Responsive image
博碩士論文 etd-0117107-154949 詳細資訊
Title page for etd-0117107-154949
論文名稱
Title
哺乳類動物骨骼之生物力學性質量測與特性分析
Characterizations of Biomechanical Properties of Bones in Mammals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-12-13
繳交日期
Date of Submission
2007-01-17
關鍵字
Keywords
橈骨、軟骨、顱骨、骨骼、生物力學性質、顱縫
Radius, Bone, Cartilage, Cranial suture, Biomechanical properties, Cranium
統計
Statistics
本論文已被瀏覽 5763 次,被下載 1639
The thesis/dissertation has been browsed 5763 times, has been downloaded 1639 times.
中文摘要
豬、鼠和人類都是脊椎哺乳動物,有90%以上之基因相通性。實驗豬與實驗鼠具有種純、體型小、大量繁殖與生命期短等優勢,且組織結構和生理代謝與人類相近,使實驗豬與實驗鼠成為生醫工程界替代人類研究的最佳工具。本論文研究主題為哺乳類動物骨骼之生物力學性質,目的即為研究骨骼組織在受外力作用下的力學特性。
本文研究方法第一部份先以接觸力學為基礎配合微米級壓痕實驗與有限元素法模擬對不同保存處理方式之豬軟骨(Cartilage)組織試片進行生物力學性質分析;第二部份則以三點彎矩法對不同年齡小鼠之橈骨(Radius)進行生物力學強度分析與比較,接著以拉伸試驗討論顱骨(Cranium)與顱縫(Cranial suture)的力學特性,最後運用奈米級光學干涉法對小鼠顱骨進行表面量測,建構顱骨之三維模型;第三部份則運用傅利葉轉換法對人類顱縫生物形貌圖案(Pattern)量化藉以討論其與年齡之關係。
利用本文所提出之技巧將可成功的對實驗小豬與實驗小鼠不同部位之骨骼進行生物力學性質進行分析,並進一步由力學觀點探討一些醫學症狀(如骨質疏鬆症,顱縫癒合過早症等)之機制與人類顱縫成長複雜度與年齡之關連性。因此,本文主要貢獻為建立一套對哺乳動物骨骼實用之生物力學性質量測與特性分析技術。
Abstract
Pigs, mice and human beings are all vertebrate mammals. More than 90% of genomes in pigs and mice are the same as human beings. Experiment pigs and mice are with advantages in purebloods, small size, high reproductive capacity and short life cycle, etc. The tissue structure and metabolism of physiology in pig and mice are similar to human as well. Therefore, laboratory pigs and mice are often used to substitute human beings for biomedical engineering test. The research topics of this thesis are in the area of biomechanical properties of bones in mammal. The objectives of the study are to reveal the biomechanical properties of various types of bones and discuss its implication to human development.
The entire thesis is divided into three parts. The first topic used micro-indentation test and FEM analysis for the determination of biomechanical properties of controlled cartilages in pigs. The second topic applied (a) three-point-bend failure test to study the age-related radius strength in mice, (b) tensile test to study the mechanical response of cranial sutures in mice, and (c) optical interferometry for 3D profile determination of mouse cranium. The third topic is for quantitative analysis of patterns in cranial sutures using DFT (Discrete Fourier Transform).
The mechanism of diseases (such as osteoporosis, craniosynostosis, etc.) and the complexity of patterns in human cranial sutures in different age groups are discussed.
目次 Table of Contents
List of Tables iii
List of Figures iv
摘要 ix
Abstract x
Nomenclature xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Review of literature 2
1.3 Research motivation and purpose 9
Chapter 2 Biomechanical Properties Analysis of Different Preserved Cartilages in
Pigs 14
2.1 Introduction 14
2.2 Materials 14
2.3 Methods 15
Chapter 3 Mechanical Properties Measurement and Application of Radius and Cranium in Mice 23
3.1 Biomechanical Properties Measurement of Age-related Radius 23
3.2 Mechanical Properties Measurement of Cranial bone and Cranial Suture 25
3.3 3D Surface Profile Measurement of Cranium by using the Hybrid Method of
Gray-level and Optical interferometry 28
Chapter 4 Mechanical Aspects of Human Sutural Development 46
4.1 Introduction 46
4.2 Materials 46
4.3 Methods 47
Chapter 5 Results and Discussions 63
5.1 Biomechanical Properties Analysis of Different Preserved Cartilages in Pigs 63
5.2 Mechanical Properties Measurement and Application of Radius and Cranium 64
5.3 Mechanical Aspects of Human Sutural Development 74
Chapter 6 Summary and Future Prospects 115
6.1 Summary 115
6.2 Future Prospects 116
References 118
VITA 124
參考文獻 References
1. Xuan Z, Wang J, Zhang MQ. Computational comparison of two mouse draft genomes and the human golden path. Genome Biol 2002;4(1):RI1-RI9.
2. Lander ES et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921.
3. Kempson GE, Muir H, Swanson SA, Freeman MA. Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim et Biophys Acta 1970;215:70-77.
4. Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sport Phys 1998;28:203-215.
5. Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP, Ratcliffe A. Articular cartilage structure, composition, and function. In: Buckwalter JA, ed. Orthopaedic Basic Science. AAOS 2002.
6. Chen AC, Klisch SM, Bae WC, Temple MM, McGowan KB, Gratz KR, Schumacher BL, Sah RL. Mechanical characterization of native and tissue-engineered cartilage. Methods Mol Med 2004;101:157-190.
7. Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 2001;19:1113-1121.
8. Goertzen D, Gillquist J, Messner K. Tensile strength of the tibial meniscal attachments in the rabbit. J Biomed Mater Res 1996;30:125-128.
9. Charlebois M, McKee MD, Buschmann MD. Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J Biomech Eng 2004;126:129-137.
10. Zhu W, Mow VC, Koob TJ, Eyre DR. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res 1993;11:771-781.
11. Jurvelin JS, Arokoski JP, Hunziker EB, Helminen HJ. Topographical variation of the elastic properties of articular cartilage in the canine knee. J Biomech 2000;33:669-675.
12. Niederauer GG, Niederauer GM, Cullen LC Jr, Athanasiou KA, Thomas JB, Niederauer MQ. Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann Biomed Eng 2004;32:352-359.
13. Flynn JM, Springfield DS, Mankin HJ. Osteoarticular allografts to treat distal femoral osteonecrosis. Clin Orthop 1994;303:38-43.
14. Hunziker EB, Michel M, Studer D. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc Res Techniq 1997;37:271-284.
15. Fabbriciani C, Lucania L, Milano G, Schiavone Panni A, Evangelisti M. Meniscal allografts: cryopreservation vs deep-frozen technique. An experimental study in goats. Knee Surg Sports Traumatol Arthrosc 1997;5:124-134.
16. Song YC, Khirabadi BS, Lightfoot FG, Brockbank KGM, Taylor MJ. Vitreous cryopreservation maintains the function of vascular grafts. Nat Biotechnol 2000;18:296-299.
17. Song YC, An YH, Kang QK, Li C, Boggs JM, Chen Z, Taylor MJ, Brockbank KGM. Vitreous preservation of articular cartilage grafts. J Invest Surg 2004;17:65-70.
18. Taylor MJ, Song YC, Brockbank KGM. Vitrification in tissue preservation: new developments. In: Benson, E., Fuller, B. and Lane, N. (eds.), Life in the Frozen State. Taylor and Francis Books, London 2004:603-641.
19. Silva MJ, Brodt M, Uthgenannt B. Morphological and mechanical properties of caudal vertebrae in the SAMP6 mouse model of senils osteoporosis, Bone 2004;35: 425-431.
20. Chen H, Shoumura S, Emura S. Ultrastructural changes in bones of the senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis, Histol Histopathol 2004;19:677-685.
21. Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture, J Bone Miner Res 2002;17:1597-1603.
22. Ferguson V, Ayers R, Bateman T, Simske S. Bone development and age-related bone loss in male C57BL/6J mice, Bone 2003;33:387-398.
23. Chen X, Aoki H, Fukui Y. Effect of exercise on the bone strength, bone mineral density, and metal content in rat femurs. Bio-Med Mater Eng 2004;14:53-59.
24. Moss ML. Experimental alteration of sutural area morphology, Anat Rec 1957;127:569-590.
25. Koskinen L, Isotupa K, Koski K. A note on craniofacial sutural growth, Am. J phys Anthrop 1976;45:511-516.
26. Johansen VA, Hall SH. Morphogenesis of the mouse coronal suture, Acta anat 1982;114:58-67.
27. Kokich VG. The biology of sutures. Craniosynostosis: Diagnosis, Evaluation and Management, Raven Press, New York, 1986:81-103.
28. Wu W, Peters WH, Hammer ME. Basic mechanical properties of retina in simple elongation, J Biomech Eng 1987;109:65-67.
29. Mcpherson G.K, Kriewall TJ. The elastic modulus of fetal cranial bone: A first step towards an understanding of the biomechanics of fetal head molding, J Biomech 1980;13:9-16.
30. Kriewall TK. Bending properties and ash content of fetal cranial bone, J Biomech 1981;14:73-79.
31. Kriewall TJ. Structal, Mechanical and material properties of fetal cranial bone, Am J Obstet Gynecol 1982;143:707-714.
32. Jaslow CR. Mechanical Properties of Cranial Sutures, J Biomech 1990;23:313-321.
33. McLaughlin E, Zhang Y, Pashley D, Borke J, Yu J. The load-displacement characteristics of neonatal rat cranial sutures, Cleft Palate-Cran J 2000;37:590-595.
34. Margulies SS, Thibault KL. Infant skull and suture properties: measurements and implications for mechanisms of pedistric brain injury, J Biomech Eng-T ASEM 2000;122:364-371.
35. Czarnek R, Lee J, Rantis T. Moiré interferometry with enhanced resolution. Exp Tech 1990; July/August:24-28.
36. Miller M, Mohammed L, Ho P. Quantitative strain analysis of flip-chip electronic packages using phase-shifting Moiré interferometry. Opt Lasers Eng 2001;36:127-139.
37. Zhang D, Ma M, Arola D, Fringe skeletonizing using an improved derivative sign binary method. Opt Lasers Eng 2002;37:51-62.
38. Hisada S, Suzuki T, Nakahara S, Fujita T. Visualization and measurements of sound pressure distribution of ultrasonic wave by stroboscopic real-time holographic interferometry. Jpn J Appl Phys 2002;41(5):3316-3324.
39. Huntley J. Optical shape measurement technology: past, present and future. SPIE Int Soc Opt Eng 2000;4076:162-173.
40. Anand A. Tracing of interference fringes using average gray value and simultaneous row and column scan. Opt Laser Technol 2003;35(2):73-79.
41. Cai L, Liu Q, Yang X. A simple method of contrast enhancement and extremum extraction for interference fringes. Opt Laser Technol 2003;35(4):295-302.
42. Qin Y, Chen J, Fan H. The study and application of a new filtering method on electronic speckle pattern interferometric fringe. Opt Lasers Eng 2003;39(4): 449-456.
43. Mandelbort BB. The fractal geometry of nature. New York: WH Freeman; 1983.
44. Hartwig WC. Fractal analysis of sagittal suture morphology. J Morphol 1991;210:289-298.
45. Gibert J, Palmqvist P. Fractal analysis of the Orce skull sutures. J Hum Evol 1995;28:561-575.
46. Palmqvist P. Current events a critical re-evaluation of the evidence for the presence of hominids in lower pleistocene times at Venta Micena, Southern Spain. J Hum Evol 1997;33:83-89.
47. Rohlf FJ. Morphometric spaces, shape components and the effect of linear transformations, New York:Plenum Press; 1996.
48. Lestrel PE. Fourier descriptions and their applications in biology. Cambridge: Cambridge University Press; 1997.
49. Bookstein FL. Morphometric tools for landmark data. Cambridge: Cambridge University Press; 1997.
50. O’Higgins P, Jones N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation, J Anat 1998;193:251-272.
51. Monteiro LR, Lessa LG. Comparative analysis of cranial suture complexity in the genus caiman (Crocodylia, Allgatoridae). Rev. Brasil. Biol 2000;60(4):689-694.
52. Saito K, Shimizu Y, Ooya K. Age-related morphological changes in squamous and parietomastoid sutures of human cranium. Cells Tissues Organs 2002;170:266-273.
53. Lynnerup N, Jacobsen JC. Brief Communication: Age and fractal dimension of human sagittal and coronsl sutures. Am J Phys Anthropol 2003;121:332-336.
54. Skrzat J, Walocha J. Application of fractal dimension in evaluation of cranial suture complexity. HarFA-Harmonic and Fractal Image Analysis 2003:39-41.
55. Yu JC, Wright RL. Williamson MA, Braselton JP III, Abell ML. A fractal analysis of human cranial sutures. Cleft Palate Craniofacial J 2003;40(4):409-414.
56. Gildner RF. A Fourier method to describe and compare suture patterns. Palaeontologia Electronica 2003;6(1):1-12.
57. McNally RT, McCaa C, Brockbank KGM, Heacox AE, Bank HL. Method for cryopreserving blood vessels. Cryolife, Inc., and Medical University of South Carolina 1992 (US Patent 5,145,769).
58. Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 2002;48:11-36.
59. Bhushan B, Li X. Nanomechanical characterization of solid surfaces and thin films (invited). Int Mater Rev 2003;48:125-64.
60. Bhushan B, Li X. Nanomechanical characterization of ceramic materials. In: Gogotsi Y, Domnich V, editors. High pressure surface science and engineering. IOP Publishing. Bristol 2003;321-48.
61. Johnson KL. Contact Mechanics. Cambridge University Press: Cambridge; 1985.
62. Zheng Y, Mak AF, Lue B. Objective assessment of limb tissue elasticity: development of a manual indentation procedure. J Rehabil Res Dev 1999;36:71-85.
63. Turturro A, Witt W, Lewis S, Hass B, Lipman R. Growth curves and survival characteristics of the animals used in the biomarkers of aging program. J Gerontol 1999;11:492-501.
64. Gere JM, Timoshenko SP. Mechanics of materials, second edition, Wadsworth, Inc., Belmont: California; 1989.
65. Timoshenko SP, Goodier JN. Theory of elasticity. McGraw-Hill: New York; 1951.
66. Fung YC. Biomechanics: Mechanical properties of living tissues. Springer-Verlag: New York; 1993.
67. Vest C. Holographic interferometry. New York: Wiley; 1979.
68. Post D, Han B, Ifju P. High sensitivity Moiré. Springer-Verlag: New York; 1994.
69. Shibayama K, Uchiyama H. Measurement of three-dimensional displacements by hologram interferometry. Appl Opt 1971:10(9):2150-2154.
70. Boone P. Determination of three orthogonal displacement components from one double exposure hologram. Opt Laser Technol 1972;2:162-166.
71. Shapiro D, Richtsmeier JT. Brief Communication: A sample of pediatric skulls available for study. Am J Phys Anthropol. 1997;103:415-416.
72. Ubelaker DH. Estimating age at death from immature human skeletons. J Forensic Sci. 1987;32:1254-1263.
73. Kaplan W. Advanced mathematics for engineers. Addison-Wesley: New York: 1981.
74. Wu W, Peters WH III, Hammer ME. Basic mechanical properties of retina in simple elongation. J Biomech Eng-T ASEM 1987;109:65-67.
75. Fung YC. Elasticity of soft tissues in simple elongation. American J Physiology 1967;213:1532-1544.
76. Gorry P. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) Method. Anal Chem 1990; 62:570-573.
77. Masuda Y, Yohro T. Are there any regularities in cranial sutures? Okajimas Folia Anat. Jpn. 1987;64(1):39-46.
78. Yu JC, Wright RL, Williamson MA, Braselton JP III, Abell ML. A Fractal Analysis of Human Cranial Sutures. Cleft Palate Craniofacial J. 2003;40(4):409-414.
79. Perlyn CA, DeLeon VB, Babbs C, Govier D, Burell L, Darvann T, Kreiborg S, Morriss-Kay G. The Craniofacial Phenotype of the Crouzon Mouse: Analysis of a Model for Syndromic Craniosynostosis Using Three-Dimensional MicroCT Cleft Palate Craniofacial J. 2006;43(6):740-748.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code