Responsive image
博碩士論文 etd-0117103-171303 詳細資訊
Title page for etd-0117103-171303
論文名稱
Title
以溶凝膠法合成聚亞醯胺/二氧化矽複合材料的熱性質與型態分析
Thermal and Morphological Analysis of Sol-gel-derived Polyimide/Silica Hybrid Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-01-14
繳交日期
Date of Submission
2003-01-17
關鍵字
Keywords
溶凝膠法、聚醯亞胺、二氧化矽
polyimide, silica, sol-gel
統計
Statistics
本論文已被瀏覽 5688 次,被下載 40
The thesis/dissertation has been browsed 5688 times, has been downloaded 40 times.
中文摘要
摘要
本研究以合成與分析聚醯亞胺/二氧化矽薄膜為主要方向,利用二氧化矽經溶凝膠法可以在室溫水解聚合的特性,使聚醯亞胺反應與二氧化矽團成長能同時進行,最後再經熟化(curing)可以得到堅韌的聚醯亞胺/二氧化矽薄膜。
就改變溶凝膠參數而言,首先以FTIR來定性,聚醯亞胺的官能基都有出現,代表在合環過程中不受酸或鹼催化劑、乙醇與二氧化矽粒子所影響,二氧化矽與界面活性劑的官能基吸收峰則因為量太小而無法觀察到。薄膜的透明度則與二氧化矽含量成反比,在低的二氧化矽含量時(少於20%),薄膜透明度不受pH值影響;在TGA的熱分析當中,添加TEOS對不含界面活性劑的系統熱穩定性提升了10~28℃,pH=4時最低,而往兩邊遞增。含界面活性劑的系統則在pH=2∼4之間熱穩定性最佳,而往兩側遞減。利用SEM觀察二氧化矽粒子變化與分佈情形,粒徑整體趨勢在pH=4時有最大值,而往兩邊遞減。對整體而言,降低二氧化矽粒子的尺寸,使二氧化矽能更均勻分佈在聚醯亞胺之間,更有助於增進熱穩定性。而交流阻抗分析儀則測量各薄膜的介電常數變化,二氧化矽粒子與介電常數大小成正比;增加二氧化矽的量會增加二氧化矽粒子的大小與複合材料的介電常數。
添加界面活性劑(GOPTMS,γ-glycidyloxypropyltrimethoxy
-saline、APTES,3-amino-propyltriethoxysilane),有助於降低二氧化矽的粒子大小,並使其均勻分佈在聚醯亞胺當中。GOPTMS可以讓二氧化矽的粒子均勻分散與降低粒子尺寸至100 nm左右,而APTES稍差,二氧化矽尺寸在150∼250 nm之間,在熱性質部分則是APTES較佳。

Abstract
Abstract

A series of polyimide/silica hybrid composites have been synthesized by simultaneous polycondensation of the organic polyimide (PI) phase and the sol-gel reactions (hydrolysis and condensation) of the inorganic silica phase. Sol-gel parameters such as pH value, solvent, water/Si ratio, were systematically varied so that their effect on the microstructure of silica could be explored. Emphasis has been placed on the interactions between the organic and the inorganic phases by FTIR with the introduction of two coupling agents, i.e., g-glycidyloxypropyl- trimethoxysilane (GOPTMS) and 3-amino-propyltriethoxysilane (ATPES). Thermal and electrical properties of the hybrid composites were examined by TGA, DSC, and AC impedance and the morphology by SEM; these properties were correlated to their synthesis chemistry.
FTIR results indicate complete imidization of PI, not affected by the presence of the catalyst, solvent ethanol, and silica particles of the inorganic phase. The hybrid films with lower silica content give higher transparency. TGA results indicate ~ 25 ℃increase of decomposition temperature for the hybrid composites compared to the neat PI; it shows a minimum when pH = 4. The thermal stability of the APTES system is generally better than the GOPTMS system. SEM results indicate that maximum particle size is obtained for the system with pH = 4. AC impedance results indicate that dielectric constant increases with the silica particle size and the silica content. The coupling agents help to reduce the silica particle size (~ 100 nm for GOPTMS, ~ 200 nm for ATPES, and > 400 nm with no coupling agent) and to distribute evenly the silica particles in the PI matrix.

目次 Table of Contents
目錄
摘要……………………………………………………………………Ⅰ
Abstract ………………………………… . …………………….….. Ⅱ
目錄……………………………………………………………………Ⅲ
表目錄……………..……………………………………………….... Ⅳ
圖目錄…………………………………………………………...……. Ⅴ
第一章 簡介與文獻回顧
1.1簡介……………………………………………………………..1
1.2聚醯亞胺的合成………………………………………………..1
1.3溶凝膠法………………………………………………………..3
1.4聚醯亞胺/二氧化矽混成材料………………………………….9
1.5研究動機與目的………………………………………… ..….15
第二章 實驗
2.1 凝膠法合成聚醯亞胺與二氧化矽複合材料………………...18
2.2 儀器與分析步驟……..……………………………………….22
第三章 結果
3.1 聚醯亞胺/二氧化矽的合成……..……………………..…….25
3.2 聚醯亞胺/二氧化矽的IR性質……..……………....……….26
3.3 聚醯亞胺/二氧化矽熱性質………..…………………….…..26
3.4 聚醯亞胺/二氧化矽表面型態………..…….………………..40
3.5 聚醯亞胺/二氧化矽介電性質…………….…….….….…….53
第四章 討論
4.1溶凝膠參數對聚醯亞胺熱性質的影響………..………….….58
4.2 界面活性劑對聚醯亞胺/二氧化矽的影響…………..………60
4.3 不同酸鹼值對聚醯亞胺/二氧化矽系統的影響………..……61

第五章 結論與未來工作
5.1 結論………………………………………………………..….63
5.2 未來工作………………………………………..…...………..63
參考文獻……………………..………………………………………..65
參考文獻 References
參考文獻
1. M. I. Bessonov ; M. M. Koton ; V. V. Kudryavtsev ; L. A. Laius Polyimide:Thermally Stable Polymers ; Consultant Bureau, New York, 1987.
2. C. S. Wang ; T. S. Leu Polymer 2000, 41, 3581-3591.
3. C. J. Brinker ; G.. W. Scherer Sol-gel Science: the physics and chemistry of sol-gel processing ; Academic Press , INC.: San Diego, 1990.
4. Z. Ahmad ; J. E. Mark Chem. Mater. 2001, 13, 3320-3330.
5. M. Spinu ; A. B. Brennan ; K. Rancourt ; G. L. Wilkes; J. E. McGrat Mater. Res. Soc. Symp. Proc. 1990, 175, 179.
6. M. Nandi ; J. A. Conklin; L. Jr. Salviati ; A. Sen Chem. Mater. 1990, 2, 772.
7. M. Nandi; J. A. Conklin ; L. Jr. Salviati ; A. Sen Chem. Mater. 1991, 3, 301.
8. M. Atsushi ; Y. Hidehiro ; K Masa-aki; I. Yoshio Chem. Mater. 1994, 6, 913.
9. S. Wang ; Z. Ahmad ; J. E. Mark Chem. Mater. 1994, 6, 943.
10. J. C. Schrotter ; M. Smaïhi ; C. Guizard J. App. Polym. Sci. 1996, 61, 2137.
11. C. V. Avadhani ; Y. Chujo Applied Organometallic Chemistry 1997, 11, 153.
12. S. Goizet ; J. C.H. Schrotter ; M. Smaihi ; A. Deratani New J. Chem. 1997, 21, 461.
13. C. Joly ; M. Smaihi ; L. Porcar ; R. D. Noble Chem. Mater. 1999, 11, 2331.
14. C. S. Ha ; H. D. Park ; C. W. Frank Chem. Mater. 2000, 12, 839.
15. G. H. Hsiue ; J. K. Chem ; Y. L. Liu J. App. Polym. Sci. 2000, 76, 1609.
16. X. Y. Shang ; Z. K. Zhu ; J. Yin ; X. D. Ma Chem. Mater. 2002, 14, 71.
17. C. J. Cornelius ; E. Marand Polymer 2002, 43,2385.
18. L. Liu ; Q. Lu ; J. Yin ; Z. Zhu ; D. C. Pan ; Z. G. Wang Mat. Sci. Eng. C 2002, 22, 61.
19. C. M. Leu ; Z. W. Wu ; K. H. Wei Chem. Mater. 2002, 14, 3016.
20. C. C. Chang ; W. C. Chen Chem. Mater. 2002, 14, 4242.
21. A. Morikawa ; Y. Iyoku ; M. Kakimoto; Y. Imai; K. Masa-aki ; M. Atsushi; L. Yoshitake ; I. Yoshio J. Mater. Chem. 1992, 2, 679.
22. A. Morikawa ; Y. Iyoku ; M. Kakimoto ; Y. Imai J. Photopolym. Sci. Technol. 1992, 5, 393.
23. Y. Iyoku ; M. Kakimoto ; Y. Imai High Perform. Polym. 1994, 6, 53.
24. Y. Iyoku ; M. Kakimoto ; Y. Imai. High Perform. Polym. 1994, 6, 43.
25. Y. Iyoku ; M. Kakimoto ; Y. Imai Trans. Mater. Res. Soc. Jpn. 1994, 16B, 755.
26. L. Macia ; A. Kioul J. Mater. Sci. Lett. 1994, 13, 641.
27. A. Kioul ; L. Macia J. Non-Cryst. Solids 1994, 175, 169-186.
28. L. Macia ; A. Kioul Polymer 1995, 3,3649.
29. J. D. C. Menoyo ; L. Macia ; S. J. Shaw Mater. Res. Soc. Symp. Proc. 1998, 520, 239.
30. P. Sysel ; R. Pulec ; M. Maryska Polymer Journal 1997, 29(7), 607-610.
31. Y. Chen ; J. O. Iroh Chem. Mater. 1999, 11 , 1218-1222.
32. T. S. Huang ; T.C. Hsu unpublished data.
33. S. H. Zhong ; C. F. Li ; X.F. Xiao Journal of Membrane Science 2002, 199 , 53-58.
34. C. J. Cornelius ; E. Marand Journal of Membrane Science 2002, 202 , 97-118.
35. J. L. Hedrick ; H. J. Cha ; R. D. Miller ; D. Y. Yoon et al. Macromolecules 1997, 30, 8512-8515.
36. G. H. Schmid Organic Chemistry ; Mosby ,1996 , chap. 15.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.149.129
論文開放下載的時間是 校外不公開

Your IP address is 13.58.149.129
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code