Responsive image
博碩士論文 etd-0118106-114324 詳細資訊
Title page for etd-0118106-114324
論文名稱
Title
任意形狀全域矩形切割之最佳化
Optimization of Global Rectangular Cutting for Arbitrary Shape Regions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-09
繳交日期
Date of Submission
2006-01-18
關鍵字
Keywords
剩餘封閉空間、盲目搜尋法、基因演算法、分割問題、最大矩形塊
remaining closed space., maximum rectangular block, genetic algorithm, Blind search algorithm, cutting problem
統計
Statistics
本論文已被瀏覽 5711 次,被下載 1659
The thesis/dissertation has been browsed 5711 times, has been downloaded 1659 times.
中文摘要
從珍貴罕見的材料中,儘可能分割出最大矩形塊(Maximum rectangular block, MRB)可增加材料之使用率。自1984 年開始討論矩形分割問題以來,由於此問題簡單的描述與定義,其應用一直被限制在較小的範圍。為了擴展其應用領域,在本論文中,擬將矩形分割問題延伸到一般更廣泛之範圍。首先,將原始材料之矩形邊界由一個任意封閉的區域來取代。由於是一般任意輪廓, 其處理範圍可以包含更多相關之材料。當最大矩形塊被分割取得時,材料的剩餘封閉空間(Remaining closed space, RCS)可以再被分割。我們提出一種盲目搜尋法(Blind search algorithm, BSA),可全域性沿著邊界逐點搜尋最大之矩形塊,且此方法能從母材中連續地從大到小分割出最大矩形塊,直到所設定的門檻值為止。
雖然在一個任意封閉區域分割出最大矩形塊之問題可成功獲得處理,但仍有二個限制尚待解決:第一個限制是最大矩形塊的兩個邊緣必須與影像軸平行;第二個限制則是母材內部必須是均勻一致的,即在材料中沒有瑕疵。為解除這兩個限制,我們發展出相關演算法,並確認這些演算技術對皮革材料的應用成果。儘管所提出的演算法已有效的解決分割問題,但仍遺留一個可以改良的空間。即如何提高最大矩形塊獲得之搜尋效率。因此,我們將提出基因演算法來取得材料之最大矩形塊,並將其結果與盲目搜尋法比較,確認基因演算法確實能達到近於最佳化的分割性能,且能提昇運算之效率。儘管本論文的研究對象為皮革材料,但所提出的方法可以很容易地延伸到其它工業材料,特別是運用在那些昂貴的材料之上。
Abstract
To determine the maximum rectangular block (MRB) from a rare material as larger as possible indicates to increase of the rate of material usage. The cutting problem has been addressed since 1984. But its applications were strongly restricted due to simple definition of the cutting problem. In order to expand the area of applications, in this dissertation, a general cutting problem will be considered. At first, the rectangular boundary of the original material is replaced by an arbitrary closed region. Due to the general material profile, many other materials can be involved. When the maximum rectangular block has been obtained, the remaining closed space (RCS) of the material can be divided again. A blind search algorithm (BSA), which globally searches the MRB point-by-point from the boundary points of the contour, will be developed. The BSA is able to acquire the MRB from mother material continuously from larger areas to smaller ones until a predefined threshold value is reached.
Although the MRB in an arbitrary closed region can be successfully resolved, two problems are still unsolved. The first limitation is that both edges of the MRB must be parallel with image axes. The second limitation is that the mother material needs to be uniform, i.e., no defects inside the material. In order to release these two assumptions, some algorithms will be presented. Applications of those techniques to the leather material will be demonstrated. In spite of resolving the cutting problem by the presented algorithms, a possible improvement is needed for larger MRBs. The challenge about larger MRBs is that how to make the searching process more efficiently. Therefore, two new methods of GA to obtain the MRB are proposed. By comparing the results using the BSA, the GA approaches are verified to be able to reach the near-optimal performance. Even though only leather material is focused in this research, the proposed methods can be easily extended to other industrial materials, especially for those expensive materials.
目次 Table of Contents
Acknowledgments.……………………………………………….. i
Contents.……………………………………………………….…. ii
List of Figure Captions.……………………………………….…. v
List of Table Captions.…………………………………………... viii
Notations.…………………………………………………………. ix
Chinese Abstract.…………………………………………….....… xi
English Abstract.…………………………………………………. xii
Chapter 1 Introduction.……………………………………….... 1
1.1 Goals and Motivation.………………………………….... 1
1.2 Background and Paper Review.…………………………. 2
1.3 Dissertation Outline.…………………………………….. 7
Chapter 2 MRB in Uniform Material.………………………... 10
2.1 Definitions and Explanation.………………………….… 10
2.2 Methods and Algorithms.……………………………….. 14
2.2.1 Quadrant judgment.………………………………... 14
2.2.2 Determination of the MRB.………………………... 17
2.2.3 Construction of the remaining closed space.………. 18
2.2.4 Automatic division of global region.………………. 20
2.2.5 Dead zone.…………………………………………. 21
2.3 Computation Improvement……………………………... 22
2.4 Experiments and Application.………………..…………. 23
Chapter 3 Optimization of GMRB Cutting for a Non-Uniform
Arbitrary Closed Region.………………………... 39
3.1 Release of the First Limitation.………………………. 39
3.1.1 The global MRB.………………………………... 40
3.1.2 Reduction of the working space.………………... 40
3.1.3 Contour modification after rotation.……………. 41
3.1.4 Contour reconstruction.…………………………. 44
3.1.5 Successive cutting.………………………………. 45
3.2 Release of the Second Limitation.…………………….. 47
3.2.1 Establishment of total boundary points.…………. 47
3.2.2 Single GMRB.………………………………….. 48
3.2.3 Successive GMRB.……………………………… 49
3.3 Experiments and Discussion.…………………………. 50
Chapter 4 GA-based Optimization for the Maximum Rectangular Block.……………………………….. 59
4.1 The Genetic Algorithm.……. ……………………...... 59
4.2 GA for the MRB Problem.……..…………………….. 60
4.2.1 Coding the work volume.……………………….. 60
4.2.2 Fitness and selection.…………………………… 61
4.2.3 Standard genetic algorithm (SGA).….………….. 63
4.2.4 Tuning using the Hooke method.……………….. 65
4.2.5 Adaptive genetic algorithm (AGA).…………….. 65
4.3 Experimental Verification.……………………………. 67
4.4 Discussions.…………………………………………... 68
Chapter 5 Conclusions.………………………………………. 77
5.1 Contributions………………………………………….. 77
5.2 Future Research Topics.………………………………. 79
Bibliography……………………………………………………. 81
參考文獻 References
[1] Aggarwal, A. and Suri, S. “Fast Algorithms for Computing the Largest Empty Rectangle” Proceedings of the 3rd Annual ACM Symposium on Computational Geometry (1987), 278-290.
[2] Alon, A. and Ascher, U. “Model and Solution Strategy for Placement of Rectangular Blocks in the Euclidean Plane” IEEE Trans. on CAD, 7(1988), 378-386.
[3] Atallah, M. J. and Frederickson, G. N. “A Note on Finding a Maximum Empty Rectangle” Discrete Applied Mathematics 13(1986), 87-91.
[4] Berkman, O., Breslauer, D., Galil, Z., Schieber, B., and Vishkin, U. “Highly Parallelizable Problems” Proceedings of ACM Annul Symposium on Theory of Computing (1989), 770-785.
[5] Branca, A., Tafuri, M., Attolico, G., and Distante, A. “Directionality Detection in Compositional Textures” Proceedings of the 13th International Conference on Pattern Recognition (1996), 830-833.
[6] Chazelle, B., Drysdale, R. F., and Lee, D. T. “Computing the Largest Empty Rectangle” SIAM Journal of Computing, 15(1986), 300-315.
[7] Christofides, N. and Hadjiconstantinou, E. “An Exact Algorithm for Orthogonal 2-D Cutting Problems using Guillotine Cuts” European of Journal of Operational Research, 83(1995), 21-38.
[8] Davis, L. Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York (1991).
[9] Goldberg, D. E. “Computer-Aided Pipeline Operation Using Genetic Algorithms and Rule Learning, Part 1: Genetic Algorithms in Pipeline Optimization” Engng. Comput., 3(1987), 35-45.
[10] Goldberg, D. E. and Kuo, C. H. “Genetic Algorithms in Pipeline Optimization” J. Comput. Civ. Engng., 1(1987), 128-141.
[11] Goldberg, D. E. Genetic Algorithm in Search, Optimization and Machine Learning, Addition-Wesley, Reading, MA, USA (1989).
[12] Healy, P. and Creavin, M. “An Optimal Algorithm for Rectangle Placement” Operation Research Letters, 24(1999), 73-80.
[13] Holland, J. H. “Adaptation in Natural and Artificial System” University of Michigan Press, Ann Arbor, MI, USA (1975).
[14] Hooke, R. and Jeeves, T. A. “Direct Search Solution of Numerical and Statistical Problem” Journal of the Association for Computing Machinery (1961), 212-229.
[15] Jain, R., Kasturi, R., and Schunck, B. G. Machine Vision, McGraw-Hill, New York, USA (1995).
[16] Limas Serafim, A. F. “Multi-Resolution Pyramids for Segmentation of Nature Images Based on Auto-Regressive Models: Application to Calf Leather Classification” Proceedings of IECON (1991), 1842-1847.
[17] Limas Serafim, A. F. “Object Detection in Image of Natural Scenes Represented by AR Models Using Laplacian Pyramids: Application to Leather Defects Localization” Proceedings of the 1992 International Conference on Industrial Electronics Control, Instrumentation, and Automation (1992), 716- 720.
[18] Limas Serafim, A. F. “Segmentation of Natural Images Based on Multiresolution Pyramids Linking of the Parameters of an Autoregressive Rotation Invariant Model: Application to Leather Defects Detection” Proceedings of the 11th International Conference on Pattern Recognition, 30(1992), 41-44.
[19] Limas Serafim, A. F. “Nature Images Segmentation for Patterns Recognition Using Edges Pyramids and its Application to the Leather Defects” Proceedings of IECON (1993), 1357-1360.
[20] Lodi, A., Martello, S., and Monaci, M. “Two-Dimensional Packing Problem: A Survey” European Journal of Operational Research, 141(2002), 241-252.
[21] Lovergine, F. P., Branca, A., Attolico, G., and Distante, A. “Leather Inspection by Oriented Texture Analysis with a Morphological approach” Proceedings of International Conference on Image Processing (1997), 669-671.
[22]Murata, H., Fujiyoshi K., Nakatake, S., and Kajitani,Y. “Rectangle-Packing-Based Module Placement” Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design (1995), 472-479.
[23] Namaad, A., Hsu, W. L., and Lee, D. T. “On the Maximum Empty Rectangle Problem” Applied Discrete Mathematics, 8(1984), 267-277.
[24] Olariu, S., Shen, W., and Wilson, L. “Sub-Logarithms Algorithms for the Largest Empty Rectangle” Proceedings of the 4th IEEE International Conference on Computing and Information (1992), 106-109.
[25] Onodera, H., Taniguchi, Y., and Tamaru, K. “Branch-and-Bound Placement for Building Block Layout” Proceedings of the 28th ACM/IEEE Design Automation Conference (1991), 433-439.
[26] Orlowski, M. “A. New Algorithm for the Largest Empty Rectangle Problem” Algorithmica, 5(1990), 65-73.
[27] Otsu, N. “A Threshold Selection Method from Gray-level Histograms” IEEE Trans. System, Man, Cybernet. SMC-9, (1979), 62-66.
[28] Takahashi, T. “Dropping Method for Rectangle Packing Problem “ Proceedings of IEEE International Symposium on Circuits and System (2000), 28-31.
[29] Tam, Y. O., Wu, Y. L., Huang, W., and Wong, C. K. “An Effective Quasi-Human Based Heuristic for Solving Rectangle Packing Problem” Proceedings of the 1998 IEEE Asia-Pacific Conference on Circuits and Systems (1998), 24-27.
[30] Twisselmann, U. “Cutting Rectangles Avoiding Rectangular Defects” Applied Mathematics Letters, 12(1999), 135-138.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code