Responsive image
博碩士論文 etd-0117113-103743 詳細資訊
Title page for etd-0117113-103743
論文名稱
Title
針對大型系統設計具有擾動估測之分散式區塊步階迴歸控制器以達到漸進穩定
Design of Decentralized Block Backstepping Controllers with Perturbation Estimation for Large-Scale Systems to Achieve Asymptotic Stability
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-10
繳交日期
Date of Submission
2013-01-17
關鍵字
Keywords
擾動估測、分散式控制器、大型系統、半嚴格回授系統、適應性區塊步階迴歸控制器、虛擬控制器
adaptive block backstepping control, non-strict feedback form, large-scale system, decentralized controller, perturbation estimation, virtual input controller
統計
Statistics
本論文已被瀏覽 5710 次,被下載 304
The thesis/dissertation has been browsed 5710 times, has been downloaded 304 times.
中文摘要
基於李亞普諾夫穩定度理論,本論文利用適應性步階迴歸技術針對含有互連項干擾大型系統設計具有擾動估測之分散式區塊步階迴歸控制器以解決系統校準的問題。每個子系統的動態方程式都不須要滿足嚴格回授之型式且包含多輸入。首先介紹如何設計虛擬控制器,接著介紹如何設計控制器。在設計過程中利用擾動估測,以至於虛擬控制器的微分不需要直接計算。由於在虛擬控制器和控制輸入加入適應的機制,所以擾動和擾動估測誤差的上界不須要事先知道。此外,此控制器能夠達到漸進穩定之效果。最後,本論文將提供一個數值範例及一個實際應用,以驗證本控制器的可行性。
Abstract
Based on the Lyapunov stability theorem, a design methodology of decentralized adaptive block backstepping control with perturbation estimation scheme is proposed in this thesis for a class of large-scale systems to solve regulation problems. The dynamic equations of each subsystem do not need to be in the block-strict feedback form, and all contain multiple inputs. The design of virtual inputs are firstly introduced, then followed by the design of control inputs. The perturbation estimation is employed in the proposed control scheme, so that the derivatives of
virtual input functions do not need to be computed directly. Since adaptive mechanisms are also embedded both in the virtual input functions and control inputs, the upper bounds of perturbations and perturbation estimation errors are not required to be known in advance. Furthermore, the resultant control scheme is capable of achieving asymptotic stability. Finally, a numerical and a practical examples are given for demonstrating the feasibility of the proposed control scheme.
目次 Table of Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Design of Decentralized Adaptive Backstepping Controllers 5
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 5
2.2 Design of Virtual Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Design of Controllers and Analysis of Stability . . . . . . . . . . . . . . 27
2.4 Perturbation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter 3 Numerical Example and Application 36
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Chapter 4 Conclusions 73
References 74
Appendix A 81
Appendix B 82
Appendix C 84
參考文獻 References
[1] Z. Zhang, S. Xu, and B. Wang, “Adaptive actuator failure compensation with unknown control gain signs,” IET Control Theory Applications, vol. 5, pp. 1859-1867,
2011.
[2] J. Zhou, C.Wen, andW.Wang, “Adaptive backstepping control of uncertain systems with unknown input time-delay,” Automatica, vol. 45, pp. 1415-1422, 2009.
[3] A. J. Koshkouei and K. J. Burnham, “Adaptive backstepping sliding mode control for feedforward uncertain systems,” International Journal of Systems Science, vol. 42, no. 12, pp. 1935-1946, 2011.
[4] H. Ye, W. Gui, and Z. P. Jiang, “Backstepping design for cascade systems with relaxed assumption on lyapunov functions,” IET Control Theory Applications, vol. 5, pp.
700-712, 2011.
[5] Z. Wu, X. Xie, and P. Shi, “Robust adaptive output-feedback control for nonlinear systems with output unmodeled dynamics,” International Journal of Robust and
Nonlinear Control, vol. 18, pp. 1162-1187, 2008.
[6] Y. Yu and Y. S. Zhong, “Robust backstepping output tracking control for SISO uncertain nonlinear systems with unknown virtual control coefficients,” International
Journal of Control, vol. 83, no. 6, pp. 1182-1192, 2010.
[7] Z. Zhang, J. Lu, and S. Xu, “Tuning functions-based robust adaptive tracking control of a class of nonlinear systems with time delays,” International Journal of Robust
and Nonlinear Control, vol. 22, pp. 1631-1646, 2012.
[8] J. L. Wu, “Stabilizing controllers design for switched nonlinear systems in strictfeedback form,” Automatica, vol. 45, pp. 1092-1096, 2009.
[9] Z. Cai, M. S. Queiroz, and D. M. Dawson, “Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance,” IEEE Transactions on Automatic
Control, vol. 51, pp. 524-529, 2006.
[10] K. Wang, H. Xin, D. Gan, and Y. Ni, “Non-linear robust adaptive excitation controller design in power systems based on a new back-stepping method,” IET Control
Theory Applications, vol. 4, pp. 2947-2957, 2010.
[11] H. K. Khalil, Nonlinear Control, Prentice-Hall, New Jersey, 1996.
[12] P. Li and G. H. Yang, “A novel adaptive control approach for nonlinear strictfeedback systems using nonlinearly parameterised fuzzy approximators,” International
Journal of Systems Science, vol. 42, no. 3, pp. 517-527, 2011.
[13] C. Hua, P. X. Liu, and X. Guan, “Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems,” IEEE Transactions on
Industrial Electronics, vol. 56, no. 9, pp. 3723-3732, 2009.
[14] H. Wang, B. Chen, and C. Lin, “Direct adaptive neural tracking control for a class of stochastic pure-feedback nonlinear systems with unknown dead-zone,” International
Journal of Adaptive Control and Signal Processing, 2012.
[15] Z. X. Yu and Z. S. Yu, “Adaptive neural dynamic surface control for nonlinear pure-feedback systems with multiple time varying delays a Lyapunov-Razumikhin method,” Asian Journal of Control, vol. 15, no. 4, pp. 1-15, 2012.
[16] M. Wang, X. Liu, and P. Shi, “Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique,” IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics, vol. 41, no. 6, pp. 1681-1692, 2011.
[17] H. Wang, B. Chen, and C. Lin, “Adaptive fuzzy decentralized control for a class of large-scale stochastic nonlinear systems,” Neurocomputing, vol. 103, pp. 155-163, 2013.
[18] S. Tong, Y. Li, and Y. Liu, “Adaptive fuzzy output feedback decentralized control of pure-feedback nonlinear large-scale systems,” International Journal of Robust and
Nonlinear Control, 2012.
[19] M. Hamdy and G. E. Ghazaly, “Adaptive neural decentralized control for strict feedback nonlinear interconnected systems via backstepping,” Neural Comput Applic, 2012.
[20] S. C. Tong, Y. M. Li, and H. G. Zhang, “Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time
delays,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp. 1073-1086, 2011.
[21] S. Mehraeen, S. Jagannathan, and M. L. Crow, “Decentralized dynamic surface control of large-scale interconnected systems in strict-feedback form using neural networks with asymptotic stabilization,” IEEE Transactions on Neural Networks, vol. 22, no. 11, pp. 1709-1722, 2011.
[22] S. Jain and S. Jain, “Decentralized adaptive control of a class of large-scale interconnected nonlinear systems,” IEEE Transactions on Automatic Control, vol. 42, no.2,
pp. 136-154, 1997.
[23] H. Fan, L. Han, C. Wen, and L. Xu, “Decentralized adaptive output-feedback controller design for stochastic nonlinear interconnected system,” Automatica, vol. 48,
pp. 2866-2873, 2012.
[24] J. Zhou, “Decentralized adaptive backstepping stabilization of interconnected systems with input time delays in dynamic interactions,” International Journal of Adaptive Control and Signal Processing, vol. 26, no. 4, pp. 285-301, 2012.
[25] C. C. Cheng, G. L. Su, and C. W. Chien, “Block backstepping controllers design for a class of perturbed nonlinear systems with m blocks,” IET Control Theory Applications, doi, 10.1049/iet-cta.2011.0431.
[26] C. C. Cheng and Y. H. Ou, “Design of adaptive block backstepping controllers for uncertain nonlinear dynamic systems with n block,” International Journal of Control,
doi, 10.1080/00207179.2012.739710.
[27] Q. Zhou, P. Shi, H. Liu, and S. Xu, “Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 42, no. 6, pp. 1608-1619, 2012.
[28] A. Belhani, F. Mehazem, and K. Belarbi, “Decentralized backstepping controller for a class of nonlinear multivariable systems,” Automatic Control and System Engineering, vol. 6, no. 2, pp. 41-48, 2006.
[29] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and adaptive control design, John Wiley & Sons, Inc. New York, 1995.
[30] C. C. Cheng, J. M. Hsiao, and Y. P. Lee, “Design of robust tracking controllers using sliding mode technique,” JSME International Journal, Series C, vol. 44, no. 1, pp.
89-95, 2001.
[31] C. C. Cheng and M. W. Chang, “Design of derivative estimator using adaptive sliding mode technique,” Proc. of the 2006 American Control Conference, pp. 2611-2615, 2006.
[32] C. Hua, G. Feng, and X. Guan, “Robust controller design of a class of nonlinear time delay systems via backstepping method,” Automatica, vol. 44, no. 2, pp. 567-573, 2008.
[33] J. Zhang, H. Xu, and H. Zheng, “Adaptive sampled-data output tracking of parametric strict-feedback non-linear systems,” IET Control Theory and Applications, vol.
6, pp. 985-991, 2012.
[34] H. Wang, B. Chen, and C. Lin, “Direct adaptive neural tracking control for a class of stochastic pure-feedback nonlinear systems with unknown dead-zone,” International
Journal of Adaptive Control and Signal Processing, 2012.
[35] Y. Li, S. Qiang, X. Zhuang, and O. Kaynak, “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks,” IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 693-701, 2004.
[36] M. Y. Wu, “Design of decentralized block backstepping controllers for large-scale systems to achieve asymptotic stability,” Master dissertation, National Sun Yat-sen
University, 2011.
[37] A.-F. Chien, “Design of adaptive block backstepping controllers for nonlinear systems with non-strict feedback form,” Master dissertation, National Sun Yat-sen University,
2010.
[38] Y. Li, T. Li, and S. Tong, “Adaptive fuzzy backstepping dynamic surface control of uncertain nonlinear systems based on filter observer,” International Journal of Fuzzy
Systems, vol. 14, no. 2, pp. 320-329, 2012.
[39] W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and M. Sharma, “Command filtered adaptive backstepping,” IEEE Transactions on Control Systems Technology,
vol. 20, no. 3, pp. 566-580, 2012.
[40] L. Long and J. Zhao, “Output-feedback stabilisation for a class of switched nonlinear systems with unknown control coefficients,” International Journal of Control, 2012.
[41] Y. Yu and Y. S. Zhong, “Robust backstepping output tracking control for SISO uncertain nonlinear systems with unknown virtual control coefficients,” International
Journal of Control, vol. 83, no. 6, pp. 1182-1192, 2010.
[42] B. C. Kuo, Automatic Control Systems, Prentice-Hall, New Jersey, 2003.
[43] Terasoft, Terasoft Electro-Mechanical Engineering Control System, Terasoft, pp. 64-76, 2007.
[44] G. Tao, Adaptive control design and analysis. JohnWiley & Sons, New Jersey, 2003.
[45] Z. Ding, “Global output feedback stabilization of nonlinear systems with nonlinearity of unmeasured states,” IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1117-1122, 2009.
[46] T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 40, pp. 1895-1903, 2008.
[47] Terasoft, Terasoft Electro-Mechanical Engineering Control System, Terasoft, pp. 64-76, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code