Responsive image
博碩士論文 etd-0118107-092957 詳細資訊
Title page for etd-0118107-092957
論文名稱
Title
針對含有非匹配干擾系統之非線性控制器設計
Design of Nonlinear Controllers for Systems with Mismatched Perturbations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-12-27
繳交日期
Date of Submission
2007-01-18
關鍵字
Keywords
適應順滑模態控制、非匹配雜訊、李亞諾普夫定理
adaptive sliding mode control, mismatched perturbations, Lyapunov stability theorem
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
在此論文中,針對四種不同且含有匹配與非匹配雜訊之多輸入多輸出系
統分別設計控制器。所有的控制系統皆包含有輸入之不確定量。為了解決校
準或追蹤問題,適應順滑模態控制之技術首先被介紹。利用分別在順滑面和
控制器上設計適應增益的技巧,不只可以滿足在有限時間內達到迫近模態,
當系統在滑動模態時還可以壓制非匹配雜訊。接著第五章利用區塊遞迴控制
(Block Backstepping)之技術解決校準問題。應用在虛擬控制器上的一些適應
增益,使得不只處理非匹配雜訊,而且強健的控制器能保證控制系統之穩定
性。所有的控制方法皆以李亞諾普夫定理為理論基礎。每一控制器皆分為二
個部份,第一部份是用來消除可量測之系統回授訊號,而第二部份則是利用
適應機制來估測一些未知干擾的上界常數,如此一來,系統之匹配與非匹配
雜訊的上界資訊即可不必事先知道,而且能獲得漸進穩定的特性。利用幾個
數位的例子和工業上的應用來顯示此論文所提出之控制方法的可行性。
Abstract
In this dissertation, four nonlinear controllers are proposed for different class
of multi-input multi-output (MIMO) systems with matched and mismatched perturbations.
All the plants to be controlled contains input uncertainty. The technique
of the adaptive sliding mode control (ASMC) scheme is first introduced in
order to solve the regulation or tracking problems. By applying adaptive techniques
to the design of a novel sliding surface as well as to the design of sliding
mode controller, one can not only enable the fulfillment of reaching mode in fi-
nite time, but also suppress the mismatched perturbations when system is in the
sliding mode. Secondly, the design methodology of block backstepping is proposed
to solve the regulation problem in chapter 5. Some adaptive mechanisms
are employed in the virtual input controller, so that the mismatched perturbations
can be tackled and the proposed robust controller can guarantee stability
of the controlled systems. All these control schemes are designed by means of
Lyapunov stability theorem. Each robust controller contains two parts. The first
part is for eliminating measurable feedback signals of the plant, and the second
part is an adaptive control mechanism, which is capable of adapting some unknown
constants embedded in the least upper bounds of perturbations, so that the
knowledge of the least upper bounds of matched and mismatched perturbations
is not required and can achieve asymptotic stability. Several numerical examples
and industrial applications are demonstrated for showing the feasibility of the
proposed control schemes.
目次 Table of Contents
Chapter 1 Introduction -2-
Chapter 2 Design of Adaptive Sliding surfaces for Systems with Mismatched Perturbations to Achieve Asymptotical Stability -8-
Chapter 3 Adaptive Sliding Mode Control for Plants with Mismatched Perturbations to Achieve Asymptotical Stability* -24-
Chapter 4 Design of Decentralized Adaptive Sliding Mode Controllers for Large-scale Systems with Mismatched Perturbations -50-
Chapter 5 Design of Block Backstepping Controllers for Systems with Mismatched Perturbations to Achieve Asymptotical Stability -77-
Chapter 6 Summary -94-
6References -97-
參考文獻 References
[1] B. L. Walcott and S. H. Zak, “Combined observer-controller synthesis for uncertain dynamical systems with applications,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 18, No. 1, pp. 88-
104, 1988.
[2] S. H. Zak and S. Hui, “Output feedback variable structure controllers and state estimators for uncertain/nonlinear dynamic systems,” IEE Proceeding - Control and Theory and Applocatins, Vol. 140, No. 1, pp. 41-50, 1993.
[3] S. H. Zak and S. Hui, “On variable structure output feedback controllers for uncertain dynamic systems,” IEEE Transactions on Automatic Control,
Vol. 38, No. 10, pp. 1509-1512, October, 1993.
[4] J. -J. E. Slotine and S. S. Sastry, “Tracking control of nonlinear system using sliding surface wit application to robot manipulations,” International
Journal of Control, Vol. 38, pp. 465-492, 1983.
[5] S. N. Singh and A. R. Coelho, “Nonlinear control of mismatched uncertain linear systems and application to control of aircraft,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 3, pp. 203-210, 1984.
[6] T. L. Liao, L. C. Fu, and C. F. Hsu, “Output tracking control of nonlinear systems with mismatched uncertainties,” Systems and Control Letters, Vol.1, pp. 39-47, 1992.
[7] K. S. Kim, Y. Park, and S. H. Oh, “Designing robust sliding hyperplanes for parametric uncertain systems: a Riccati approach,” Automatica,Vol. 36,
pp. 1041-1048, 2000.
[8] H. H. Choi, “On the existence of linear sliding surfaces for a class of uncertain
dynamic systems with mismatched uncertainties,” Automatica, Vol.35, pp. 1707-1715, 1999.
[9] H. H. Choi, “An LMI-Based Switching Surface Design Method for a class of Mismatched Uncertain System,” IEEE Transactions on Automatic Control,
Vol. 48, pp. 1634-1638, 2003.
[10] M.-L. Chan, C. W. Tao, and T. T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” Journal of the Franklin Institute, Vol. 337, pp. 105-115, 2000.
[11] Y. Xia and Y. Jia, “Robust Sliding-Mode Control for Uncertain Time-Delay Systems: An LMI Approach,” IEEE Transactions on Automatic Control,Vol. 48, pp. 1086-1092, 2003.
[12] K. K. Shyu, Y. W. Tsai, and C. K. Lai, “Sliding mode control for mismatcheduncertain systems,” Electronics Letters, Vol. 34, pp. 2359-2360,1998.
[13] K. K. Shyu, Y. W. Tsai, and K. C. Chang, “Dynamic output feedback sliding mode design for a class of linear unmatched uncertain systems,” International
Journal of Control, Vol. 73, pp. 1463-1474, 2000.
[14] A. S. I. Zinober and p. Liu, “Robust Control of Nonlinear Uncertain Systems via Sliding Mode with Backstepping Design,” UKACC International Conference on Control, pp. 281-286, 1996.
[15] G. Bartolini, A. Ferrara, L. Giacomini, and E. Usai, “Properties of a Combined Adaptive/Second-Order Sliding Mode Control Algorithm for some
Classes of Uncertain Nonlinear Systems,” IEEE Transactions on Automatic
Control, Vol. 45, pp. 1334-1341, 2000.
[16] B. S. Yuri, “Nonlinear Output Tracking in Conventional and Dynamic Sliding Manifolds,” IEEE Transactions on Automatic Control , Vol. 42, pp.1282-1286, 1997.
[17] C. M. Kwan, “Sliding Mode Control of Linear Systems with Mismatched Uncertainties,” Automatic, Vol. 31, pp. 303-307, 1995.
[18] W.-J. Cao and J.-X. Xu, “Nonlinear Integral-Type Sliding Surface for Both Matched and Unmatched Uncertain Systems,” IEEE Transactions on Automatic
Control, Vol. 49, pp. 1355-1360, 2004.
[19] F. Chen and M. W. Dunnigan, “Sliding-mode torque and flux control ofan induction machine,” IEE proceedings, Electric Power Applications , Vol.150, pp. 227-236, 2003.
[20] A.-C. Huang, and Y.-C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica,Vol. 40, pp. 1939-1945, 2004.
[21] D. Swaroop, J. K. Hedrich, P. P. Yip, and J. C. Geodes, “Dynamic Surface Control for a Class of Nonlinear Systems,” IEEE Transactions on Automatic
Control, Vol. 45, pp. 1893-1899, 2000.
[22] R. Richter, S. Lefebvres, and R. DeCarlo, “Control of a class of nonlinear systems by decentralized control,” IEEE Transactions on Automatic Control,
Vol. 27, pp. 492-494, 1982.
[23] C.-H. Chou and C. C. Cheng, “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,”IEEE Transactions on Automatic Control, Vol. 48, pp. 1213-1217, 2003.
[24] K.-K. Shyu,W.-J. Liu, and K.-C. Hsu, “Design of large-scale time-delayed systems with dead-zone input via variable structure control,” Automatica,41, pp. 1239-1246, 2005.
[25] C.-C. Chiang and Z.-H. Kuo, “Decentralized Adaptive Fuzzy Controller Design of Large-Scale Nonlinear Systems with Unmatched Uncertainties,”Proceedings of the 2002 IEEE International Conference , 2002.
[26] M. S. Mahmoud and S. Bingulac, “Robust Design of Stabilizing Controllers for Interconnected Time-delay Systems,” Automatica, 34, pp. 795-800, 1998.
[27] Y.W. Tsai, K. K. Shyu, and K. C. Chang, “Decentralized variable structure
control for mismatched uncertain large-scale systems: a new approach,”
Systems & Control Letters, 43, pp. 117-125, 2001.
[28] X.-G. Yan, C. Edwards, and S. K.Spurgeon, "Decentralized robust sliding
mode control for a class of nonlinear interconnected systems by static output feedback,” Automatica, 40, pp. 613-620, 2004.
[29] X.-G. Yan, C. Edwards, S. K. Spurgeon, and J. A. M. Bleijs, “Decentralized
sliding-mode control for multimachine power systems using only output information,” IEE Proceedings - Control Theory and Applications , 151,pp. 627-635, 2004.
[30] O. Lu, S. Mei, Y. H. Song, M. Goto, and H. Konishi, “Decentralized nonlinear
H1 excitation control based on regulation linearization,” IEE Proceedings- Generation Transmission & Distribution, 174, pp. 245-251, 2000.
[31] M. Akar and ‥U. ‥Ozg ˙uner, “Decentralized sliding mode control design using overlapping decompositions,” Automatica, 38, pp. 1713-1718, 2002.
[32] H. K. Khalil, Nonlinear control. Prentice-Hall, New Jersey, 1996.
[33] Y. Zhang, B. Fidan, and P. A. Ioannou, “Backstepping Control of Linear Time-Varying Systems With Known and Unknown Parameters,” IEEE Transactions on Automatic Control, Vol. 48, No. 11, pp. 1908-1925, 2003.
[34] L. Praly, “Asymptotic Stabilization via Output Feedback for Lower Triangular Systems With Output Dependent Incremental Rate,” IEEE Transactions on Automatic Control, Vol. 48, No. 6, pp. 1103-1108, 2003.
[35] J. Zhou, C.Wen, and Y. Zhang, “Adaptive Backstepping Control of a Class
of Uncertain Nonlinear Systems With Unknown Backlash-Like Hysteresis,”IEEE Transactions on Automatic Control , Vol. 49, No. 10, pp. 1751-1757, 2004.
[36] A.-C. Huang and Y.-C. Chen, “Adaptive sliding Control for Single-Link
Flexible -Joint RobotWith Mismatched Uncertainties,” IEEE Transactions on Automatic Technology, Vol. 12, No. 5, pp. 770-775, 2004.
[37] D. Karagiannis, Z. P. Hiang, R. Ortega, and A. Astolfi, “Output-feedback
stabilization of a class of uncertain non-minimum-phase nonlinear systems,”Automatica, Vol. 41, pp. 1609-1615, 2005.
[38] Y. Wu and Y. Zhou, “Output feedback control for MIMO non-linear systems
with unknown sign of the high frequency gain matrix,” International
Journal of Control, Vol. 77, No. 1,pp. 9-18, 2004.
[39] X. Liu, A. Jutan, and S. Rohani, “Almost disturbance decoupling of MIMO
nonlinear systems and application to chemical processes,” Automatica,Vol.
40, pp. 465-471, 2004.
[40] B. Yao and M. Tomizuka, “Adaptive robust control of MIMO nonlinear systems
in semi-strict feedback forms,” Automatica, Vol. 37, pp. 1305-1321,2001.
[41] X. Liu, G. Gu and K. Zhou, “Robust stabilization of MIMO nonlinear systems
by backstepping,” Automatica, Vol. 35, pp. 987-992, 1999.
[42] A. G. Luk’yanov and V. I. Utkin, “Methods of reducing equations of dynamic
systems to regular form,” Automatic Remote Control, Vol. 4, pp.5-13, 1981.
[43] C.-H. Chou and C. C. Cheng, “A decentralized model reference adaptive
variable structure controller for large-scale time-varying delay systems,”
IEEE Transactions on Automatic Control, 48, pp. 1213-1217, 2003.
[44] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions
on Automatic Control, Vol. 22, pp. 212-222, 1977.
[45] J. Y. Hung, W. Gao and J. C. Hung, “Variable structure control: a survey,”
IEEE Transactions on Industrial Electronic , Vol. 40, pp. 2-2, 1993.
[46] J. -J. E. Slotine andW. Li, Applied Nonlinear Control. Prentice-Hall: New
Jersey, 1991.
[47] R. Marino, S. Peresada, and P. Valigi, “Adaptive input-output linearization
control of induction motor,” IEEE Transactions on Automatic Control , Vol.
38, pp. 203-221, 1993.
[48] C. M. Kwan, “Robust adaptive control of induction Motors,” International
Journal of Control, Vol. 4, pp 539-552, 1997.
[49] G. Tao, Adaptive control design and analysis, New Jersey, John Wiley &
Sons, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.205.5.65
論文開放下載的時間是 校外不公開

Your IP address is 44.205.5.65
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code