Responsive image
博碩士論文 etd-0117116-170210 詳細資訊
Title page for etd-0117116-170210
論文名稱
Title
南臺灣大氣多環芳香烴之傳輸、時空分佈與預測分析
Atmospheric Transport and Spatiotemporal Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in South Taiwan with Model Prediction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-29
繳交日期
Date of Submission
2016-02-17
關鍵字
Keywords
PM2.5-PAHs網格預測模式、跨境傳輸、氣團逆軌跡、主成分分析、黑潮圈、多環芳香烴
PAHs, PM2.5-PAHs grid-scale model, Transboundary movement, Kuroshio Sphere, Principal component analysis, Back trajectories
統計
Statistics
本論文已被瀏覽 6014 次,被下載 66
The thesis/dissertation has been browsed 6014 times, has been downloaded 66 times.
中文摘要
在大氣環境中,多環芳香烴化合物 (Polycyclic aromatic hydrocarbons, PAHs)主要來自不完全燃燒或是熱裂解過程,其中一些化合物已被鑑定為對人體健康具有高致癌和致突變性的潛在能力。長期暴露在PM2.5下亦已被認為和肺癌、心血管疾病死亡率的增加有關。在臺灣,石油化學和鋼鐵工業主要座落於南部地區,所衍生出的空氣污染問題一直受到研究學者之關注。因此本研究將分為二個部分來探討。首先,藉由南臺灣黑潮圈地區大氣PAHs的分佈情形,來釐清其可能污染來源,及在大氣傳輸上所扮演的角色。其次,結合大氣PM2.5-PAHs量測數據與環保署即時監測站的空品氣象監測資料,建立PM2.5-PAHs小時濃度的網格預測模式,並驗證其適切性。
在南臺灣黑潮圈地區大氣PAHs分佈方面,研究結果指出所有測站總PAHs濃度(氣相+固相)均呈現冬季最高,夏季最低的季節性變化趨勢,其夏季濃度範圍為0.87±0.36-17.7±2.88 ng/m3,秋季為1.21±0.32-65.1±57.4 ng/m3 和冬季為 2.41±1.85-40.8±6.97 ng/m3;在PAHs濃度區域變化方面,都會型測站大氣總PAHs濃度最高,比都會海岸型測站高約2-4倍,高於鄉村海岸型測站約4-26倍,約為離島海岸型測站17-54倍高。透過大氣PAHs成分組成、PAHs特徵比值及主成分分析結果,可將南臺灣黑潮圈地區大氣PAHs來源分為交通來源、工業來源與自然土壤來源三類。另外,藉由氣團逆軌跡傳輸路徑的分析亦證實冬季期間來自臺灣西南部的污染氣團是相當重要的人為PAHs污染貢獻來源,其他季節則未發現此一情形。顯示臺灣南部大氣PAHs之跨境傳輸對離島海域具有決定性的影響。
本研究同時利用空品和氣象即時監測資料為基礎,結合現地採樣實測資料,建構出PM2.5-PAHs小時濃度的網格預測模式,並驗證其適切性。結果顯示所有採樣測站PM2.5-PAHs實測值與模式預測值有顯著的相關性(n=92, R=0.817**, p<0.01)。雖然採樣期間可能受到室內環境其他PAHs污染源的干擾,但52位個案其個人環境採樣72小時實測值與72小時暴露平均預測值仍有良好的顯著相關性(R=0.729**, p<0.01)。在空間季節性變化分析方面,可以發現各季節PM2.5-PAHs之污染熱區大致可分為二個地方,一處為北高雄左營、仁武地區附近,另一處則為南高雄前鎮、小港地區一帶為主,推測這些可能亦是與當地交通和工業活動來源有關。本研究相信利用PM2.5-PAHs網格預測模式可以針對個人暴露量作為一個完善的監控工具,進而評估在空氣污染下造成的健康風險。

關鍵字:多環芳香烴、黑潮圈、主成分分析、氣團逆軌跡、跨境傳輸、PM2.5-PAHs網格預測模式
Abstract
Atmospheric Polycyclic aromatic hydrocarbons (PAHs) are compounds mainly result from incomplete combustion or pyrolysis processes, which have been identified as with high carcinogenic and mutagenic potential for human health. Long-term exposure to particulate matter (PM), especially for PM2.5, has been demonstrated consistently associating with incidences of lung cancer and cardiovascular mortality. South Taiwan is the area accommodating most of petrochemical and steel industries of Taiwan, and its air quality has been concerned for decades. The aims of this study are: (1) to investigate the temporal and spatial distributions of atmospheric PAHs in the Kuroshio Sphere of southern Taiwan, and to identify PAHs sources for understanding the effects of atmospheric air mass transport on the study area. (2) to develop a new modeling strategy in simulating, on an hourly basis, grid-scale PM2.5-PAHs levels, through measured PM2.5-PAHs data incorporating real-time data from air monitoring sites of EPA.
In terms of the temporal and spatial distribution of atmospheric PAHs in the Kuroshio Sphere of southern Taiwan, the results indicated higher PAHs concentrations occurred in the winter and autumn. The concentration ranges of PAHs were 0.87±0.36-17.7±2.88 ng/m3 in summer, 1.21±0.32-65.1±57.4 ng/m3 in autumn and 2.41±1.85-40.8±6.97 ng/m3 in winter, respectively. The concentrations at the urban site were 2-4 times of the urban coastal site, 4-26 times of rural coastal site and 17-54 times of offshore island site. The PAH compositional pattern, diagnostic ratios and principal component analysis indicated that the major sources of PAHs in the study area can be classified into three categories. The first source is vehicular emissions (gasoline and diesel) contributed from the local traffic, the second is from natural soils, and the third is attributed to the industrial activities including coke oven and incinerator emissions. The results from back trajectories also demonstrated that atmospheric PAHs were produced by local sources but were also influenced by transboundary movement of terrestrial pollutants.
In terms of PM2.5-PAHs grid-scale model construction, the results revealed good correlations between the predicted and the measured PM2.5-PAHs concentrations at all sites (n=92, R=0.817**, p<0.01) and each site. The predicted values of 72-hr personal exposure for 52 cases were found significantly (R=0.729**, p<0.01) correlated with those analyzed from portable personal monitors, even though interferences from indoor should be noted. Two PM2.5-PAHs hot spot areas in the seasonal contour map were observed: one at northern Kaohsiung near Zuoying and Renwu area, and the other at the southern Kaohsiung near Qianzhen and Xiaogang area. The sources of PM2.5-PAHs at both sites are related to local traffic sources and industrial activities. Overall, the PM2.5-PAHs grid-scale model could provide a useful and versatile tool to apply in personal exposure analysis and in the health risk assessment of air pollution.

Keywords: PAHs, Kuroshio Sphere, Principal component analysis, Back trajectories, Transboundary movement, PM2.5-PAHs grid-scale model
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 多環芳香烴(PAHs)概述 3
2-1-1 多環芳香烴之特性 3
2-1-2 多環芳香烴之來源 5
2-2 多環芳香烴之氣/固分配 5
2-3 大氣多環芳香烴相關研究 6
2-4 PM2.5概述 7
2-5 PM2.5之來源 7
2-6 PM 2.5對人體健康之影響 10
2-7 GIS地理資訊系統內插方法的應用 11
第三章 南臺灣黑潮圈大氣PAHs時空分佈現況 14
3-1 研究背景 14
3-2 材料與方法 15
3-2-1 採樣測站設置 15
3-2-2 空氣樣品採集 15
3-2-3 樣品前處理步驟與定量分析 17
3-2-4 品管與品保(QA/QC) 19
3-3 結果與討論 21
3-3-1 大氣總PAHs濃度變化 21
3-3-2 大氣PAHs 的氣/固分配 23
3-3-3 大氣PAHs 成分組成 27
3-3-4 大氣PAHs來源分析-PAHs特徵比值 31
3-3-5 主成分分析(Principal Component Analysis, PCA) 34
3-3-6 冬季大氣跨境傳輸案例分析 41
3-7 小結 45
第四章 PM2.5-PAHs網格預測模式的建立與應用 46
4-1 研究背景 46
4-2 材料與方法 47
4-2-1 環境採樣測站設置 47
4-2-2 個人環境暴露採樣設置 47
4-2-3 空氣品質與氣象參數即時監測資料收集 48
4-2-4 樣品前處理步驟與定量分析 49
4-2-5 品管與品保(QA/QC) 50
4-3 結果與討論 52
4-3-1 大氣懸浮微粒(PM2.5和PM10)及PM2.5-PAHs之濃度變化 52
4-3-2 懸浮微粒實測值與空品測站監測數據之相關性 54
4-3-3 PM2.5-PAHs來源分析 54
4-3-4 PM2.5-PAHs與空氣污染物、氣象參數之相關性 54
4-3-5 PM2.5-PAHs 網格預測模式之建構 59
4-3-6 PM2.5-PAHs網格模式驗證評估及其應用 61
4-4 小結 67
第五章 結論與建議 68
5-1 結論 68
5-2 建議 70
參考文獻 71
附錄1 氣相PAHs空白試驗及方法偵測極限(ng) 79
附錄2 固相PAHs空白試驗及方法偵測極限(ng) 81
附錄3 各採樣地點溫度與logKP值的線性關係logKp=m(1/T)+b 83
附錄4 PM2.5石英濾紙空白試驗及方法偵測極限(ng) 84
個人簡歷 85
參考文獻 References
Allen JO, Dookeran NM, Smith KA, Sarofim AF, Taghizadeh K, Lafleur AL. Measurement of Polycyclic Aromatic Hydrocarbons Associated with Size-Segregated Atmospheric Aerosols in Massachusetts. Environmental Science & Technology 1996; 30: 1023-1031.
Bergen S, Sheppard L, Sampson PD, Kim SY, Richards M, Vedal S, et al. A National Prediction Model for PM2.5 Component Exposures and Measurement Error-Corrected Health Effect Inference. Environmental Health Perspectives 2013; 121: 1017-1025.
Besombes JL, Maître A, Patissier O, Marchand N, Chevron N, Stoklov M, et al. Particulate PAHs observed in the surrounding of a municipal incinerator. Atmospheric Environment 2001; 35: 6093-6104.
Callén MS, de la Cruz MT, López JM, Murillo R, Navarro MV, Mastral AM. Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain). Chemosphere 2008; 73: 1357-1365.
Chang K-F, Fang G-C, Chen J-C, Wu Y-S. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environmental Pollution 2006; 142: 388-396.
Cotham WE, Bidleman TF. Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Air at an Urban and a Rural Site Near Lake Michigan. Environmental Science & Technology 1995; 29: 2782-2789.
Crimmins BS, Dickerson RR, Doddridge BG, Baker JE. Particulate polycyclic aromatic hydrocarbons in the Atlantic and Indian Ocean atmospheres during the Indian Ocean Experiment and Aerosols99: Continental sources to the marine atmosphere. Journal of Geophysical Research-Atmospheres 2004; 109.
Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environmental Health Perspectives 2000; 108: 1159-1164.
Ding X, Wang XM, Xie ZQ, Xiang CH, Mai BX, Sun LG, et al. Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatial distribution and source identification. Atmospheric Environment 2007; 41: 2061-2072.
Dong M, Yang D, Kuang Y, He D, Erdal S, Kenski D. PM2.5 concentration prediction using hidden semi-Markov model-based times series data mining. Expert Systems with Applications 2009; 36: 9046-9055.
Draxler RR, Rolph GD. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory 2010; Silver Spring: MD.
Fang G-C, Chang C-N, Wu Y-S, Fu PP-C, Yang IL, Chen M-H. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Science of The Total Environment 2004a; 327: 135-146.
Fang G-C, Chang K-F, Lu C, Bai H. Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung. Chemosphere 2004b; 55: 787-796.
Fang GC, Wu YS, Fu PPC, Yang IL, Chen MH. Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere 2004c; 54: 443-452.
Fang MD, Hsieh PC, Ko FC, Baker JE, Lee CL. Sources and distribution of polycyclic aromatic hydrocarbons in the sediments of Kaoping river and submarine canyon system, Taiwan. Marine Pollution Bulletin 2007; 54: 1179-1189.
Fraser MP, Kleeman MJ, Schauer JJ, Cass GR. Modeling the Atmospheric Concentrations of Individual Gas-Phase and Particle-Phase Organic Compounds. Environmental Science & Technology 2000; 34: 1302-1312.
Freeman DJ, Cattell FCR. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environmental Science & Technology 1990; 24: 1581-1585.
Gigliotti CL, Totten LA, Offenberg JH, Dachs J, Reinfelder JR, Nelson ED, et al. Atmospheric Concentrations and Deposition of Polycyclic Aromatic Hydrocarbons to the Mid-Atlantic East Coast Region. 39, 2005, pp. 5550-5559.
Gorai A, Tuluri F, Tchounwou P. A GIS Based Approach for Assessing the Association between Air Pollution and Asthma in New York State, USA. International Journal of Environmental Research and Public Health 2014; 11: 4845.
Goss KU, Schwarzenbach RP. Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of the interpretation of equilibrium constants. Environmental Science & Technology 1998; 32: 2025-2032.
Grimmer G. Environmental carcinogens: Polycyclic aromatic hydrocarbons. Occurrence, Biochemistry, Carcinogenicity 1983.
Grosjean D. Polycyclic aromatic hydrocarbons in Los Angeles air from samples collected on teflon, glass and quartz filters. Atmospheric Environment (1967) 1983; 17: 2565-2573.
Gustafson KE, Dickhut RM. Particle/gas concentrations and distributions of PAHs in the atmosphere of southern Chesapeake Bay. Environmental Science & Technology 1997; 31: 140-147.
Harrison RM, Smith DJT, Luhana L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. 30, 1996, pp. 825-832.
IARC. Outdoor air pollution a leading environmental cause of cancer deaths, 2013.
Jenkins BM, Jones AD, Turn SQ, Williams RB. Particle concentrations, gas-particle partitioning, and species intercorrelations for polycyclic aromatic hydrocarbons (PAH) emitted during biomass burning. Atmospheric Environment 1996; 30: 3825-3835.
Karar K, Gupta AK. Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmospheric Research 2006; 81: 36-53.
Keller CD, Bidleman TF. Collection of airborne polycyclic aromatic hydrocarbons and other organics with a glass fiber filter-polyurethane foam system. Atmospheric Environment (1967) 1984; 18: 837-845.
Khalili NR, Scheff PA, Holsen TM. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment 1995; 29: 533-542.
Kim JY, Lee JY, Choi SD, Kim YP, Ghim YS. Gaseous and particulate polycyclic aromatic hydrocarbons at the Gosan background site in East Asia. Atmospheric Environment 2012; 49: 311-319.
Kirton PJ, Crisp PT. The sampling of coke oven emissions for polycyclic aromatic hydrocarbons: a critical review. Fuel 1990; 69: 633-638.
Kishida M, Nishikawa A, Fujimori K, Shibutani Y. Gas–particle concentrations of atmospheric polycyclic aromatic hydrocarbons at an urban and a residential site in Osaka, Japan: Effect of the formation of atmospherically stable layer on their temporal change. Journal of Hazardous Materials 2011; 192: 1340-1349.
Krauss M, Wilcke W, Martius C, Bandeira AG, Garcia MVB, Amelung W. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution 2005; 135: 143-154.
Kume K, Ohura T, Noda T, Amagai T, Fusaya M. Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. Journal of Hazardous Materials 2007; 144: 513-521.
Laden F, Neas LM, Dockery DW, Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives 2000; 108: 941-947.
Lai CH, Chen KS, Wang HK. Influence of rice straw burning on the levels of polycyclic aromatic hydrocarbons in agricultural county of Taiwan. Journal of Environmental Sciences 2009; 21: 1200-1207.
Lai I-C, Lee C-L, Zeng K-Y, Huang H-C. Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. Journal of Environmental Management 2011; 92: 2029-2037.
Larsen RK, Baker JE. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environmental Science & Technology 2003; 37: 1873-1881.
Lee HJ, Liu Y, Coull B, Schwartz J, Koutrakis P. PM2.5 Prediction Modeling Using MODIS AOD and Its Implications for Health Effect Studies. Epidemiology 2011; 22: S215.
Lee JH, Gigliotti CL, Offenberg JH, Eisenreich SJ, Turpin BJ. Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. Atmospheric Environment 2004; 38: 5971-5981.
Lee JY, Kim YP, Kaneyasu N, Kumata H, Kang C-H. Particulate PAHs levels at Mt. Halla site in Jeju Island, Korea: Regional background levels in northeast Asia. Atmospheric Research 2008; 90: 91-98.
Liu GQ, Tong YP, Luong JHT, Zhang H, Sun HB. A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China. Environmental Monitoring and Assessment 2010; 163: 599-606.
Lohmann R, Harner T, Thomas GO, Jones KC. A Comparative Study of the Gas-Particle Partitioning of PCDD/Fs, PCBs, and PAHs. Environmental Science & Technology 2000; 34: 4943-4951.
Ma WL, Li YF, Qi H, Sun DZ, Liu LY, Wang DG. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 2010; 79: 441-447.
Mader BT, Pankow JF. Gas/Solid Partitioning of Semivolatile Organic Compounds (SOCs) to Air Filters. 3. An Analysis of Gas Adsorption Artifacts in Measurements of Atmospheric SOCs and Organic Carbon (OC) When Using Teflon Membrane Filters and Quartz Fiber Filters. Environmental Science & Technology 2001; 35: 3422-3432.
Mandalakis M, Tsapakis M, Tsoga A, Stephanou EG. Gas–particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmospheric Environment 2002; 36: 4023-4035.
Mantis J, Chaloulakou A, Samara C. PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece. Chemosphere 2005; 59: 593-604.
Marr LC, Dzepina K, Jimenez JL, Reisen F, Bethel HL, Arey J, et al. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmospheric Chemistry and Physics 2006; 6: 1733-1745.
Masclet P, Cachier H, Liousse C, Wortham H. Emissions of polcyclic aromatic-hydrocarbons by savanna fires. Journal of Atmospheric Chemistry 1995; 22: 41-54.
Nizzetto L, Lohmann R, Gioia R, Jahnke A, Temme C, Dachs J, et al. PAHs in Air and Seawater along a North–South Atlantic Transect: Trends, Processes and Possible Sources. Environmental Science & Technology 2008; 42: 1580-1585.
Odabasi M, Cetin E, Sofuoglu A. Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas–particle partitioning in an urban atmosphere. Atmospheric Environment 2006; 40: 6615-6625.
Offenberg JH, Baker JE. The influence of aerosol size and organic carbon content on gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Atmospheric Environment 2002; 36: 1205-1220.
Omar NYMJ, Abas MRB, Ketuly KA, Tahir NM. Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment 2002; 36: 247-254.
Pérez P, Trier A, Reyes J. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment 2000; 34: 1189-1196.
Pankow JF. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmospheric Environment (1967) 1987; 21: 2275-2283.
Pankow JF. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment 1994a; 28: 185-188.
Pankow JF. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmospheric Environment 1994b; 28: 189-193.
Pankow JF, Bidleman TF. Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle paritioning and vapor pressure—I. theory and analysis of available data. Atmospheric Environment. Part A. General Topics 1992; 26: 1071-1080.
Park S, Kim Y, Kang C. Polycyclic aromatic hydrocarbons in bulk PM2.5 and size-segregated aerosol particle samples measured in an urban environment. Environmental Monitoring and Assessment 2007; 128: 231-240.
Park SS, Kim YJ, Kang CH. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment 2002; 36: 2917-2924.
Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama-Journal of the American Medical Association 2002; 287: 1132-1141.
Pope CA, Ezzati M, Dockery DW. Fine-Particulate Air Pollution and Life Expectancy in the United States. New England Journal of Medicine 2009; 360: 376-386.
Ravindra K, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E, et al. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment 2006; 40: 771-785.
Ravindra K, Wauters E, Van Grieken R. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Science of The Total Environment 2008; 396: 100-110.
Rivera-González LO, Zhang Z, Sánchez BN, Zhang K, Brown DG, Rojas-Bracho L, et al. An Assessment of Air Pollutant Exposure Methods in Mexico City, Mexico. Journal of the Air & Waste Management Association (1995) 2015; 65: 581-591.
Sampson PD, Richards M, Szpiro AA, Bergen S, Sheppard L, Larson TV, et al. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmospheric Environment 2013; 75: 383-392.
Simcik MF, Eisenreich SJ, Lioy PJ. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment 1999; 33: 5071-5079.
Simcik MF, Franz TP, Zhang H, Eisenreich SJ. Gas-Particle Partitioning of PCBs and PAHs in the Chicago Urban and Adjacent Coastal Atmosphere:  States of Equilibrium. Environmental Science & Technology 1998; 32: 251-257.
Sofowote UM, Hung H, Rastogi AK, Westgate JN, Su Y, Sverko E, et al. The gas/particle partitioning of polycyclic aromatic hydrocarbons collected at a sub-Arctic site in Canada. Atmospheric Environment 2010; 44: 4919-4926.
Tao S, Cao J, Wang WT, Zhao JY, Wang W, Wang ZH, et al. A Passive Sampler with Improved Performance for Collecting Gaseous and Particulate Phase Polycyclic Aromatic Hydrocarbons in Air. Environmental Science & Technology 2009; 43: 4124-4129.
Terzi E, Samara C. Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons in Urban, Adjacent Coastal, and Continental Background Sites of Western Greece. Environmental Science & Technology 2004; 38: 4973-4978.
Tham YWF, Takeda K, Sakugawa H. Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: Influence of meteorological conditions and seasonal variations. Atmospheric Research 2008; 88: 224-233.
Tian F, Chen J, Qiao X, Wang Z, Yang P, Wang D, et al. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints. Atmospheric Environment 2009; 43: 2747-2753.
USEPA. Polycyclic aromatic hydrocarbons (PAHs) — EPA fact sheet. In: National Center for Environmental Assessment OoRaD, editor. USEPA (Environmental Protection Agency), Washington, DC, 2008.
Vardar N, Esen F, Tasdemir Ye. Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey. Environmental Pollution 2008; 155: 298-307.
Wang HK, Chen KS, Lu JJ, Peng YP, Wang WC, Tsai MY, et al. Dry Deposition of Airborne Particles and Characteristics of Polycyclic Aromatic Hydrocarbons in Urban Kaohsiung, Taiwan. Aerosol and Air Quality Research 2007; 7: 106-120.
Wang R, Tao S, Wang B, Yang Y, Lang C, Zhang YX, et al. Sources and Pathways of Polycyclic Aromatic Hydrocarbons Transported to Alert, the Canadian High Arctic. Environmental Science & Technology 2010; 44: 1017-1022.
Wang W, Simonich SLM, Wang W, Giri B, Zhao J, Xue M, et al. Atmospheric polycyclic aromatic hydrocarbon concentrations and gas/particle partitioning at background, rural village and urban sites in the North China Plain. Atmospheric Research 2011; 99: 197-206.
Westerholm R, Li H. A multivariate statistical analysis of fuel-related polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles. Environmental Science & Technology 1994; 28: 965-972.
WHO. Polynuclear Aromatic Hydrocarbons (PAH). In: Air Quality Guidelines for Europe. World Health Organization Regional Office for Europe, Copenhagen, 1987, pp. 105-117.
WHO. 7 million premature deaths annually linked to air pollution, 2014.
Wilcke W, Krauss M, Amelung W. Carbon Isotope Signature of Polycyclic Aromatic Hydrocarbons (PAHs):  Evidence for Different Sources in Tropical and Temperate Environments? Environmental Science & Technology 2002; 36: 3530-3535.
Yamasaki H, Kuwata K, Miyamoto H. Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environmental Science & Technology 1982; 16: 189-194.
Yang F, Zhai Y, Chen L, Li C, Zeng G, He Y, et al. The seasonal changes and spatial trends of particle-associated polycyclic aromatic hydrocarbons in the summer and autumn in Changsha city. Atmospheric Research 2010a; 96: 122-130.
Yang Y, Guo P, Zhang Q, Li D, Zhao L, Mu D. Seasonal variation, sources and gas/particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China. Science of The Total Environment 2010b; 408: 2492-2500.
Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 2002; 33: 489-515.
Zhang A, Qi Q, Jiang L, Zhou F, Wang J. Population Exposure to PM(2.5) in the Urban Area of Beijing. PLoS ONE 2013; 8: e63486.
Zhou J, Wang T, Huang Y, Mao T, Zhong N. Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere 2005; 61: 792-799.
江涵. 高雄地區大氣懸浮微粒上多環芳香烴濃度之時空變化. 國立中山大學海洋環境及工程學系碩士論文, 2014.
行政院環保署. 認識細懸浮微粒: 行政院環保署, 2015.
李銘雄. 高雄都會區SO2、O3及PM10對人體健康影響評估. 朝陽科技大學環境工程與管理系碩士論文, 2010.
張瑋尹. 南仁山次生林不同冠層間林分結構之空間異質性. 國立屏東科技大學森林系碩士論文, 2003.
鄭金娥. 多環芳香烴於恆春半島濃度、來源及海氣交換之研究. 國立中山大學海洋環境及工程學系博士論文, 2015.
魏佐育. 以地理資訊系統探討小花蔓澤蘭入侵之空間分布. 國立屏東科技大學森林系碩士論文, 2003.
蘇靖貿. 季節性差異對大氣中PAHs 特徵影響之研究. 國立雲林科技大學環境與安全工程研究所碩士論文, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code