Responsive image
博碩士論文 etd-0118106-202242 詳細資訊
Title page for etd-0118106-202242
論文名稱
Title
運用速率及視窗調整之流量控制機制的效能預估模型
Performance Prediction Models for Rate-based and Window-based Flow Control Mechanisms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
1996-01-12
繳交日期
Date of Submission
2006-01-18
關鍵字
Keywords
非同步傳輸模式、流量控制
Throughput degradation, Window-based, TCP-SACK, TCP-Reno, Rate-based, Flow control, FECN, ATM
統計
Statistics
本論文已被瀏覽 5954 次,被下載 0
The thesis/dissertation has been browsed 5954 times, has been downloaded 0 times.
中文摘要
在本論文中,我們分別針對運用速率與視窗調整之流量控制機制提出了效能預估模型。對於運用速率調整的流量控制(如應用在ATM網路中)而言,我們分別針對無壅塞與發生壅塞之網路,推導出兩個分析的模型去預估ACR的速率。另外,為協調TCP應用在ATM網路之合作問題,我們提出了一套新的演算法去監視ATM交換機的壅塞狀態,並根據回傳的RM細胞所回送的資訊來調整TCP壅塞視窗的大小。
此外對於運用視窗調整的流量控制機制(如TCP-Reno與TCP-SACK)而言,我們也分別提出了分析模型,有系統的來捕捉在一個TCP視窗中發生多重封包遺失的特性。假若所遺失的封包數量超過本論文中所提出的上限時,已經遺失的封包可能無法用快速重傳的方式來恢復。最後我們也發展了一套模型去探討因多重連續封包遺失而造成訊務量下滑對TCP效能的影響。從此模型中所得到分析的結果,可經由OPNET的模擬來獲得驗證。
Abstract
In this dissertation, we present performance prediction models for rate-based and window–based flow control mechanisms. For rate-based flow control, such as in ATM network, we derive two analytical models to predict the ACR rates for congestion-free and congestion networks, respectively. To coordinate the cooperative problems of TCP over ATM networks, we propose a new algorithm to monitor the states of ATM switches and adjust TCP congestion window size based on RM cells.
For window-based flow control mechanisms, such as in TCP-Reno and TCP-SACK, we respectively present analytical models to systematically capture the characteristics of multiple consecutive packet losses in TCP windows. Through fast retransmission, the lost packets may or may not be recovered. Thus, we present upper bound analyses for slow start and congestion avoidance phases to study the effects of multiple packet losses on TCP performance. Above the proposed upper bounds, the lost packets may not be successfully recovered through fast retransmission. Finally, we develop a model to study the TCP performance in terms of throughput degradation resulted from multiple consecutive packet losses. The analytical results from the throughput degradation model are validated through OPNET simulation.
目次 Table of Contents
Tables of Contents
List of Figures……………………………………………….. vi
List of Tables………………………………………………… ix
1 Introduction………………………………………………. 1
1.1 Research Objectives…………………………………………… 1
1.2 Research Approaches………………………………………..... 3
1.3 Organizations………………………………………………..... 5
2 Survey of Literatures…………………………………….. 6
2.1 Frameworks of Flow Control Mechanisms………………..…6
2.2 Rate-based Flow Control Mechanisms……………………… 8
2.2.1 Characteristics of Rate-based Control Schemes……………….. 9
2.2.2 Various Rate-based Flow Control Schemes…………………….. 9
2.2.3 Comparisons of Rate-based Flow Control Schemes…………… 11
2.3 Window-based Flow Control Mechanisms………………... 14
2.3.1 TCP Characteristics……………………………………………… 14
2.3.2 Different TCP Versions………………………………………….. 15
2.3.3 Performance Comparisons………………………………………. 19
2.4 Integration of TCP and ATM Networks…………………… 21
3 Rate-based Flow Control Models………………………. 24
3.1 FECN Rate-based Flow Control…………………………… 24
3.2 Analytical Performance Prediction………………………… 25
3.2.1 Models for No Congestion……………………………………….. 26
3.2.2 Models for Congestion…………………………………………… 31
3.3 Performance Evaluations and Simulation………………… 35
3.3.1 Simulation Model………………………………………………… 35
3.3.2 Analytical and Simulation Results………………………………. 36
3.4 Cooperative Problems for TCP over ATM Networks…….. 42
3.4.1 Integrated Flow Control Algorithm (IFCA)……………………. 43
3.4.2 Simulation Model………………………………………………… 47
3.4.3 Simulation Results……………………………………………….. 49
4 Window-based Flow Control Models for TCP-Reno…. 52
4.1 Assumptions and Definitions……………………………….. 52
4.2 Modeling of Multiple Losses………………………………... 55
4.2.1 Fast Recovery when ………………………………. 55
4.2.2 Fast Recovery when ……………………………... 67
4.3 Upper Bounds of Packet Losses……………………………. 70
5 Upper Bound Analyses for Multiple Packet Losses in TCP- SACK
…………………………………………………………………….. 81
5.1 Multiple Consecutive Packet Losses……………………….. 81
5.1.1 Assumptions and Definitions……………………………………. 81
5.1.2 When ………………………………………………. 82
5.1.3 When ………………………………………………. 87
5.2 An Upper Bounds of Packet Losses………………………... 91
5.3 Verification and Modification……………………………… 96
5.3.1 Result Verification……………………………………………….. 96
5.3.2 A Modified TCP-SACK………………………………………….. 99
6 Performance Degradation Model for TCP-SACK……103
6.1 Model Descriptions………………………………………… 103
6.2 Throughput Degradation Model………………………….. 104
6.2.1 No Packet Loss Indication……………………………………… 104
6.2.2 Multiple Packet Losses with a Single-Loss Indication…………104
6.2.3 Multiple Packet Losses with Multiple Loss Indications………. 115
6.2.4 Calculations of Average Throughput…………………………... 118
6.3 Simulation and Validation………………………………… 119
7 Conclusions and Future Works……………………….. 122
7.1 Conclusions………………………………………………… 122
7.2 Contributions………………………………………………. 123
7.3 Future Works………………………………………………. 124
Bibliography……………………………………………….. 125
Index ………………………………………………………...134
Vita ………………………………………………………….137
參考文獻 References
[1] J. J. Bae and T. Suda, "Survey of traffic control schemes and protocols in atm networks," Proceedings of the IEEE, vol. 79, no. 2, pp. 170-189, Feb. 1991.
[2] G. Woodruff, R. Rogers, and P. Richards,” A congestion control framework for high speed integrated packetized transport,” IEEE Globecom, pp. 203-207, Nov. 1988.
[3] J. Kurose, “Open issues and Challenger in Providing Quality of Service Guarantees,” ACM SIGCOMM Computer Communication Review, pp. 6-15, Jan. 1993.
[4] K. Kawahara, Y. Oie, M. Murata, and H. Miyahara, “Performance Analysis of Reactive Congestion Control for ATM Networks,” IEEE Journal on Selected Areas in Communications, vol. 13, pp. 651-661, May 1995.
[5] S. Yazid and H. T. Mouftah, “Congestion Control Methods for B-ISDN,” IEEE Communications Magazine, vol. 30, no. 7, pp. 42-47, Jul. 1992.
[6] F. Bonomi and K.W. Fendick, “The Rate-Based Flow Control Framework for the Available Bit Rate ATM Service,” IEEE Network, vol. 9, no. 2, pp. 25-39, Mar./Apr. 1995.
[7] H. Suzuki and F. Tobagi, "Fast bandwidth reservation scheme with multi-link and multi-path routing," Computer Communications Review, vol. 24, no. 5, pp. 81--106, Oct. 1994.
[8] J. Murphy and L. Murphy, “Bandwidth Allocation by Pricing in ATM Networks,” IFIP: Broadband Communications, pp.333-351, Dec. 1994.
[9] W. Fischer, E. Wallmeier, T. Worster, S. P. Davis, and A. Hayter, “Data Communications Using ATM:Architectures, Protocols, and Resource Management,” IEEE Communications Magazine, vol. 32, no.8, pp. 24-33, Aug. 1994.
[10] Habib and T. Saadawi, “Controlling Flow and Avoiding Congestion in Broadband Networks," IEEE Communications Magazine, vol. 29, no. 10, pp. 46-53, October 1991.
[11] S. Kamolphiwong, A. E. Karbowiak, and H. Mehrpour, “Survey Flow Control in ATM Networks:a Survey,” Computer Communications, vol.21, pp. 951-968, Aug. 1998.
[12] R. Jain, “Congestion Control and Traffic Management in ATM Networks:Recent Advance and a Survey,” Computer Networks and ISDN System, vol.28, pp.1723-1738, Oct. 1996.
[13] R. Krishnan, “Rate-Based Control Schemes for ABR Traffic- Design Principles and Performance Comparison,” Computer Networks and ISDN Systems, vol.29, pp.583-593, Apr. 1997.
[14] J. Aweya1, D. Y. Montuno1, Q. Zhang, and L. Orozco-Barbosa, “A gradient-based binary feedback scheme for congestion control in computer networks,” International Journal of Communication Systems, pp.99-116, Mar. 2000.
[15] R. Jain, S. Kalyanaraman, and R. Viswanathan, “The OSU Scheme for Congestion Avoidance Using Explicit Rate Indication,” Proc. WATM First Workshop on ATM Traffic Management, Dec. 1995.
[16] K. Y. Siu and H. Y. Tzeng, “ Intelligent Congestion Control for ABR Service in ATM Networks,” ACM SIGCOMM Computer Communication Review, vol. 24, no.5, pp.81-106, Oct. 1994.
[17] A. Atai and J. Hui, “A rate-based feedback traffic controller for ATM networks,” Proc. IEEE ICC 94, pp. 1605–1615, May 1994.
[18] Y. Zhao, S. Li, and S. Sigarto, "An Improved EFCI Scheme with Early congestion Detection," ATM Forum 96-0184, Feb. 1996.
[19] Y. Chang, N. Golmie, and D. Su, “Interoperability between EFCI and ER switch mechanisms for ABR traffic in an ATM network,” Computer Communications, vol.19, pp.653-658, Jul. 1996.
[20] D. C. W. Pao, “Scheduling multicast traffic in input-buffered ATM switch,” Computer Communications, vol.24, no.15-16, pp.1607-1617, Oct. 2001.
[21] H. Li, K.-Y. Siu, H.-Y. Tzeng, C. Ikeda, and H. Suzuki, “On TCP performance in ATM networks with per-VC early packet discard mechanisms,” Computer Communications, vol.19, pp.1065-1076, Nov. 1996.
[22] K. K. Ramakrishnan, and P. Newman, “Integration of Rate and Credit Schemes for ATM Flow Control,” IEEE Network, vol.9, no. 2, pp.49-56, Mar./Apr.1995.
[23] D. M. Drury,” ATM Traffic Management and the Impact of ATM Switch Design,” Computer Networks and ISDN Systems, vol.28, no.4, pp.471-479, Feb. 1996.
[24] Y.H. Long, T.K. Ho, and A.B. Rad, “Fair flow control of ABR service by per-VC virtual queueing,” Computer Communications, vol.23, pp.71-83, Jan. 2000.
[25] R. Jain, S. Kalyanaraman, and R. Viswanathan, “The OSU Scheme for Congestion Avoidance in ATM Networks: Lessons Learnt and Extensions,' Performance Evaluation, vol. 31, no. 1-2, pp. 67-88, Nov. 1997.
[26] A. Hać and H Lin, ”Congestion Control for ABR Traffic in an ATM Network,” International Journal of Network Management, vol.9, pp.249-264, Jul./Aug.1999.
[27] B.A. Makrucki, “On the Performance of Submitting Excess Traffic to ATM Networks,” IEEE GLOBECOM , pp.281-288, Dec. 1991.
[28] B. A. Makrucki, “Explicit forward congestion notification in ATM Networks,” Proc. of TriComm, Feb. 1992.
[29] N. Yin, “Analysis of a rate-based traffic management mechanism for ABR service,” IEEE Globecom, vol. 2, pp.1076-1082, Nov. 1995.
[30] K. K. Ramakrishnan and Raj Jain, “A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer,” ACM Trans. on Computer Systems, vol.8, no.2, pp.158-181, May 1990.
[31] L. Roberts, et al., “Closed-Loop Rate-Based Traffic Management," ATM Forum 94-0438R1, Jul. 1994.
[32] J. Bennett and G. T. D. Jardins, “Comments on the July PRCA Rate Control Baseline,” ATM Forum 94-0682, Jul. 1994.
[33] L. Roberts, “Enhanced PRCA (proportional rate-control algorithm),” ATM Forum 94-0735R1, Sep. 1994.
[34] C. Su, G. de Veciana, and J. Walrand, “Explicit Rate Flow Control for ABR Services in ATM Networks”, IEEE/ACM Trans. on Networking, vol. 8, no. 3, pp.350-361, June 2000.
[35] H. Ohsaki et al, “Analysis of rate-based congestion control algorithms for ATM networks-Part 1: steady state analysis,” IEEE GLOBECOM, pp.296-303, Nov. 1995.
[36] H. Ohsaki et al, “Analysis of rate-based congestion control algorithms for ATM networks-Part 2: initial transient state analysis,” IEEE GLOBECOM, pp.1095-1101, Nov.1995.
[37] P. Newman, “Traffic Management for ATM Local Area Networks,” IEEE Communications Magazine, pp.44-50, Aug. 1994.
[38] P. Newman, “Backward Explicit Congestion Notification for ATM Local Area Networks,” IEEE Globecom, pp.719-723, Nov. 1993.
[39] ATM Forum, “The ATM Forum Traffic management Specification Version4.1,” Mar. 1999.
[40] Y. - C. Lai and Y. - D. Lin, “Interoperability of EFCI and ER Switches for ABR Services in ATM Networks,” IEEE Network, pp. 34-42, Jan./Feb. 1998.
[41] A. Charny, D.D. Clark, and R.Jain, "Congestion Control With Explicit Rate Indication,” Proc. ICC, pp.1954-1963, Jun. 1995.
[42] E.Altman and T. Basar, ”Multiuser Rate-Based Flow Control”, IEEE Trans. on Communications, vol. 46, no. 7, pp.940-949, Jul. 1998.
[43] M. Ritter, “Analysis of feedback-oriented congestion control mechanism for ABR services,” ITC Specialists Seminar, Lund, pp. 291-308, Sep. 1996.
[44] S. Kalyanaraman, R. Jain, and S. Fahmy, “The ERICA switch algorithm for ABR traffic management in ATM networks, “ IEEE/ACM Trans. on Networking, vol.8, no.1, pp. 87-98, Feb. 2000.
[45] L. A. Kulkarni and S.-Q. Li, “Performance Analysis of a Rate-Based Feedback Control Scheme”, IEEE/ACM Trans. on Networking, vol. 6, no. 6, pp.797-810, Dec. 1998.
[46] Y. - C. Lai and Y. - D. Lin, “Choice of high and low thresholds in the rate-based flow control scheme,” IEE Proc. Comm., vol.146, no.2, pp.95-101, Apr. 1999.
[47] N. Ghani and Jon W. Mark, “Enhanced Distribution Explicit Rate Allocation for ABR Services in ATM Networks,” IEEE/ACM Trans. on Networking, vol. 8, no. 1, pp.71-86, Feb. 2000.
[48] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and F. Lu, “ERICA+: extension to the ERICA switch algorithm,” ATM Forum 95-1346, Oct. 1995.
[49] M. Vojnović and N. Rožić, “An evaluation of the ABR explicit-rate allocation interfering with the guaranteed services traffic,” Computer Communications, vol. 34, no. 1, pp.139-155, Jul. 2000.
[50] I. Lengliz and F. Kamoun, “A rate-based flow control method for ABR service in ATM networks,” Computer Networks, vol. 34, no. 1, pp.129-138, Jul. 2000.
[51] A. Kolarov and G. Ramamurthy, “A Control-Theoretic Approach to the Design of an Explicit Rate Controller for ABR Service,” IEEE/ACM Trans. on Networking, vol.7, no.5, pp.741-753, Oct. 1999.
[52] L. Benmohamed and Y.T. Wang, “A Control-Theoretic ABR Explicit Rate Algorithm for ATM Switches with Per-VC Queueing,” Proc. IEEE Infocom, pp.183-191, Mar. 1998.
[53] R.Q. Hu and D.W. Petr, “A Predictive Self-Tuning Fuzzy-Logic Feedback Rate Controller”, IEEE/ACM Trans. on Networking, vol. 8, no. 6, pp.697-709, Dec. 2000.
[54] H. Liu, E. Song, M. Ould-Khaoua, and R. Sotudeh, “A new single-bit feedback congestion scheme for ATM networks”, Computer Communications , vol. 21, no. 13, pp.1165-1169, Sep. 1998.
[55] D. Lee, K. K. Ramarkrishnan, and W. M. Moh, “Correctness and performance of the ATM ABR rate control scheme,” Computer Network, vol.35, pp.237-261, Nov. 2001.
[56] L. Kalampoukas and A. Varma, “Analysis of Source Policy and its Effects on TCP in Rate-Controlled ATM Networks”, IEEE/ACM Trans. on Networking, vol. 6, no. 5, pp.599-610, Oct. 1998.
[57] T.-L. Sheu and L.-W. Wu, “A Performance Prediction Model for FECN Rate-based Flow Control in ATM Networks: A Case Study,” Computer Communications, vol.25, pp.1323-1332, Sep. 2002.
[58] J. Postel, “Transmission Control Protocol (TCP)”, in RFC 793, Sep. 1981.
[59] V. Jacobson, “Congestion Avoidance Control”, Proc. ACM SIGCOMM, pp.314-329, Aug. 1988.
[60] V. Jacobson, “Modified TCP Congestion Avoidance Algorithm”, Apr. 30, 1990, end2end-interest mailing list.
[61] J. C. Hoe “Improving the Start-up Behavior of a Congestion Control Scheme for TCP”, Proc. ACM SIGCOMM, pp.270-280, Aug. 1996.
[62] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast Recovery Algorithm,”, RFC 2582, Apr. 1999.
[63] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgement Options”, RFC 2018, Oct. 1996.
[64] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selective Acknowledgment (SACK) – based Loss Recovery Algorithm for TCP”, in RFC 3517, Apr. 2003.
[65] L.S. Brakmo and L.L. Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global Internet”, IEEE Journal on Selected Areas in Communications, vol. 13, no.8, pp 1465-1480, Oct. 1995.
[66] K. Fall and S. Floyd ,”Simulation-based Comparisons of Tahoe, Reno, and SACK TCP,” ACM Computer Communication Review, vol.26, no.3, pp.5-21, Jul. 1996.
[67] Y.-C. Lai and C.-L. Yao, “Performance comparison between TCP Reno and TCP Vegas,” Computer Communications, vol.25, pp.1765-1773, Dec. 2002.
[68] B. Sikdar, S. Kalyanaraman, and K. S. Vastola, “TCP Reno with Random losses: Latency, Throughput and Sensitivity Analysis”, in Proc. IEEE IPCCC, pp.188-195, Apr. 2001.
[69] N. Cardwell, S. Savage, and T. Anderson, ”Modeling TCP Latency”, in Proc. IEEE INFOCOM, Tel Aviv, Israel, pp.1742-1751, Mar. 2000.
[70] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, ”Modeling TCP Reno Performance: A Simple Model and Its Empirical Validation”, IEEE/ACM Trans. Networking, vol. 8, no. 2, pp. 133- 145, Apr. 2000.
[71] B. Sikdar, S. Kalyanaraman, and K. S. Vastola, “An Integrated Model for the Latency and Steady State Throughput of TCP Connections,” Performance Evaluation, vol.46, no.2-3, pp.139-154, Oct. 2001.
[72] S. Fortin-Parisi and B. Sericola, “A Moakov model of TCP throughput, goodput and slow start”, Perform. Eval., vol.58, issues 2-3, pp.89-108, Nov. 2004.
[73] A. E. Kamal, “Discrete-time modeling of TCP Reno under background traffic interference with extension to RED-based routers,” Performance Evaluation, vol.58, pp.109-142, Nov. 2004.
[74] B. Sikdar, S. Kalyanaraman, and K. S. Vastola, ”Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno and SACK”, IEEE/ACM Trans. Networking, vol. 11, no. 6, pp. 959-971, Dec. 2003.
[75] T.-L. Sheu and L.-W. Wu, "Analytical Modeling of Fast Retransmission and Recovery in TCP-Reno," IEEE ICON, vol.2, pp.708-712, Nov. 2004.
[76] T.-L. Sheu and L.-W. Wu, “Modeling of Multiple TCP Segment Losses in Slow Start and Congestion Avoidance phases," Accepted by Journal of Information Science and Engineering, Oct. 2005.
[77] M. A. Smith and K. K. Ramarkrishnan, “Formal Specification and Verification of Safety and Performance of TCP Selective Acknowledgment”, IEEE/ACM Trans. Networking, vol.10, no. 2, pp.193-207, Apr. 2002.
[78] T.-L. Sheu and L.-W. Wu, “On the Upper Bound Analysis for Multiple Consecutive Packet Losses in TCP-SACK,” Submitted to Computer Communications.
[79] T.-L. Sheu and L.-W. Wu, “An Analytical Model of Fast Retransmission and Recovery in TCP-SACK,” Submitted to the journal of Performance Evaluation (Under the second revision).
[80] T.-L. Sheu and L.-W. Wu, “A Throughput Degradation Model under Multiple Consecutive Packet Losses for TCP-SACK,” Submitted to Journal of the Chinese Institute of Engineers.
[81] C. Samios and M. K. Vernon, “Modeling the Throughput of TCP Vegas,” ACM SIGMETRICS, vol.31, no.1, pp.71-81, Jun. 2003.
[82] O. A. Hellall and E. Altman, “Analysis of TCP Vegas and TCP Reno”, Telecommunications System, vol.15, issue 3, pp.381-pp.404, 2000.
[83] A. Wierman, T. Osogami, and J. Olsén, “A Unified Framework for Modeling TCP-Vegas, TCP-SACK and TCP-Reno”, in Proc. IEEE/ACM MASCOTS, pp.269-pp.278, Oct. 2003.
[84] A.-T. Trinh and S. Molnár, “A Novel Approach to Model TCP Traffic”, in Proc. IEEE GLOBECOM, vol. 2, pp.660-pp.664, Nov. 2004.
[85] N. Ehsan and M. Liu, “Analysis of TCP Transient Behavior and Its Effect on File Transfer Latency”, IEEE ICC, vol. 3, pp.1806-1811, May 2003.
[86] Michele M. de A. E. Lima, Nelson L. S. de Fonseca, and José F. de Rezende, “On Performance of TCP Loss Recovery Mechanism”, Available: http://www.gta.ufrj.br/ftp/gta/TechReports/LFR03.pdf.
[87] C. P. Charalambos, V. S. Frost, and J. B. Evans, “Performance of TCP Extensions on Noisy High BDP Networks”, IEEE Communications Letters, vol. 3, no.10, pp. 294-296, Oct. 1999.
[88] F. Anjum and L. Tassiulas, “Comparative Study of Various TCP Versions Over a Wireless Link With Correlated Losses”, IEEE/ACM Trans. Networking, vol. 11, no.3, pp. 370-383, Jun. 2003.
[89] J. Mo, R. J. Ra, V. Anantharam, and J. Walrand, “Analysis and Comparison of TCP Reno and Vegas,” IEEE INFOCOM, vol.3, pp.1556-1563, Mar.1999.
[90] T. Bonald, “Comparison of TCP Reno and TCP Vegas: efficiency and fairness,” Performance Evaluation, vol.36-37, pp.307-332, Aug. 1999.
[91] A. Kumar, “Comparative Performance Analysis of Versions of TCP in a Local Network with a Lossy Link,” IEEE/ACM Trans. on Networking, vol.6 no.4, pp.485-498, Aug. 1998.
[92] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss Recovery Using Limited Transmit,” RFC 3042, Jan. 2001.
[93] M. Mathis and J. Mahdavi, “Forward Acknoledgment: Refining TCP congestion Control,” ACM SIGCOMM, vol.26, no.4, pp.181-191, Oct. 1996.
[94] D. Lil and H. T. Kung, “TCP Fast Recovery Strategies: Analysis and Improvements, “ IEEE INFOCOM, pp.263-269, Mar. 1998.
[95] C. Casetti, M. Gerla, S. S. Lee, S. Mascolo, and M. Sanadidi, “TCP with faster recovery,” IEEE MILCOM, no. 1, pp. 320-324, Oct. 2000.
[96] A. Smith, J. Adams, and G. Tagg, “ Available Bit Rate-a new service for ATM,” Computer Networks and ISDN Systems , vol. 28 , no. 5, pp. 635-640, Mar. 1996.
[97] L. An, N. Ansari and A. Arulambalam, “TCP/IP traffic over ATM networks with FMMRA ABR flow and congestion control”, Computer Networks and ISDN Systems, pp.2091-2102, Nov. 1998.
[98] G. Hasegawa, H. Ohsaki, M. Murata, and H. Miyahara, “Performance of TCP over ABR Service Class”, IEEE Globecom, vol. 3, pp.1935-1941, Nov. 1996.
[99] S. Kalyanraman, R. Jain, S. Fahmy, and R. Goyal, “Buffer Requirements for TCP/IP over ABR”, Proc. IEEE ATM Workshop, pp.23-24, Aug. 1996.
[100] S. Kalyanraman, R. Jain, S. Fahmy, and R. Goyal, “Performance and Buffering Requirements of Internet Protocols over ATM ABR and UBR Services”, IEEE Communication Magazine, pp.152-157, Jun. 1998.
[101] B. Vandalore, S. Kalyanraman, R. Jain, R. Goyal, and S. Fahmy, “Worst Case Buffer Requirements for TCP over ABR”, ATM Forum/97-0617, Jul. 1997.
[102] D.B. Hoang and Z. Wang, “Performance of TCP applications over ATM networks with ABR and UBR services - a simulation analysis,” Computer Communications, vol.23, pp.802-815, Apr. 2000.
[103] Pil-Joong Kim and Sang-Ha Kim, ”Design of an Interworking Layer for TCP/ATM”, ICOIN-13, pp.1D-1.1 – 1D-1.6, Jan. 1999.
[104] H. Son, D. Nyang, H. Lee, H. Cho, J. Min, and J. Song, “Modified TCP Congestion Window Management Scheme Considering The ABR Traffic Behavior”, ICOIN-13, pp.1D-4.1 – 1D-4.6, Jan. 1999.
[105] P. Narváez and K.-Y. Siu, “Acknowledgment bucket scheme for regulating TCP flow over ATM,” Computer Networks and ISDN Systems, vol.30, pp.1775-1791, Oct. 1998.
[106] K. Djemame, M. Kara, and R. Banwait, “An agent based congestion control and notification scheme for TCP over ABR,“ Computer Communications, vol.23, pp. 1524-1536, Sep. 2000.
[107] K. Djemame and M. Kara, “Agent-based rate coordination between TCP and ABR congestion control algorithm,” Computer Communications, vol.24, pp. 850-859, May 2001.
[108] T.-L. Sheu and L.-W. Wu, “Flow Control Mechanisms for Integrated TCP and ATM Networks”, ICOIN-14, pp. 1A-4.1-1A-4.8, Jan. 2000.
[109] OPNET Modeler 8.0, OPNET Technology, Inc.
[110] W. R. Steven, “TCP/IP Illustrated Volume 1”, Addison-Wesley Publishing Company, 1996.
[111] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control”, in RFC 2581, Apr. 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.43.142
論文開放下載的時間是 校外不公開

Your IP address is 18.223.43.142
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code