Responsive image
博碩士論文 etd-0117111-143147 詳細資訊
Title page for etd-0117111-143147
論文名稱
Title
雙變曲率光纖微透鏡之研究
A Study of Double-Variable-Curvature Fiber Microlens
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-12-29
繳交日期
Date of Submission
2011-01-17
關鍵字
Keywords
耦光、光纖微透鏡、雙變曲率、幫浦雷射、高功率
coupling, double-variable-curvature, pumping laser, fiber microlens, high power
統計
Statistics
本論文已被瀏覽 5632 次,被下載 1600
The thesis/dissertation has been browsed 5632 times, has been downloaded 1600 times.
中文摘要
本論文所提雙變曲率光纖微透鏡之研究,係應用於提升高功率980nm幫浦雷射與單模光纖之耦光效率,基於雷射光束與光纖間的模態,在經光纖微透鏡後轉換,達到模態匹配,進而提升耦合效率。為了達到模態匹配的目的,對於光纖微透鏡之外形要求,不外乎在於偏心量以及長短軸曲率半徑之控制。而本論文所提出的雙變曲率光纖微透鏡,其端面成型方式,為全自動化控制之一次研磨成型製程,因此具有0.3μm的低平均偏心量,且其短軸與長軸之曲率半徑,分別控制在平均1.2μm以及33.6μm。
本論文研磨成型製程之端面形狀,與理想之外型相當接近,因此放電熔燒的過程,僅用於對端面進行拋光,避免重度熔燒塑型時造成的尖端凸起,故可省略光纖端面成型後尖點去除之動作,減少加工時間,並提高良率。光纖熔接機設定熔燒參數為:熔燒距離10μm,放電強度3bit,放電時間200ms的輕微熔燒條件下,可使光纖微透鏡因表面張力以及外型的限制條件下,平均偏心量下降至0.2μm,且每次的熔燒,可使短軸與長軸的曲率半徑分別增加平均1.7μm與4.5μm,來到平均2.9μm以及38.1μm,以符合所設計之外型。
在上述研磨全自動化與省略尖點去除之製程控制下,使得耦光效率及良率得以提升,經實驗證實,在20個樣本中,其平均耦光效率高達83%,最佳耦光效率高達88%,且所有樣本的耦光效率均大於80%。換言之,本研究中提出的雙變曲率光纖微透鏡結構,為一具有高耦光效率、高良率、以及高重複性的全自動一次成型製程。
Abstract
A study of double-variable-curvature microlenses (DVCM) for promoting coupling efficiency between the high-power 980-nm laser diodes and the single-mode fibers has been proposed. The purpose of the fiber microlens fabrication was to make the mode field match between the laser beam and the fiber as the beam propagating through the fiber microlens. To make the mode match, the shapes of the fiber microlens demanded nothing else but the offset and the curvature radii in minor and major axes. The double-variable-curvature fiber endface (DVCFE) was manufactured through a single-step fully automation grinding process and had less average offset of 0.3μm, consequently. The radii of curvature in minor and major axis were controlled as an average of 1.2μm and 33.6μm, respectively.
In the fusing procedure, the slight arc fusion was mainly applied for fine polishing merely instead of reshaping for the reason that the fabricated DVCFE was very close to the ideal shape. Hence, the fabrication time was reduced and the yield was promoted due to the withdrawn step of tip elimination. Furthermore, while the fusion parameters were set to be: fusing distance: 10μm, arc intensity: 3bits, and fusing time: 200ms in the slight fusion process, the offset was reduced to 0.2μm due to the shape constraint and surface tension of the DVCFE. And the radii of curvature increased 1.7μm to 2.9μm in the minor axis and increased 4.5μm to 38.1μm in the major axis, respectively.
Owing to the controls of the fully automated grinding procedure and the omission of the tip elimination, the coupling efficiency and yield were improved. As a result, in the experiment, the average and maximum coupling efficiency of 83% and 88% were demonstrated, respectively. And the coupling efficiencies of the 20 samples were higher than 80%. In other words, the proposed DVCM structure of this study was a high coupling efficiency, a high yield output, and reproducible and fully automated single-step grinding process.
目次 Table of Contents
目錄 -------------------------------------------------------------- I
圖目錄 ----------------------------------------------------------- IV
表目錄 ------------------------------------------------------------ X

第一章 緒論 ------------------------------------------------------ 1
1.1 前言 ---------------------------------------------------------- 1
1.2 研究動機 ------------------------------------------------------ 3
1.3 文獻回顧 ------------------------------------------------------ 5
1.4 論文架構 ----------------------------------------------------- 17
1.5 參考文獻 ----------------------------------------------------- 18

第二章 理論分析 -------------------------------------------------- 20
2.1雷射特性簡介 -------------------------------------------------- 20
2.2 高斯光束與模態耦合理論---------------------------------------- 22
2.2.1高斯光束 ---------------------------------------------------- 22
2.2.2 模態匹配 --------------------------------------------------- 24
2.3 非軸對稱光纖微透鏡之設計 ------------------------------------- 28
2.4 參考文獻 ----------------------------------------------------- 32

第三章 光纖微透鏡之製作 ------------------------------------------ 33
3.1光纖簡介 ------------------------------------------------------ 33
3.2 橢圓錐型光纖微透鏡 ------------------------------------------- 34
3.2.1橢圓錐型光纖微透鏡之設計 ------------------------------------ 34
3.2.2 橢圓錐型光纖端面成型原理 ----------------------------------- 36
3.2.3研磨機台簡介 ------------------------------------------------ 37
3.2.4橢圓錐型光纖研磨機系統 -------------------------------------- 39
3.2.5橢圓錐型光纖微透鏡之製作 ------------------------------------ 43
3.3多面錐型光纖微透鏡 -------------------------------------------- 49
3.3.1多面錐型光纖研磨系統 ---------------------------------------- 49
3.3.2橢圓錐型光纖端面之製作 -------------------------------------- 52
3.3.3多面錐型光纖端面之製作與討論 -------------------------------- 55
3.4雙變曲率光纖微透鏡 -------------------------------------------- 63
3.4.1雙變曲率光纖研磨系統 ---------------------------------------- 63
3.4.2雙變曲率光纖端面之成型 -------------------------------------- 64
3.4.3雙變曲率光纖微透鏡之製作 ------------------------------------ 69
3.5 參考文獻 ----------------------------------------------------- 81

第四章 光纖微透鏡之量測 ------------------------------------------ 82
4.1 光纖微透鏡外型量測 ------------------------------------------- 82
4.1.1光纖微透鏡偏心量量測 ---------------------------------------- 86
4.1.2光纖微透鏡曲率半徑量測 -------------------------------------- 87
4.2 雷射與光纖微透鏡之量測 --------------------------------------- 89
4.2.1雷射功率量測 ------------------------------------------------ 89
4.2.2雷射與光纖微透鏡之架設 -------------------------------------- 91
4.2.3光纖微透鏡耦光效率之量測步驟 -------------------------------- 94
4.3 光纖微透鏡良率分析 ------------------------------------------- 97
4.3.1橢圓錐型光纖微透鏡良率 -------------------------------------- 97
4.3.2雙變曲率光纖微透鏡良率 -------------------------------------- 98
4.4 參考文獻 ---------------------------------------------------- 103

第五章 結論與未來研究方向 ------------------------------------------- 104
5.1結論 --------------------------------------------------------- 104
5.2 未來研究方向 ---------------------------------------------------- 106
5.3 參考文獻----------------------------------------------------- 113


圖目錄
第一章 緒論
圖1.1 掺鉺光纖放大器的架構 ---------------------------------------- 2
圖1.2 鉺離子能階圖 ------------------------------------------------ 3
圖1.3 半球型端面光纖微透鏡 ---------------------------------------- 6
圖1.4 外徑漸擴式楔型光纖微透鏡 ------------------------------------ 6
圖1.5 軸對稱錐型光纖微透鏡 ---------------------------------------- 7
圖1.6 半球型光纖微透鏡製作方式 ------------------------------------ 8
圖1.7 半球型光纖微透鏡 -------------------------------------------- 9
圖1.8 雙曲線型光纖微透鏡製作方式 --------------------------------- 10
圖1.9 雙曲線型光纖微透鏡 ----------------------------------------- 10
圖1.10 非軸對稱雙曲線型光纖微透鏡 -------------------------------- 12
圖1.11 雙楔型光纖微透鏡 ------------------------------------------ 12
圖1.12 楔型漸變折射率式光纖微透鏡 -------------------------------- 13
圖1.13 四角錐型光纖微透鏡 ---------------------------------------- 14
圖1.14 錐式楔型光纖微透鏡 ---------------------------------------- 16

第二章 理論分析
圖2.1 980nm單模雷射光之垂直發散角與水平發散角示意圖--------------- 22
圖2.2 高斯光束之各參數 ------------------------------------------- 24
圖2.3(a) 980nm單模雷射與單模光纖內之能量分佈 --------------------- 24
圖2.3(b) 980nm單模雷射與單模光纖內之相位分佈 --------------------- 25
圖2.4 980nm單模雷射光之近場光場與遠場光場示意圖 ------------------ 25
圖2.5 光場模態轉換示意圖 ----------------------------------------- 26
圖2.6(a) 980nm雷射模場變化之光束尺寸------------------------------ 29
圖2.6(b) 980nm雷射模場變化之波前曲率半徑-------------------------- 29
圖2.7長軸曲率半徑與耦光效率之關係--------------------------------- 30
圖2.8長軸曲率半徑與耦光效率之關係--------------------------------- 31

第三章 光纖微透鏡之製作
圖3.1 光纖端面熔燒後造成纖核凸起 --------------------------------- 35
圖3.2 光纖微透鏡之製作流程 --------------------------------------- 36
圖3.3 光纖研磨機台(ULTRAPOL Fiber Lens polisher) ----------------- 38
圖3.4 光纖夾具之夾角與自轉角 ------------------------------------- 39
圖3.5 正壓力變化與光纖自轉角度之關係 ----------------------------- 40
圖3.6(a) 橢圓形變化之正壓力 -------------------------------------- 40
圖3.6(b) 研磨出之橢圓錐型光纖端面 -------------------------------- 41
圖3.7 機械式扭矩控制光纖研磨機構示意圖 --------------------------- 42
圖3.8 機械式扭矩控制光纖研磨系統實體圖 --------------------------- 43
圖3.9 預計成型之橢圓錐型光纖端面示意圖 --------------------------- 43
圖3.10(a) 橢圓錐型光纖端面短軸 ----------------------------------- 46
圖3.10(b) 橢圓錐型光纖端面長軸 ----------------------------------- 46
圖3.11 未磨尖橢圓錐型光纖端面SEM圖 ------------------------------- 47
圖3.12(a) 橢圓錐型光纖微透鏡短軸 --------------------------------- 48
圖3.12(b) 橢圓錐型光纖微透鏡長軸 --------------------------------- 48
圖3.13 橢圓錐型光纖微透鏡SEM圖 ----------------------------------- 49
圖3.14 電控式扭矩控制光纖研磨系統 -------------------------------- 50
圖3.15 電控式扭矩控制機構自轉軸元件 ------------------------------ 51
圖3.16 電控式扭矩控制機構扭矩施加元件 ---------------------------- 52
圖3.17 電控式扭矩施加操控介面 ------------------------------------ 54
圖3.18 未磨尖橢圓錐型光纖端面SEM圖 ------------------------------- 55
圖3.19(a) 兩面錐型光纖端面 --------------------------------------- 56
圖3.19(b) 四面錐型光纖端面 --------------------------------------- 56
圖3.19(c) 五面錐型光纖端面 --------------------------------------- 57
圖3.19(d) 六面錐型光纖端面 --------------------------------------- 57
圖3.20(a) 正弦波形扭矩輸入與其預計成型端面之關係 ----------------- 58
圖3.20(b) 正弦波形扭矩輸入研磨完成之端面SEM圖 -------------------- 59
圖3.21(a) 三角波形扭矩輸入與其預計成型端面之關係 ----------------- 60
圖3.21(b) 三角波形扭矩輸入研磨完成之端面SEM圖 -------------------- 60
圖3.22(a) 鋸齒波形扭矩輸入與其預計成型端面之關係 ----------------- 61
圖3.22(b) 鋸齒波形扭矩輸入研磨完成之端面SEM圖 -------------------- 61
圖3.23 雙變曲率光纖研磨機台 -------------------------------------- 63
圖3.24 雙變曲率光纖研磨機台控制參數 ------------------------------ 64
圖3.25 未磨尖之雙變曲率光纖示意圖 -------------------------------- 65
圖3.26 雙變曲率光纖研磨至尖示意圖 -------------------------------- 66
圖3.27 雙變曲率光纖端面之短軸剛接觸研磨片時 ---------------------- 67
圖3.28 雙變曲率光纖端面之短軸彎曲時 ------------------------------ 67
圖3.29 雙變曲率光纖端面之長軸彎曲時 ------------------------------ 68
圖3.30 雙變曲率光纖端面之長軸變直時 ------------------------------ 68
圖3.31 雙變曲率光纖端面研磨參數輸入 ------------------------------ 70
圖3.32 雙變曲率光纖端面研磨進給方式 ------------------------------ 71
圖3.33(a) 雙變曲率光纖端面短軸 ----------------------------------- 72
圖3.33(b) 雙變曲率光纖端面長軸 ----------------------------------- 73
圖3.33(c) 雙變曲率光纖端面端面 ----------------------------------- 73
圖3.34(a) 雙變曲率光纖端面短軸SEM圖------------------------------- 74
圖3.34(b) 雙變曲率光纖端面長軸SEM圖 ------------------------------ 74
圖3.34(c) 雙變曲率光纖端面端面SEM圖------------------------------- 75
圖3.35 熔燒前之未磨尖雙變曲率光纖端面SEM圖------------------------ 75
圖3.36(a) 雙變曲率光纖微透鏡短軸 --------------------------------- 77
圖3.36(b) 雙變曲率光纖微透鏡長軸 --------------------------------- 77
圖3.36(c) 雙變曲率光纖微透鏡端面 --------------------------------- 78
圖3.37(a) 雙變曲率光纖微透鏡SEM圖短軸 ---------------------------- 78
圖3.37(b) 雙變曲率光纖微透鏡SEM圖長軸 ---------------------------- 79
圖3.37(c) 雙變曲率光纖微透鏡SEM圖端面 ---------------------------- 79
圖3.38 熔燒後之雙變曲率光纖端面SEM圖------------------------------ 80


第四章 光纖微透鏡之量測
圖4.1 光纖微透鏡偏心量與曲率半徑示意圖 --------------------------- 82
圖4.2 光纖微透鏡照片載入ImageJ以量測 ----------------------------- 83
圖4.3 光纖微透鏡照片轉換後之灰階圖像 ----------------------------- 84
圖4.4 光纖微透鏡灰階圖像增加對比度調整 --------------------------- 84
圖4.5 設定光纖微透鏡臨界亮度取得其外廓 --------------------------- 85
圖4.6 邊界判定後之光纖微透鏡圖片 --------------------------------- 86
圖4.7 光纖微透鏡之偏心量量測 ------------------------------------- 87
圖4.8 光纖微透鏡短軸之曲率半徑量測 ------------------------------- 88
圖4.9 光纖微透鏡長軸之曲率半徑量測 ------------------------------- 89
圖4.10 雷射功率量測架構圖 ---------------------------------------- 90
圖4.11 雷射與光纖微透鏡之耦光效率量測架構 ------------------------ 92
圖4.12 雷射驅動與溫度控制平台 ------------------------------------ 92
圖4.13光纖微透鏡之架設與調整平台 --------------------------------- 93
圖4.14 光纖微透鏡與雷射耦光圖 ------------------------------------ 95
圖4.15 橢圓錐型光纖微透鏡耦光效率長條圖 -------------------------- 98
圖4.16 雙變曲率光纖微透鏡耦光效率長條圖 ------------------------- 102

第五章 結論與未來研究方向
圖5.1 歪斜橢圓錐型光纖端面 -------------------------------------- 107
圖5.2 偏心之圓錐型光纖端面 -------------------------------------- 108
圖5.3 施加預載於光纖夾具之彈簧 ---------------------------------- 108
圖5.4 奇數面偏心之雙變曲率光纖端面短軸 -------------------------- 109
圖5.5 單模光纖干涉儀之架構 -------------------------------------- 111

表目錄
表1.1 各種適用於980nm雷射的光纖微透鏡特性比較 -------------------- 11
表2.1 雷射參數以及光纖微透鏡設計之計算 --------------------------- 29
表3.1 康寧HI-980單模光纖參數 ------------------------------------- 34
表3.2 光纖進給量與週期性變動扭矩週期參數 ------------------------- 45
表3.3 光纖進給量與研磨時間之關係 --------------------------------- 54
表3.4 雙變曲率光纖端面研磨進給方式 ------------------------------- 71
表4.1 不同結構之非軸對稱光纖微透鏡 ------------------------------- 99
表4.2 雙變曲率光纖微透鏡尺寸與耦光效率 -------------------------- 101
表4.3 各種結構之非軸對稱光纖微透鏡耦光效率比較 ------------------ 102
參考文獻 References
第一章
1. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions,” Journal of Lightwave Technology, Vol.LT-4, pp. 870-876, 1986.
2. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Optics Letters, Vol.12, pp. 888-890, 1987.
3. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” Journal of Lightwave Technology, Vol.9, pp.234-250, 1991.
4. M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S. Uehara, and E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by 0.98μm Laser Diodes, “IEEE Photonics Technology Letters, Vol.1, pp.422-424, 1989.
5. M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, S. Uehara, Y. Tachikawa, and E. Sugita, “Noise Characteristics of Er3+-Doped Fiber Amplifiers Pumped by 0.98 and 1.48μm Laser Diodes,” IEEE Photonics Technology Letters, Vol.2, pp.205-207, 1990.
6. R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M. B. Snipes, and J. F. Klem, “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Letters, Vol.8, pp.1052-1054, 1996.
7. Y. Fu, N. K. A. Bryan, and O. N. Shing “Integrated Micro-Cylindrical Lens with Laser Diode for Single-mode Fiber Coupling,” IEEE Photonics Technology Letters, Vol.12, pp.1213-1215, 2000.
8. J. C. Livas, S. R. Chinn, E. S. Kintzer, J. N. Walpole, C. A. Wang, and L. J. Missaggia, “High-Power Erbium-Doped Fibre Amplifier with 975nm Tapered-Gain-Region Laser Pumps,” Electronics Letters, Vol.30, pp.1054-1055, 1994.
9. S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon, “High Coupling Optical Design for Laser Diodes with Large Aspect Ratio,” IEEE Transactions on Advanced Packaging, Vol.23, pp.165-169, 2000.
10. H. Kuwahara, M. Sasaki, and N. Tokoyo, “Efficient Coupling from Semiconductor Lasers into Single-Mode Fibers with Tapered Hemispherical ends,” Applied Optics, Vol.19, pp.2578-2582, 1980.
11. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient Power Coupling from a 980-nm, Broad-Area Laser to a Single-Mode Fiber Using a Wedge-Shaped Fiber Endface,” Journal of Lightwave Technology, Vol.8, pp. 1313-1318, 1990.
12. A. Kotsas, H. Ghafouri-Shiraz, and T. S. M. Maclean, “Microlens Fabrication on Single-Mode Fibres for Efficient Coupling from Laser Diodes,” Optical and Quantum Electronics, Vol.23, pp.367-378, 1991.
13. H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, and W. H. Cheng, “High-Coupling Tapered Hyperbolic Fiber Microlens and Taper Asymmetry Effect,” Journal of Lightwave Technology, Vol.22, pp.1395-1401, 2004.
14. K. Kim, S. Chang, and K. Oh, “Refractive Microlens on Fiber Using UV-Curable Fluorinated Acrylate Polymer by Surface-Tension,” IEEE Photonics Technology Letters, Vol.15, pp.1100-1102, 2003.
15. H. M. Presby and C. A. Edwards, “Efficient Coupling of Polarization-Maintaining Fiber to Laser Diodes,” IEEE Photonics Technology Letters, Vol. 4, pp. 897-899, 1992.
16. H. M. Presby and C. R. Giles, “Asymmetric Fiber Microlenses for Efficient Coupling to Elliptical Laser Beams,” IEEE Photonics Technology Letters, Vol. 5, pp. 184-186, 1993.
17. R. A. Modavis and T. W. Webb, “Anamorphic Microlens for Laser Diode to Single-Mode Fiber Coupling,” IEEE Photonics Technology Letters, Vol.7, pp. 798-800, 1995.
18. H. Yoda and K. Shiraishi, “A New Scheme of a Lensed Fiber Employing a Wedge-Shaped Graded-Index Fiber Tip for the Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.19, pp. 1910-1917, 2001.
19. S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W. H. Cheng, “A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.22, pp. 1374-1379, 2004.
20. S. M. Yeh, S. Y. Huang, and W. H. Cheng, “A New Scheme of Conical-Wedge-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.23, pp. 1781-1786, 2005.

第二章
1. 林啟中, “非軸對稱橢圓錐光纖透鏡之研製與特性,” 碩士論文, 國立中山大學光電工程研究所, 2007.
2. 葉斯銘, “橢圓光纖微透鏡之研究,” 博士論文, 國立中山大學光電工程研究所, 2006.
3. 呂昱寬, “波前量測應用於雷射與光纖耦合之研究,” 博士論文, 國立中山大學光電工程研究所, 2008.
4. B. E. A. Saleh, M. C. Teich, “Fundamentals of Photonics,” John Wiley & Sons, pp. 83 (1991).
5. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface,” Journal of Lightwave Technology, vol.8, pp. 1313-1318 (1990).
6. C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” Journal of Lightwave Technology, Vol. 11, pp. 252 -257 (1993).
7. Y. D. Liu, Y. C. Tsai, L. J. Wang, Y. K. Lu, M. C. Hsieh, S. M. Yeh, and W. H. Cheng, “A new scheme of
double-variable-curvature microlens for efficient coupling high-power lasers to single-mode fibers,” Journal of Lightwave Technology.

第三章
1. Axcel Photonics Data Sheets, 45 Bartlett St., Marborough, MA 01752 (2009).
2. 呂昱寬, “波前量測應用於雷射與光纖耦合之研究,” 博士論文, 國立中山大學光電工程研究所, 2008.
3. 劉育達, “非對稱型光纖端面研磨機構設計之研究,” 碩士論文, 中山大學機械與機電工程學系, 2006.
4. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Optics Express, Vol. 15, pp.1434-1442, 2007.
5. F. W. Preston, “The theory and design of plate glass polishing machines,” Journal of the Society of Glass Technology, Vol. 11, pp. 214-256, 1927.
6. User Guide for ULTRAPOL 1200 Series Polishing Bases.
7. 曹建樑, “扭力控制於光纖端面加工之研究,” 碩士論文, 國立中山大學機械與機電工程學系, 2007.
8. Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu and Wood-Hi Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” Journal of Micromechanics and Microengineering, Vol. 18, 055003, 2008.
9. 謝銘駿, “雙變曲率光纖端面研磨機構設計與製造之研究,” 碩士論文, 國立中山大學機械與機電工程學系, 2008.
10. Y. D. Liu, Y. C. Tsai, L. J. Wang, Y. K. Lu, M. C. Hsieh, S. M. Yeh, and W. H. Cheng, “A new scheme of double-variable-curvature microlens for efficient coupling high-power lasers to single-mode fibers,” Journal of Lightwave Technology (Accepted).

第四章
1. 劉貞秀, “熱傳導係數量測之研究,” 碩士論文, 國立成功大學工程科學系, 2008.
2. S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W. H. Cheng, “A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.22, pp. 1374-1379, 2004.
3. S. M. Yeh, S. Y. Huang, and W. H. Cheng, “A New Scheme of Conical-Wedge-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.23, pp. 1781-1786, 2005.
4. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Optics Express, Vol. 15, pp.1434-1442, 2007.

第五章
1. R. A. Modavis and T. W. Webb, “Anamorphic Microlens for Laser Diode to Single-Mode Fiber Coupling,” IEEE Photonics Technology Letters, Vol.7, pp. 798-800, 1995.
2. H. Yoda and K. Shiraishi, “A New Scheme of a Lensed Fiber Employing a Wedge-Shaped Graded-Index Fiber Tip for the Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.19, pp. 1910-1917, 2001.
3. Y. Irie, J. Miyokawa, A. Mugino, and T. Shimizu, “Over 200 mW 980 nm pump laser diode module using optimized high-coupling lensed fiber,” in Tech. Dig. OFC/IOOC'99 (San Diego, CA, Feb. 1999), pp. 238-240.
4. S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W. H. Cheng, “A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.22, pp. 1374-1379, 2004.
5. S. M. Yeh, S. Y. Huang, and W. H. Cheng, “A New Scheme of Conical-Wedge-Shaped Fiber Endface for
Coupling Between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, Vol.23, pp. 1781-1786, 2005.
6. Y. K. Lu, Pochi Yeh, and W. H. Cheng, “Direct near-field phase measurement of laser diodes employing a single-mode fiber interferometer,” Optics Letters, Vol. 35, pp. 3643-3645, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code