Responsive image
博碩士論文 etd-0118108-170137 詳細資訊
Title page for etd-0118108-170137
論文名稱
Title
針對多輸入多輸出擾動系統之順滑模態適應控制器設計
Design of Adaptive Sliding Mode Controllers for Perturbed MIMO Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-12
繳交日期
Date of Submission
2008-01-18
關鍵字
Keywords
可變結構觀測器、順滑模態控制、模糊系統
variable structure observer, fuzzy system, sliding mode control
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
本論文針對含有匹配或非匹配雜訊之多輸入多輸出系統分別提出三種不同的強健型控制策略。首先,第一種控制策略是針對某些無法量測狀態變數的系統,設計出適應性可變結構觀測器及控制器,用來解決系統校準的問題。利用順滑模態控制器的調適機制,不但能使受控系統於有限時間內達到迫近模態,當系統處於順滑模態時,還可有效地壓制非匹配雜訊對系統之影響。接著,第二種控制策略是設計適應性順滑模態控制器應用於機械手臂的追蹤問題上,其系統動態方程式中含有擾動的前置參數矩陣可以是正定或負定,利用此控制架構,受控系統的狀態追蹤將會達到漸進穩定的效果。最後,第三種控制策略則是利用T-S模糊模式設計出適應性順滑模態控制器來解決追蹤的問題,於此控制架構下,受控系統能在有限時間內進入順滑面,並且還可以保證其輸出追蹤軌跡能夠達到漸進穩定。
上述三種控制架構皆以李亞普諾夫定理為理論基礎,每個控制架構皆包含三個部分,第一部分用來消除系統可量測之回授訊號,第二部分則是決定受控系統進入順滑模態速度之控制增益,第三部分為適應控制機制,用來估測未知干擾的上界常數,使系統之匹配或非匹配雜訊的上界資訊就能不需事先知道。針對本論文所提出之控制架構,利用數值範例及機械手臂控制之應用來驗證其可行性。
Abstract
In this dissertation three robust control strategies are proposed for a class of multi-input multi-output dynamic systems with matched or mismatched perturbations. Firstly, an adaptive variable structure observer and controller are introduced for solving the regulation problems, where some state variables are not measurable. By utilizing adaptive mechanisms in the design of sliding mode controller, one can enable the controlled systems not only to generate a reaching mode in finite time, but also to suppress the mismatched perturbations during the sliding mode. Secondly, the design of adaptive sliding mode controllers with application to robot manipulators is presented to solve the tracking problems. The dynamic equations of the controlled systems contain a perturbed leading coefficient matrix and can be either positive definite or negative definite. The asymptotical stability of the controlled systems will be attained if the proposed control scheme is employed. Thirdly, a design methodology of adaptive sliding mode controller based on T-S fuzzy model is proposed to solve tracking problems. It is shown that the trajectories of the controlled systems can be driven into a designated sliding surface in finite time, and the property of asymptotical stability is also guaranteed.
All these three control schemes are designed by means of Lyapunov stability theorem. Each control scheme contains three parts. The first part is designed for eliminating measurable feedback signals. The second part is used for adjusting the convergent rate of state variables (or tracking errors) of the controlled system. The third part is the adaptive control mechanism, which is used to adapt some unknown constants of the least upper bounds of perturbations, so that the knowledge of the least upper bounds of matched or mismatched perturbations are not required. Several numerical examples and an application of controlling robot manipulator are demonstrated for showing the feasibility of the proposed control methodologies.
目次 Table of Contents
Abstract ........i
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . 6
2 Design of Robust Variable Structure Observers and Controllers for
Mismatched Uncertain Systems to Achieve Asymptotical Stability 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 System Descriptions and Problem Formulations . . . . . . . . . 8
2.3 Design of the Robust Observers . . . . . . . . . . . . . . . . . 9
2.4 Analysis of System’s Stability . . . . . . . . . . . . . . . . . . 13
2.5 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . 16
3 Design of Robust Adaptive Variable Structure Tracking Controllers
with Application to Robot Manipulators 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 System Descriptions and Problem Formulations . . . . . . . . . 22
3.3 Design of the Adaptive Variable Structure Controller . . . . . . 24
3.4 Analysis of System’s Stability . . . . . . . . . . . . . . . . . . 28
3.5 Examples and Simulations . . . . . . . . . . . . . . . . . . . . 31
4 Adaptive Sliding Mode Controller Design Based on T-S Fuzzy System
Models 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 System Descriptions and Problem Formulations . . . . . . . . . 41
4.3 DesignofASMC . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . 49
5 Conclusions and FutureWorks 54
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 FutureWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References 56
參考文獻 References
[1] Chan, M. L. and Tao, C. W., “Sliding mode controller for linear systems with mismatched time varying uncertainties,” J. Franklin Institute, Vol.
337, pp. 105–115, 2000.
[2] Chang, Y. and Cheng, C. C., “Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability,” IEE
Proc. - Control Theory and Appl., Vol. 1, pp. 417–421, 2007.
[3] Chang, Y. and Cheng, C. C., “Adaptive sliding mode control for plants with mismatched perturbations to achieve asymptotical stability,” International Journal of Robust and Nonlinear Control,Vol. 17, pp. 880–896, 2007.
[4] Chen, C. S. and Chen, W. L. “Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system,” IEEE Trans. On Industrial
Electronic, Vol. 45, pp. 297–305, 1998.
[5] Chen, X. and Kano, H., “A new state observer for perspective systems,” IEEE Trans. Automat. Contr. Vol. 47, pp. 658–662, 2002.
[6] Cheng, C. C. and Chien, S. H., “Adaptive sliding mode controller design based on T-S fuzzy system models,” Automatica, Vol. 42, pp. 1005–1010, 2006.
[7] Cheng, C. C., Wen, C.-C., and Chen, S. P., “Design of adaptive output feedback variable structure tracking controllers,” JSME International Journal - Series C: Mechanical Systems, Machine Elements and Manufacturing , Vol. 49, No. 2, pp. 432–437, 2006.
[8] Choi, H. H., “Variable structure control of dynamical systems with mismatched norm-bounded uncertainties: an LMI approach,” Int. J. Contr.,
Vol. 74, pp. 1324–1334, 2001.
[9] Choi, Y., OH, Y., Oh, S. R. and Chung, W. K. “Auto-tuning PID controller for robot manipulators,” Proceedings of the American Control Conference ,
pp. 350–355, 2003.
[10] Chou, C.-H. and Cheng, C. C., “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,”
IEEE Transactions on Automatic Control, Vol. 48, No. 7, pp. 1123–1127, 2003.
[11] Craig, J. J. Introduction to Robotics Mechanics and Control , Third edition, Person Prentice Hall Person Eduation, Inc., 2005.
[12] Daniel, J. W. and Noble, B., Applied Linear Algebra, Third edition, New Jersey: Prentice-Hall, Inc., 1988.
[13] Edwards, C. and Spurgeon, S. K., Sliding Mode Control: Theory and application, London: Taylor & Francis Ltd, 1998.
[14] Feng, Y., Yu, X. and Man, Z., “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, Vol. 38, pp. 2159–2167, 2002.
[15] Feng, Y., Yu, X. and Man, Z., “Adaptive fast terminal sliding mode tracking control of robotic manipulator,” Proceedings of the 40th IEEE Conference on Decision and Control, pp. 4021- 4026, 2001.
[16] Ha, Q. P., Tring, H., Nguyen, H. T. and Tuan, H. D., “Dynamic output feedback sliding-mode control using pole placement and linear functional observers,”
IEEE Trans. Industrial Electronic, Vol. 50, pp. 1030–1037, 2003.
[17] Hsu, Y. -C., Chen, G. and Li, H. -X., “A fuzzy adaptive variable structure controller with applications to robot manipulators,” IEEE Trans. Systems,
Man, and Cybernetics - Part B: Cybernetics , Vol. 31, pp. 331–340, 2001.
[18] Hung, J. Y., Gao,W. and Hung, J. C., “Variable structure control: a survey,” IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 2–22, 1993.
[19] Iliev, B. and Hristozov, I., “Variable structure control using Takagi-Sugeno fuzzy system as a sliding surface,” Proc. of the IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 12–17, 2002.
[20] Jiang, L. andWu, Q. H., “Nonlinear adaptive control via sliding-mode state and perturbation observer,” IEE Proc. - Control Theory and Appl. Vol. 149, pp. 269–277, 2002.
[21] Khalil, H. K., Nonlinear Systems, Third Edition, Prentice Hall, New Jersey, 2002.
[22] Krishnamurthy, P., Khorrami, F. and Chandra, R. S., “Global highgain-based observer and backstepping controller for generalized outputfeedback canonical form,” IEEE Trans. Automat. Contr., Vol. 48, pp. 2277– 2284, 2003.
[23] Kung, C. C. and Chen, T. H. “Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical
systems,” Fuzzy Sets and Systems, Vol. 155, pp. 292–308, 2005.
[24] Kwan, C. M., “Sliding Mode Control of Linear Systems with Mismatched Uncertainties,” Automatica, Vol. 31, No. 2, pp. 303–307, 1995.
[25] Kwan, C. M., “On Variable Structure Output Feedback Controllers,” IEEE Transactions on Automatic Control, Vol. 41, No. 11, pp. 1691–1693, 1996.
[26] Kwan, C. M., “Robust adaptive force/motion control of constrained robot,” IEE Pro. - Control Theory and Appl., Vol. 143, pp. 103–109, 1996.
[27] Lin, W. -S. and Chen, C.-S., “Robust adaptive sliding mode control using fuzzy modeling for a class of uncertain MIMO nonlinear systems,” IEE
Proc. Control Theory Appl., Vol. 149, pp. 193–201, 2002.
[28] Liu, G. J. and Goldenberg, A. A., “Asymptotically stable robust control of robot manipulators,” Mech. Mach. Theory, Vol. 31, pp. 607–618, 1996.
[29] Moshiri, B., Jalili-Kharaajoo, M. and Besharati, F., “Application of fuzzy sliding mode based on genetic algorithms to control of robotic manipulators,”
Proceedings of the IEEE Conference ETFA ’03. , Vol. 2, pp. 169–172, 2003.
[30] Praly, L. “Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate,” IEEE Trans. Automat.
Contr. Vol. 48, pp. 1103–1107, 2003.
[31] Shyu, K. K., Tsai, Y. W. and Lai, C. K., “Stability regions estimation for mismatched uncertain variable structure systems with bounded controllers,”
Electronics Letter, Vol. 34, pp. 2359–2360, 1998.
[32] Slotine, J. -J. E. and Li, W., Applied nonlinear control, Prentice Hall, New Jersey, 1991.
[33] Song, Y. D., “Adaptive motion tracking control of robot manipulators - non-regressor based approach,” Int. J. Control, Vol. 63, pp. 41–54, 1996.
[34] Sun, F. C., Sun, Z. Q. and Feng, G., “An adaptive fuzzy controller based on sliding mode for robot manipulators,” IEEE Trans. Systems, Man, and
Cybernetics - Part B: Cybernetics, Vol. 29, pp. 661–667, 1999.
[35] Tao, C. W., Chan, M. L. and Lee, T. T., “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,”
IEEE Transactions on Systems Man and Cybernetics Part B – Cybernetics , Vol. 33, No. 2, pp. 283–294, 2003.
[36] Tao, C. W., Taur, J. S. and Chan, M. L., “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties,”
IEEE Transactions on Systems Man and Cybernetics Part B – Cybernetics, Vol. 34, pp. 255–262, 2004.
[37] Tao, G., Adaptive control design and analysis , New Jersey, John Wiley & Sons, 2003.
[38] Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. on Syst. Man, And Cybernetics,
Vol. 15, pp. 116–132, 1985.
[39] Utkin, V. I., “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, Vol. 22, No. 2, pp. 212–221, 1977.
[40] Wang, L. X., Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form, A course in fuzzy systems and control, Prentice-Hall Inc., 1997.
[41] Xiong. Y. and Saif, M., “Sliding mode observer for nonlinear uncertain systems,” IEEE Trans. Automat. Contr., Vol. 46, pp. 2012–2017, 2001.
[42] Xu, J. X., Pan, Y. J. and Lee, T. H., “A gain scheduled sliding mode control scheme using filtering techniques with applications to multilink robotic manipulators,” ASME J. Dyn. Syst., Meas., Control, Vol. 122, pp. 641–649, 2000.
[43] Yu, S., Yu, X., Shirinzadeh, B. and Man, Z., “Continuous finite-time for robotic manipulators with terminal sliding mode,” Automatica, Vol. 41, pp. 1957–1964, 2005.
[44] Yu, X., Man, Z. and Wu, B. “Design of fuzzy sliding-mode control systems,” Fuzzy Sets and Systems, Vol. 95, pp. 295–306, 1998.
[45] Zinober, A. S. I. Deterministic control of uncertain systems , IEE Control Engineering Series 40, 1990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.119.241
論文開放下載的時間是 校外不公開

Your IP address is 3.142.119.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code