) 8
2.2.2 Transformation-induced Plasticity Steel (TRIP) 9
2.2.3 Twinning-induced Plasticity Steel (TWIP) 10
2.3 Introduction of hot-dip galvanizing 12
2.3.1 Corrosion resistance of zinc coating 12
2.3.2 Continuous hot-dip galvanizing 13
2.4 The reaction of selective oxidation 15
2.4.1 The equilibrium partial pressure of oxygen for selective oxides 16
2.4.2 Selective oxidation of Mn-Si TRIP steel 18
Chapter III – Experimental Methods 25
3.1 Specimen preparation 25
3.2 Intercritical annealing 26
3.3 Characterization of selective oxides 28
3.3.1 X-ray photoelectron spectroscopy (XPS) 28
3.3.2 Scanning electron microscopy(SEM) 29
3.3.3 Transmission electron microscopy (TEM) 30
Chapter IV – Results of Selective Oxidation 31
4.1. Effect of dew point and annealing time 32
4.1.1. XPS analysis 32
4.1.2. XPS analysis compared to TEM results 39
4.1.3. Summary 44
4.2 Effect of Si/Mn ratio 45
4.2.1 XPS Analyses 45
4.2.2 SEM Analyses 50
4.2.3 TEM Analysis 53
4.2.4 Summary 56
4.3 Effects of Mn+Si content and annealing temperature 58
4.3.1 Effect of Mn+Si content 58
4.3.2 Effect of annealing temperature 68
4.3.3 Summary 75
4.4 Effect of annealing temperature with high Mn+Si content 76
4.4.1 XPS Analysis 77
4.4.2 SEM Analysis 83
4.4.3 TEM Analysis 85
4.4.4 Summary 86
Chapter V – Discussions 88
5.1.The critical concentration of solute atoms 90
5.2 Transition from internal to external oxidation 92
5.3 Selective oxidation behavior at low dew point 98
5.4 Selective oxidation behavior at high dew point 101
Chapter VI – Conclusions 105
Chapter VII – References 110
參考文獻 References
1. M.S. Kim, J.H. Kwak, J.S. Kim, Y.H. Liu, N. Gao and N.Y. Tang. “Galvanizability of advanced high-strength steels 1180TRIP and 1180CP”, Metall. Mater. Trans. A, Vol. 40A, pp. 1903-1910, (2009).
2. B. Mintz. “Hot dip galvanizing of transformation induced plasticity and other intercritically annealed steels”, Int. Mater. Rev., Vol. 46, pp. 169-197, (2001).
3. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, and S. Claessens. “Selective oxidation of high Si, Mn and Al steel grades during recrystallization annealing and steel/Zn reactivity”, Rev. Met. Paris, Vol. 101, pp. 831-837, (2004).
4. J. Mahieu, S. Claessens, and B. C. De Cooman. “Galvanisability of high-strength steels for automotive applications”, Metall. Mater. Trans. A, Vol. 32A, pp. 2905-2908, (2001).
5. E. M. Bellhouse, A. I. M. Mertens, and J. R. McDermid. “Development of the surface structure of TRIP steels prior to hot-dip galvanizing”, Mater. Sci. Eng. A, Vol. 463, pp. 147-156, (2007).
6. H. Liu, F. Li, Wen Shi, R. Liu and L. Li. “Characterization of hot-dip galvanized coating on dual phase steels”, Surf. Coating Technol., Vol. 205, pp. 3535-3539, (2011).
7. P. Drillet, Z. Zermout, D. Bouleau, and J. Mataigne. “Selective oxidation of IFTi stabilized steels during recrystallization annealing and steel/Zn reactivity”, Proc. of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH '01), pp195-203, (2001).
8. Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi. “Thermodynamic analysis of selective oxidation behavior of Si and Mn-added steel during recrystallization annealing”, ISIJ Int., Vol. 49, pp. 564-573, (2009).
9. S. Swaminathan and M. Spiegel. “Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys”, Appl. Surf. Sci., Vol. 253, pp. 4607-4619, (2007).
10. S. Swaminathan, T. Koll, M. Pohl, and M. Spiegel. “Hot-dip galvanizing simulation of model alloys and industrial steel grades: Correlation between surface chemistry and wettability“, Proc. of the 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH '07) , Osaka, Japan, pp. 460-465, (2007).
11. X.S. Li, S.-I. Beak, C.S-. Oh, S.-J Kim, and Y.-W. Kim. “Oxide formation of transformation-induced plasticity-aided steel during dew-point control”, Scripta.Mater., Vol. 57, pp113-116, (2007).
12. Y.F. Gong, H.S. Kim, and B.C. De Cooman. “Formation of surface and subsurface oxides during ferritic, intercritical and austenitic annealing of CMnSi TRIP steel”, ISIJ Int., Vol. 48, pp.1745-1751, (2008).
13. Y.F. Gong, H.S. Kim, and B.C. De Cooman. “Internal oxidation during intercritical annealing of CMnSi TRIP steel”, ISIJ Int., Vol. 49, pp. 557-563, (2009).
14. ULSAS Overview Report, October, 2003.
15. L. Wang, X.F. Yang, and J.X. Lu. “Development of high strength steel sheets for lightweight automobile”, Iron and Steel, Vol.41, pp.5-8, (2006).
16. ULSAB-AVC Body Structure Materials, Technical Transfer Dispatch No. 6, May, 2001.
17. Future Steel Vehicle Overview Report, May, 2011.
18. C.M. Tamarelli. “The evolving use of advanced high-strength steels for automotive applications”, 2011, Washington DC, International Iron and Steel Institute.
19. R. Kuziak, R. Kawalla, and S. Waengler. “Advanced high strength steels for automotive industry”, Arch Civ Mech Eng., Vol. 8, pp.103-117, (2008).
20. D. Bhattacharya. “Developments in advanced high strength steels”, Iron Steel, Vol. 40, pp.69-75, (2005).
21. 徐銘鍾,“錳矽鋼材的機械性質與顯微組織的研究”,國立中山大學材料與光電科學學系碩士學位論文,(2014)。
22. C.G. Lee, S.J. Kim, T.H. Lee, and S. Lee. “Effects of volume fraction and stability of retained austenite on formability in a 0.1 C–1.5 Si–1.5 Mn–0.5 Cu TRIP-aided cold-rolled steel sheet”, Mater. Sci. Eng., A, Vol. 371, pp 16-23, (2004).
23. X.D. Wang, B.X. Huang, L. Wang, and Y.H. Rong. “Microstructure and Mechanical Properties of Microalloyed High-Strength Transformation -Induced Plasticity Steels”, Metall. Mater. Trans. A, Vol. 39A, pp. 1-7, (2008).
24. J.H. Chung, J.B. Jeon, and Y. W. Chang. “Work-hardening and ductility enhancement mechanism of cold rolled multiphase TRIP steels”, Met. Mater. Int., Vol.16, pp. 533-541, (2010).
25. S.J. Kim, C.G. Lee, I.Choi, and S. Lee. “Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets”, Metall. Mater. Trans. A, Vol. 32A, pp. 505-514, (2001).
26. Ashok Kumar Srivastava, G. Jha, N. Gope, S.B. Singh. “Effect of heat treatment on microstructure and mechanical properties of cold rolled C–Mn–Si TRIP-aided steel”, Mater. Charact., Vol. 57, pp. 127-135, (2006).
27. O. Grässel, L. Krüger, G. Frommeyera, and L.W. Meyer. “High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application”, Int. J. Plast., Vol. 16, pp. 1391-1409, (2000).
28. Z.-L. Mi, D. Tang, L. Yan, and J. Guo. “Study of High Strength and High Plasticity TWIP Steel”, Iron and Steel, Vol. 40, pp. 58-60, (2005).
29. 王宏平,“合金元素對雙相鋼表面選擇性氧化與鍍鋅性的影響”,國立中山大學材料與光電科學學系碩士學位論文,(2008)。
30. International Zinc Association(IZA). “Zinc Coating Protecting Steel”.
31. Q.H. Zhang, L. Chen, W.M. Mao, W.Q. Duan, S.G. Shi. “Development of investigation on hot-dip zinc galvanizing technology for steel strip”, Heat Treat. Met., Vol. 34, pp.78-82, (2009).
32. A.R. Marder. “The metallurgy of zinc-coated steel”, Prog. Mater Sci., Vol.45, pp. 191-271, (2000).
33. D. Huin, P. Flauder, and J.B. Leblond. “Numerical simulation of internal oxidation of steels during annealing treatment”, Oxid. Met., Vol. 64, pp. 131-167, (2005).
34. Thermodata. Electronic data bank for thermodynamic quantities, available online at the address http://thermodata.online.fr (2005).
35. H.A. Fine, G.H. Geiger, Handbook on Material and Energy Balance Calculations in Metallurgical Processes, The Metallurgical Society of AIME, Warrendale, Pennsylvania, USA, 1979, p. 428.
36. R.T. DeHoff:Thermodynamics in materials science, 2nd ed., (2006), pp. 326.
37. D. R. Gaskell著,材料熱力學,蔡希杰譯,台北偉明圖書公司,(2003),pp. 433。
38. I.H. Jung, S.A. Decterov, and A.D. Pelton. “ A thermodynamic model for deoxidation equilibria in steel”, Metall. Mater. Trans. B, Vol. 35B, pp. 493-507, (2004).
39. D. Loison, D. Huin, V. Lanteri, J.P. Servais and R. Cremer. “Selective oxidation of Fe-Mn alloys: Surface characterization and modelling”, Proc. of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH '01) , pp. 203-209, (2001).
40. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne and S. Claessens. “Selective oxidation of high Si, Mn and Al steel grade during recrystallization annealing, and steel/Zn reactivity”, Proc. of the 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH '04), Chicago, IL, USA, pp. 1123-1134, (2004).
41. E.M Bellhouse, and J.R. McDermid. “Selective oxidation and reactive wetting during hot-dip galvanizing of a 1.0 pct Al-0.5 pct Si TRIP-assisted steel”, Metall. Mater. Trans. A, Vol. 43, pp. 2426-2441, (2012).
42. E.M. Bellhouse, and J.R. McDermid. “Selective oxidation and reactive wetting of 1.0 Pct Si-0.5 Pct Al and 1.5 Pct Si TRIP-assisted Steels”, Metall. Mater. Trans. A, Vol. 41, pp. 1539-1553, (2010).
43. X. S. Li, S.-I. Baek, C.-S. Oh, S.-J. Kim and Y.-W. Kim.” Dew point controlled oxidation of Fe-C-Mn-Al-Si-Cu transformation-induced plasticity-aided steels”, Scripta.Mater., Vol. 59, pp290-293, (2008).
44. T. Van De Putte, Z. Zermout, D. Loison, S. Claessens, J. Penning. “Selective oxidation during the austenitic annealing of a CMnSi steel”, Adv. Mat. Res., Vols. 15-17, pp. 129-134, (2007).
45. G. Parry, and O. Ostrovski. “Wettability of solid metals by molten MnO-SiO2 slag”, Metall. Mater. Trans. B, Vol. 39B, pp.669-680, (2008).
46. L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, B.C. De Cooman. “Influence of gas atmosphere dew point on the selective oxidation and the reactive wetting during Hot Dip galvanizing of CMnSi TRIP steel”, Metall. Mater. Trans. A, Vol. 44, pp. 362-371, (2013).
47. F. Luther, A. Dimyati, D. Beste, W. Bleck, and J. Mayer. “Surface Conditioning of a Cold-Rolled Dual-Phase Steel by Annealing in Nitriding Atmospheres Prior to Hot-Dip Galvanizing”, Adv. Eng. Mater., Vol. 9, pp. 274-279, (2007).
48. M.P. Seah and W.A. Dench. “Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids”, Surf. Interface Anal., Vol. 1, pp. 2-11, (1979).
49. N. Ikeo, Y. Iijima, N. Niimura, M. Shigematsu, T. Tazawa, S.Matsumoto, K. Kojima,
and Y. Nagasawa. “Handbook of X-Ray Photoelectron Spectoroscopy”, JEOL, Tokyo, Japan, (1991).
50. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, in Handbook of Xray
Photoelectron Spectroscopy. Physical Electronics: Eden Prairie, MN, 1995.
51. X. Vanden Eynde, J. P. Servais, and M. Lamberigts.”Investigation into the surface selective oxidation of dual-phase steels by XPS, SAM, and SIMS”, Surf. Interface Anal., Vol. 35, pp. 1004-1014, (2003).
52. W. H. Casey, M. F. Hochella, Jr., and H. R. Westrich. “The surface chemistry of manganiferous silicate minerals as inferred from experiment on tephroite (Mn2SiO4), Geochimica et Cosmochimica Acta, Vol. 57, pp. 785-793, (1993).
53. S. Swaminathan, and M. Spiegel. “Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys”, Appl. Surf. Sci., Vol. 253, pp. 4607-4619, (2007).
54. C.D. Wanger, H.A. Six, W.T. Jansen, and J.A. Taylor. “Improving the accuracy of determination of line energies by ESCA : chemicak state plots for silicon-aluminum compounds”, App. Surf. SCI., Vol. 9, pp. 203-213, (1981).
55. K. K. Wang, C. W. Hsu, L. Chang, D. Gan, T. R. Chen, and K. C. Yang. “Study of selective oxidation behavior of a 1.2Si-1.5Mn TRIP steel during intercritical annealing”, J. Electrochem. Soc., Vol. 159, pp. C561-C570, (2012).
56. Y. Kanedo, and Y. Suginohara, Lasurface Database, Publi. No. 135, pp. 285-289, (1977).
57. J. H. Swisher and E. T. Turkdogan. “Solubility, permeability, and diffusivity of oxygen in solid iron”, Transactions of the Metallurgical Society of AIME, Vol. 239, pp. 426-431, (1967).
58. C. Wagner. “Reaktionstypen bei der Oxydation von Legierungen”, Z. Elektrochem., Vol. 63, pp. 772-782, (1959).
59. Prof. K. C. Hsieh. Unpublished data.
60. L. Cho, G.S. Jung, B.C. De Cooman. “On the transition of internal to external selective oxidation on CMnSi TRIP Steel”, Metall. Mater. Trans. A, Vol. 45, pp. 5158-5172, (2014).
61. J.A. Golczewski, H.J. Seifert and F. Aldinger. “ A thermodynamic model of amorphous silicates”, Calphad, Vol. 22, pp.381-396, (1998).
62. H.T. Abuluwefa. “Thermodynamics and kinetics of surface oxidation of steels during annealing in H2-N2 atmospheres”, Proc. of the International Multi Conference of Engineers and Computer Scientist, Hong Kong, Vol. 2, (2012).
63. V. Aghaei Lashgari. “Internal and external oxidation of manganese in advanced high strength steels”, Ph.D. thesis, Delft University of Technology, 2014.
64. S. Swaminathan. “Selective surface oxidation and segregation upon short term annealing of model alloys and industrial steel grades”, Ph.D. thesis, Ruhr-Universitat Bochum, 2007.
65. H. Liu, Y. He, and L. Li. “Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing”, Appl. Surf. Sci., Vol. 256, pp. 1399-1403, (2009).
66. J. Takada, and M. Adachi. “Determination of diffusion coefficient of oxygen in α-iron from internal oxidation measurements in Fe-Si alloys”, J. Mater. Sci., Vol. 21, pp. 2133-2137, (1986).
67. H. Oikawa. “Lattice diffusion in iron—A review”, Tetsu to Hagane, Vol. 68, pp. 1489-1497, (1982).
68. C. Wanger. “Theoretical analysis of the diffusion processes determining the oxidation rate of alloys”, J. Electrochem. Soc., Vol. 99, pp. 369-380, (1952).
69. H.J. Grabke, V. Leroy, and H. Viefhaus. “Segregation on the surface of steels in heat treatment and oxidation” , ISIJ Int., Vol. 35, pp. 95-113, (1995).
70. R. Khondker, A. Mertens, and J.R. McDermid. “Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel”, Mater. Sci. Eng., A, Vol. 463, pp. 157-165, (2007).
71. R.A. Rapp. “Kinetics, microstructure and mechanism of interenal oxidation-its effect and prevention in high temperature alloy oxidation”, Corrosion, Vol. 21, pp. 382-401, (1965).
72. 蔡翔任,“露點對錳鋁鋼材選擇性氧化影響的研究”,國立中山大學材料與光電科學學系碩士學位論文,(2016)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code